Extremal Functions of Pattern Avoidance in
Matrices

Jonathan Tidor
under the mentorship of Jesse Geneson

Third Annual MIT PRIMES Conference

May 18, 2013



PATTERN AVOIDANCE IN MATRICES

Definition

A 0-1 matrix is an array of zero and one entries.

01000 Clo)
11101 Ll 1

01011 L 11
00110 110



INTRODUCTION

@0000

PATTERN AVOIDANCE IN MATRICES

Definition

A 0-1 matrix is an array of zero and one entries.



INTRODUCTION

@0000

PATTERN AVOIDANCE IN MATRICES

Definition

A 0-1 matrix is an array of zero and one entries.

Definition
A 0-1 matrix contains another 0-1 matrix if the pattern of one

entries in the smaller matrix can be found in the larger (possibly
separated by other rows and columns).



INTRODUCTION AN EXAMPLI

@0000

PATTERN AVOIDANCE IN MATRICES

Definition

A 0-1 matrix is an array of zero and one entries.

Definition
A 0-1 matrix contains another 0-1 matrix if the pattern of one

entries in the smaller matrix can be found in the larger (possibly
separated by other rows and columns).



INTRODUCTION AN EXAMPLI

@0000

PATTERN AVOIDANCE IN MATRICES

Definition

A 0-1 matrix is an array of zero and one entries.

Py o0

e@@ o @ @

@ o @® B @
0

Definition
A 0-1 matrix contains another 0-1 matrix if the pattern of one

entries in the smaller matrix can be found in the larger (possibly
separated by other rows and columns).



INTRODUCTION

@0000

PATTERN AVOIDANCE IN MATRICES

Definition

A 0-1 matrix is an array of zero and one entries.

Definition
A 0-1 matrix contains another 0-1 matrix if the pattern of one

entries in the smaller matrix can be found in the larger (possibly
separated by other rows and columns).



INTRODUCTION

00000

MATRIX EXTREMAL FUNCTIONS

Definition

A matrix avoids another matrix if it does not contain it.



INTRODUCTION

00000

MATRIX EXTREMAL FUNCTIONS

Definition

A matrix avoids another matrix if it does not contain it.

Definition
The weight extremal function, ex(n, M), is defined as the maximum
number of one entries in an n x n matrix that avoids M. The

rectangular weight extremal function, ex(m,n, M), is defined the
same for an m x n matrix.
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MOTIVATION

1. Unit distances in convex polygons
2. Stanley-Wilf Conjecture
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UNIT DISTANCES IN CONVEX POLYGONS

Problem

(Erdos and Moser, 1959) What is the maximum number of unit
distances that can be formed between the vertices of a convex n-gon?

» They conjectured that the answer would be linear in 7,
which matches the current lower bound

» The current upper bound is nlog, n + 3n, found by
Aggarwal using the weight extremal functions of two
matrices



INTRODUCTION

[e]e]ele] ]

STANLEY-WILF CONJECTURE

Conjecture

(Stanley and Wilf) For any permutation m, the number of
permutations length n that avoid 7 is at most exponential in n.

» For example, 24315 contains the permutation 123

» In 2004, Marcus and Tardos proved that all permutation
matrices have linear extremal functions

» This proves the conjecture by a theorem of Klazar (2000)
that demonstrates the equivalence of the two
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AN EXAMPLE

Problem

What is the value of the extremal function ex(m,n,Lq)?
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Definition
A bar-visibility graph has horizontal bars for the vertices. The

edges are vertical lines that connect two bars without crossing any
other.

» It turns out that the maximum number of edges in a
bar-visibility graph with n vertices is 3n — 5
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the rightmost one entry in each
row except the bottom one

» Mark every one entry that’s not ° °
at the end of a bar nor is one of
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RECTANGULAR WEIGHT EXTREMAL FUNCTION

» ex(m,n,M) is a simple generalization of the normal weight
extremal function, ex(n, M)
» The two are closely related:
» ex(n,M) = ex(n,n, M)
» ex(min(m,n), M) < ex(m,n, M) < ex(max(m,n), M)
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A matrix M is called separable if there exist functions f and g and

some constant c such that ex(m,n, M) = f(m) + g(n) + O(1) for all
m,n > c.
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SEPARABILITY

Definition
A matrix M is called separable if there exist functions f and g and

some constant c such that ex(m,n, M) = f(m) + g(n) + O(1) for all
m,n > c.

Theorem

If a matrix M is separable, then it is linear.
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The finite difference Ajex(m,n, M) is defined to be
ex(m,n, M) — ex(m — 1,n, M). The difference Ayex(m,n, M) is
defined equivalently on the second coordinate.
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EQUIVALENT DEFINITIONS

Definition

The finite difference Ajex(m,n, M) is defined to be
ex(m,n, M) — ex(m — 1,n, M). The difference Ayex(m,n, M) is
defined equivalently on the second coordinate.

Theorem
The following are equivalent:

» M is separable

v

Aqex(m,n, M) is a function of m only

v

Apex(m,n, M) is a function of n only
ex(m,n, M) = ex(m,c, M) + ex(c,n, M) + O(1) for m,n > c

v
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FURTHER DIRECTIONS

Question

Ave there any linear non-separable matrices?

Question

How small can c be in the definition of separability? Are there any
matrices that are not separable for small values of m and n but become
separable much later on?
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