

Massachusetts Institute of Technology

Institute for Medical Engineering and Sciences

PRIMES: Program for Research in Mathematics, Engineering and Science for High School Students

In mathematics you don't understand things, you just get used to them. - John von Neumann

Chromatin organization: from polymer loops to topological domains

Boryana Doyle

Maxim Imakaev, Geoffrey Fudenberg, Leonid Mirny

Outline

Part 1

Enhancer-promoter interactions studied in polymer simulations Part 2

Analysis of experimental Hi-C data

How can enhancer-promoter interactions be affected by local genome folding?

Case 1: Insulates

Enhancer inside loop. Promoter outside loop.

Case 2: Facilitates

Enhancer before loop. Promoter after loop.

Insulation is global, while facilitation is local

Weaker insulation and facilitation in compact chromatin

Similar insulation and facilitation regardless of topological constraints

Without topological constraints = chain passing allowed

With topological constraints = chain passing not allowed

Insulation and facilitation are stronger for two loops elements

Part 1: Summary

1: Insulates: ~2 fold effect

Insulation is constant as enhancer-promoter genomic distance increases.

Facilitation diminishes as enhancer-promoter genomic distance increases.

Weaker insulation and facilitation in compact chromatin.

Similar insulation and facilitation with and without topological constraints.

Stronger insulation and facilitation with two consecutive loops.

2: Facilitates: ~4 fold effect

Part 2: Fine scale analysis of experimental Hi-C contact maps

Hi-C experimentally measures spatial contacts in 3D

Region of chromosome 15

5

4

3

2

1

0

 $^{-1}$

-2

-3

Topologically Associated Domains (TADs)

TAD size = 300 kb to 1Mb

Zoom in of chromosome 15 Region of chromosome 15 5 4 3 2 1 0 $^{-1}$ -2 -3 6.5Mb 50Mb

TADs are not single, static loops

Zoom in of chromosome 15

Simulated polymer with loop

6.5Mb

Before analyzing TADs, we need to find them: Automated TAD detection

5

4

3

2

1

0

 $^{-1}$

-2

-3

Zoom in of chromosome 15

rather than detecting TAD boundaries, we detect enriched TAD regions.

edge detection sharp boundaries

enriched mean

Automated TAD selection vs. manual TAD selection

5

4

3

2

1

0

 $^{-1}$

-2

-3

Automated

Manual

-1

-2

-3

6.5Mb

Automated TAD selection vs. manual TAD selection

5

4

3

2

1

0

 $^{-1}$

-2

-3

Automated

5.5Mb

Average TAD for Chromosome 15

Automated

Manual

Acknowledgements

PRIMES: Program for Research in Mathematics, Engineering and Science for High School Students

> In mathematics you don't understand things, you just get used to them. - John von Neumann

Leonid Mirny lab: Geoffrey Fudenberg Maxim Imakaev

Pande lab: OpenMM Molecular dynamics software