

Dynamic Folding of Chromatin Domains by Active SMC-Mediated Loops

Carolyn Lu

TADs: Topologically Associated Domains

- Regions of increased interaction
- Decreased interaction across boundaries
 TAD-within-a-TAD behavior

What are possible mechanisms for the formation of TADs?

Methods: Polymer simulations

Experimental

Simulation

map

Can local properties of the chromatin fiber create TADs?

Varying fiber thickness

Varying fiber stiffness

Thick-Thin-Thick model

Thin fibers do not create TAD boundaries between thick fibers

In the thin fiber, a small genomic distance can lead to a comparatively large spatial distance, in turn decreasing contacts between surrounding thick fibers.

Stiff fibers can create TADlike boundaries but are biologically unrealistic

12.8

8.8

8.0

7.2

^{12.0} Stiff fibers are extended,
^{11.2} decreasing contacts
^{10.4} between surrounding
flexible fibers.

Can actively transcribed regions create TAD boundaries?

- Genes are known to be localized at edges of TADs
- We simulate highly transcribed genes by grafting a number of short polymers to small regions, creating local "bottle-brushes."

(Alberts, Molecular Biology of the Cell, 2002)

RNA model

RNAs (not visible on the left) are bonded along **short regions** along the polymer.

Along the **DNA polymer**, are **regions** where RNAs are attached.

Ends of these regions are sometimes pushed apart.

13.5

12.0 **RNAs** prevent contacts by RNA 10.5 spots and stretch out path somewhat (though spots do loop back).

SMCs Structural Maintenance of Chromosomes proteins

Copyright © 2006 Nature Publishing Group Nature Reviews | Molecular Cell Biology

What can SMCs do?

Alipour, Elnaz, and John F. Marko. "Self-organization of domain structures by DNA-loop-extruding enzymes." *Nucleic acids research* 40.22 (2012): 11202-11212.

Simulated SMC Loop Extrusion

Every step, the bonded ends of the loop walk one monomer outwards, extruding a loop.

Simulated SMCs extrude loops until encountering a boundary

Parameters of Simulated SMC Loops

• "Lifespan"

How many steps, on average, a loop will exist. At each step, there is a $\frac{1}{\text{lifespan}}$ chance of a given loop's "death" and subsequent replacement.

 Boundary behavior Release, stick, or chance.

Polymer with SMCs and SMC Boundaries

Polymer with SMCs and SMC Boundaries

Normal Polymer

Polymer with SMCs and SMC boundaries

SMC Boundaries create TAD boundaries

Simulated SMC loop boundaries behave like observed TAD boundaries.

Loops cannot form across boundaries.

SMCs and TAD-within-a-TAD behavior.

TADs with varying boundaries. Lifespan 400.

Many thanks to mentors **Geoffrey Fudenberg and** Maxim Imakaev, Prof. Leonid Mirny, and MIT PRIMES.

