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PATTERN AVOIDANCE IN MATRICES

Definition
A 0-1 matrix is an array of zero and one entries.

Definition
A 0-1 matrix contains another 0-1 matrix if the pattern of one
entries in the smaller matrix can be found in the larger (possibly
separated by other rows and columns).
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MATRIX EXTREMAL FUNCTIONS

Definition
A matrix avoids another matrix if it does not contain it.

Definition
The weight extremal function, ex(n,M), is defined as the maximum
number of one entries in an n × n matrix that avoids M. The
rectangular weight extremal function, ex(m,n,M), is defined the
same for an m × n matrix.
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MOTIVATION

1. Unit distances in convex polygons
2. Stanley-Wilf Conjecture
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UNIT DISTANCES IN CONVEX POLYGONS

Problem
(Erdös and Moser, 1959) What is the maximum number of unit
distances that can be formed between the vertices of a convex n-gon?

I They conjectured that the answer would be linear in n,
which matches the current lower bound

I The current upper bound is n log2 n + 3n, found by
Aggarwal using the weight extremal functions of two
matrices
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STANLEY-WILF CONJECTURE

Conjecture

(Stanley and Wilf) For any permutation π, the number of
permutations length n that avoid π is at most exponential in n.

I For example, 24315 contains the permutation 123
I In 2004, Marcus and Tardos proved that all permutation

matrices have linear extremal functions
I This proves the conjecture by a theorem of Klazar (2000)

that demonstrates the equivalence of the two
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AN EXAMPLE

Problem
What is the value of the extremal function ex(m,n,L1)?
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L1: BAR-VISIBILITY GRAPHS

Definition
A bar-visibility graph has horizontal bars for the vertices. The
edges are vertical lines that connect two bars without crossing any
other.

I It turns out that the maximum number of edges in a
bar-visibility graph with n vertices is 3n − 5
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L1: CHARACTERIZATION

I Draw a bar from the leftmost to
the rightmost one entry in each
row except the bottom one

I Mark every one entry that’s not
at the end of a bar nor is one of
the bottom two in its column

I Draw an edge from that one
entry to the next bar below it

I ex(m,n,L1) ≤ 2(n − 2) + 2m +
(3(n − 1) − 5) = 5n + 2m − 12
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RECTANGULAR WEIGHT EXTREMAL FUNCTION

I ex(m,n,M) is a simple generalization of the normal weight
extremal function, ex(n,M)

I The two are closely related:

I ex(n,M) = ex(n,n,M)
I ex(min(m,n),M) ≤ ex(m,n,M) ≤ ex(max(m,n),M)
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SEPARABILITY

Definition
A matrix M is called separable if there exist functions f and g and
some constant c such that ex(m,n,M) = f (m) + g(n) + O(1) for all
m,n ≥ c.

Theorem
If a matrix M is separable, then it is linear.
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EQUIVALENT DEFINITIONS

Definition
The finite difference ∆1ex(m,n,M) is defined to be
ex(m,n,M) − ex(m − 1,n,M). The difference ∆2ex(m,n,M) is
defined equivalently on the second coordinate.

Theorem
The following are equivalent:

I M is separable
I ∆1ex(m,n,M) is a function of m only
I ∆2ex(m,n,M) is a function of n only
I ex(m,n,M) = ex(m, c,M) + ex(c,n,M) + O(1) for m,n ≥ c
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LOWER BOUNDS

Theorem
For any matrix M, ex(m,n,M) ≥ ex(m, c,M) + ex(c,n,M) − 2c2.
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FURTHER DIRECTIONS

Question

Are there any linear non-separable matrices?

Question

How small can c be in the definition of separability? Are there any
matrices that are not separable for small values of m and n but become
separable much later on?
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