
The PRIMES 2013 problem set

Dear PRIMES applicant,

This is the PRIMES 2013 problem set. Please send us your solu-
tions as part of your PRIMES application by December 1, 2012. For
complete rules, see http://web.mit.edu/primes/apply.shtml

Note that this set contains three sections: “General math problems”
(for all tracks) and two sections corresponding to the two research
tracks of PRIMES 2013 (“Advanced math” and “Computer science”).
Please solve as many problems as you can in the General math section,
and also in the section(s) corresponding to the track(s) for which you
are applying.

You can type the solutions or write them up by hand and then scan
them. Please attach your solutions to the application as a PDF (pre-
ferred), DOC, or JPG file. The name of the attached file must start
with your last name, for example, ”smith-solutions.” Include your full
name in the heading of the file.

Please write not only answers, but also proofs (and partial solu-
tions/results/ideas if you cannot completely solve the problem). Be-
sides the admission process, your solutions will be used to decide which
projects would be most suitable for you if you are accepted to PRIMES.

You are allowed to use any resources to solve these problems, except
other people’s help. This means that you can use calculators, comput-
ers, books, and the Internet. However, if you consult books or Internet
sites, please give us a reference.

Note that some of these problems are tricky. We recommend that
you do not leave them for the last day, and think about them, on and
off, over some time (several days). We encourage you to apply if you
can solve at least 50% of the problems. 1

Enjoy!

1We note, however, that there will be many factors in the admission decision
besides your solutions of these problems.
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General math problems
Problem G1. You toss two coins trying to get two heads. Namely,

you toss both coins until you get at least one head. If you get two heads
at that point, you finish, and if you get just one, you keep tossing the
other coin until you get a head.

(a) What’s the chance that you will not finish in m tosses? (Tossing
two coins simultaneously counts as one toss).

(b) Give the answer as a fraction for m = 8.
Solution. One way it can happen is if we don’t get any heads in the

first m tosses. The probability of this is 1/4m. The other way is if we
get a single head in the k-th toss, 1 ≤ k ≤ m, (the probability of which
is 1/2·4k−1) but the other coin does not give a head on tosses k+1, ...,m

(probability 2k−m). Adding up, we get 1/2m−1 − 1/4m = 2m+1−1
4m . For

m = 8 we get 511/65536.
Problem G2. A black Bishop and a white King are placed on

a 2n by 2n chessboard (all positions are equally likely). What is the
chance that the Bishop attacks the King (i.e., the King is under check)?
(Recall that the Bishop strikes along diagonals). Write the answer as
a rational function of n.

Solution. The bishop hits 2n−1+ 2m cells if it is m positions from
the boundary. So we get

p =
2n− 1

4n2 − 1
+

n∑
m=1

2(n−m)2

n2(4n2 − 1)
=

2n− 1

4n2 − 1
+
n(n− 1)(2n− 1)

3n2(4n2 − 1)
=

8n2 − 6n+ 1

3n(4n2 − 1)
=

4n− 1

3n(2n+ 1)
.

Problem G3. A sequence an, n ≥ 0 of positive integers satisfies the
recursion an+1 = F (an), where F (x) is the sum of the squares of all
the digits of x (for example, F (324) = 32 + 22 + 42 = 29). The number
a0 can be arbitrary.

(a) Show that either an = 1 starting from some n, or an is periodic
with minimal period 8 starting from some n. What are the 8 numbers
repeating periodically in the second case?

(b) Let h be any nonnegative integer function on the set of dig-
its 0, 1, ..., 9. Consider the recursion bn+1 = Fh(bn), where Fh(x) :=∑

i h(xi), and xi are the digits of x. Show that bn is eventually peri-
odic, and there are finitely many possible minimal periods for it.

Solution. (a) It is easy to check that for small initial values, the se-
quence becomes eventually 1 or hits the 8-cycle 89, 145, 42, 20, 4, 16, 37, 58.
But for large x (bigger than 99), F (x) < x. So the result follows.
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(b) Let N = max(Fh). Then F (x) ≤ N(1 + log10 x). So if x >
N(1 + log10 x) (which is true for large enough x) then F (x) < x. Let
S be the set of x such that x ≤ N(1 + log10 x), and let M be the
maximum of S ∪ F (S). Then the set T of numbers x ≤ M is stable
under F , and bn is eventually in T (as at some point it will hit S). On
T , there are finitely many cycles, and eventually the sequence bn will
hit one of them.

Problem G4. Let a > 1.
(a) For which a does there exist a solution 0 ≤ x ≤ 1 of the equation

(1 + x)1/3 + (1− x)1/3 = a?

Show that if such a solution exists, it is unique, and find it.
(b) For which a does there exist a solution 0 ≤ x ≤ 1 of the equation

(1 + x)1/4 + (1− x)1/4 = a?

Show that if such a solution exists, it is unique, and find it.
Solution. (a) We get, taking the cube:

2 + 3a(1− x2)1/3 = a3.

So (1 − x2)1/3 = (a3 − 2)/3a, which must be nonnegative and ≤ 1, so

21/3 ≤ a ≤ 2. Then 1− x2 =
(
a3−2
3a

)3

, so

x =

√
1−

(
a3 − 2

3a

)3

.

(b) We get by raising to 4th power:

2 + 4((1 + x)1/4 + (1− x)1/4)2(1− x2)1/4 − 2(1− x2)1/2 = a4.

So for z = (1− x2)1/4 we have

2z2 − 4a2z + a4 − 2 = 0.

Thus z =
4a2−
√

16a4−8(a4−2)

4
= a2 −

√
a4/2 + 1 (the sign is − since

z ≤ 1). So 1− x2 = (a2 −
√
a4/2 + 1)4, and

x =

√
1− (a2 −

√
a4/2 + 1)4.

The range for a is between 21/4 and 2.
Problem G5. Find all rational numbers a, b for which the number

γ = log2(a+ b
√

2) is rational.
Solution. Clearly, this number is rational if one of the numbers

a, b is an integer power of 2 and the other is zero. Let us show that
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otherwise γ is irrational. Assume γ = m/n. Then

2m = (a+ b
√

2)n.

Passing to conjugates, 2m = (a − b
√

2)n, i.e. a + b
√

2 = ±(a − b
√

2).
So a = 0 or b = 0, so the other number must be positive. In the first
case we have an = 2m, so a is a power of 2. The second case is similar
(b is a power of 2).
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Advanced math problems
Problem M1. You toss a coin n times. What is the probability

that the number of heads you’ll get is divisible by 3? (Find an exact
formula, not involving sums of unbounded length; it may depend on
the remainder of n modulo 6).

Solution. We have p = 2−n(1 +
(
n
3

)
+
(
n
6

)
+ ...). This can be written

as

p =
(1 + z)n + (1 + z−1)n + 2n

3 · 2n
,

where z is a cubic root of 1. This implies that

p =
wn + w−n + 2n

3 · 2n
,

where w is a 6th root of 1. So we get that

p =
1

3
+

bn
3 · 2n

,

where bn = 2, 1,−1,−2,−1, 1 if n = 0, 1, 2, 3, 4, 5 modulo 6, respec-
tively.

Problem M2. (a) Let c < 2π be a positive real number. Show that
there are infinitely many integers n such that the equation

x2 + y2 + z2 = n

has at least c
√
n integer solutions.

(b) Find a constant C > 0 such that there are infinitely many n for
which the equation

x5 + y3 + z2 = n

has ≥ Cn1/30 nonnegative solutions.
Solution. (a) Let Bn be the number of solutions of x2 +y2 +z2 ≤ n.

It is easy to see that Bn ∼ 4
3
πn3/2 as n→∞ (volume of the ball). This

means thatBn− 2
3
cn3/2 → +∞. So there are infinitely many n for which

Bn − Bn−1 ≥ 2
3
c(n3/2 − (n − 1)3/2). But 2

3
c(n3/2 − (n − 1)3/2) ∼ cn1/2

as n→∞. This implies the statement.
(b) The solution is similar. Indeed, the number of nonnegative inte-

ger solutions of x5 + y3 + z2 ≤ n behaves as the volume of the region
defined by this inequality in the first octant. This volume is easy to
compute: after making dilations x 7→ n1/5x, y 7→ n1/3y, z 7→ n1/2z, this
region maps to x5 + y3 + z2 ≤ 1. Let V be the volume of the latter.
Then the volume of the former is V n

1
5
+ 1

3
+ 1

2 = V n
31
30 . So we can take

C < (31/30)V .
Problem M3. A finite string of 0s and 1s is called admissible if it

occurs in one of the rows of the Pascal triangle modulo 2. I.e., a string
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is admissible if it has the form(
n

m

)
,

(
n

m+ 1

)
, ...,

(
n

m+ k

)
,

where the binomial coefficients are taken modulo 2.
(a) Which strings of length ≤ 4 are not admissible? Why?
(b) Give an explicit description of all admissible strings of length n.
(c) What is the number a(n) of admissible strings of length n? (Write

a recursion, guess the answer and prove it by induction; the recursive
formula may be different for n = 2r and n = 2r + 1).

Solution. (a) It is easy to see that all strings but 1011 and 1101 are
admissible. To show that these strings are not admissible, note that
such a string cannot occur in an even row (since those have 0 at every
other place). But

(
2r+1
k+1

)
=
(
2r+1
k

)
2r+1−k
k+1

, so if k is odd, these numbers
have the same parity. So every other element in a string occuring in
an odd row is followed by the same element. But this is not satisfied
for the two strings in question.

(b),(c) Assume for simplicity that n is even: n = 2r. Then there are
the following kinds of admissible strings of length n.

1) (even rows) 0b1....0br, where b1...br is an admissible string of length
r. The number of such is a(r).

2) (even rows) similarly, b10...br0. The number of such is also a(r).
3) (odd rows) b1b1...brbr. The string above of length 2r + 1 would

then be 0c10c2...0cr0, where c1...cr is admissible of length r. There are
a(r) of such strings.

4) (odd rows) b0b1b1....br−1br−1br. The string above is c10c20...0cr+1,
where c1...cr+1 is admissible. The number of such strings is a(r + 1).

So at first sight we get the equation
a(2r) = 3a(r) + a(r + 1).
But it is not quite right because the classes (1)-(4) have intersections.

Namely, the string of zeros belongs to all 4, and the string of ones to
the last two, and 0...01 and 10...0 belong to 1) and 4) and 2) and 4)
respectively. So we overcount by 6, and the correct equation is
a(2r) = 3a(r) + a(r + 1)− 6.
In a similar way we get a(2r + 1) = 2a(r) + 2a(r + 1)− 6.
Then using that a(0) = 1, a(1) = 2, a(2) = 4, it is easy to show by

induction that a(n) = n2 − n+ 2.
Problem M4. Positive solutions of the equation x sin(x) = 1 form

an increasing sequence xn, n ≥ 1.
(a) Find the limit

c1 = lim
n→∞

n(x2n+1 − 2πn).
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(b) Find the limit

c2 = lim
n→∞

n3(x2n+1 − 2πn− c1
n

).

Solution. (a) Let x2n+1 = 2πn + bn. Clearly, bn → 0, and sin bn =
1

2πn+bn
. This shows that bn ∼ 1/2πn, so the required limit is c1 = 1/2π.

(b) We have sinx = x− x3/6 + .... Thus, we get that up to quartic
terms in 1/n,

bn =
1

bn + 2πn
+
b3n
6

=
1

(2πn)−1 + 2πn
+

1

6(2πn)3
=

1

2πn
− 5

6(2πn)3
.

So c2 = −5/48π3.
Problem M5. Let us say that a polynomial f with complex co-

efficients is degenerate if there exists a square matrix B such that
B 6= f(A) for any square matrix A. What are all the degenerate poly-
nomials of degree 2? degree 3? degree 4? any degree?

Solution. We claim that f is degenerate if and only if there exists
b ∈ C such that f(z) = b implies f ′(z) = 0. Such polynomials have the
form f(z) = b + (z − a1)

n1 ...(z − ak)nk , where ni > 1 for all i. So for
degree 2, all polynomials are degenerate; for degree 3, the degenerate
polynomials are those with a degenerate critical point, and for degree
4, the degenerate polynomials are those of the form b+ g(z)2, where g
is a quadratic polynomial.

Indeed, if f is of this form then the matrix

(
b 1
0 b

)
is not of the

form f(A). Indeed, A could not be diagonalizable, so it is conjugate
to a Jordan block with some eigenvalue z. But then f(A) = b · Id,
as f ′(z) = 0. On the other hand, suppose that f is not of the above
form. Let Jb,n be the Jordan block of size n with eigenvalue b. Pick
z such that f(z) = b and f ′(z) 6= 0. Then f is invertible near z.
Let A = f−1(Jb,n). This makes sense, as f−1 has a Taylor expansion
f−1(w) = z+ c1(w− b) + c2(w− b)2.... And we have f(A) = Jb,n. Then
by the Jordan normal form theorem, for any B there is A such that
f(A) = B.
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