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Abstract

Given a graded associative algebra A, this project studies its lower central series defined by
Ly = A and L;11 = [L;, A]. We may consider successive quotients N;(A) = M;(A)/M;+1(A),
where M;(A) = AL;(A)A. These quotients are direct sums of graded components. Our purpose
is to describe the Z-module structure of the components; i.e., their free and torsion parts.
Following computer exploration using MAGMA, two main cases are studied. The first considers
A= Ap/(fr(2f ”1), e fk(xzw)), with noncommutative polynomial relations f;, and A, the
free algebra defined on k generators {z1,...,z} over a field of characteristic p. For primes
p > 2, we prove that p=" | dim(N;(A)). Moreover, we determine polynomials dividing the
Hilbert series of each N;(A). The second concerns A = Z{xy,xza,)/ (2], 2%). For i = 2,3, the
bigraded structure of N;(As) is completely described.

1 Introduction

Algebraic geometry is technically based on commutative algebra as one can reconstruct an affine
algebraic variety from its commutative algebra of functions. This suggests to define a noncommu-
tative “space” via a noncommutative algebra which plays the role of the algebra of functions on
this nonexistent space.

This can seem a very daring postulate, but it has proven to be a powerful one. It lies at the
heart of the theory of noncommutative geometry of Alain Connes and Quantum groups of Vladimir
Drinfeld.

Feigin and Shoikhet [FS07] initiated a new approach to the study of a given noncommutative
algebra. Their idea was to approximate it by pieces whose degree of noncommutativity is controlled.
This parallels the idea of approaching a function by polynomials in its Taylor expansion. One gains

through these “more commutative” approximations an access to tools of classical geometry.
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To be more precise, the first approximation of a noncommutative algebra A is its abelianization
Agp = AJA[A, A]JA. A way to generalize this construction to higher orders is to consider the lower
central series (L;)ien. It is defined inductively: the first term L; is A itself, while the following
ones are defined as L;y; = [A, L;]. In particular the abelianization of A can be interpreted as
Agpy = AJA[A, A]A = M, /Ms, where M; denotes the ideal generated by L;, i.e. M; := AL;A. This
suggests to define N; := M;/M;;1 as a generalization of A,;,. Note that some other papers on the
same subject define and study directly B; := L;/L; 1, without first forming an ideal.

The innovative work of Feigin and Shoikhet spawned a new line of research. The structure
of B;(A) was first studied by [FS07], then by [DKMO0S], [DEOS|, [AJ10], [BJ13], [BB11], [BJ11],
and [BEJT12]. Shortly after came the study of the N;(A), including papers by [Ker13], [BEJ™12],
[JO13], and lastly [CFZ13].

In their paper, [ES07] considered A = A, (C), the free associative algebra on n letters, over
the field of complex numbers, but their results remain valid over any field of characteristic zero, in
particular over Q. They have discovered that A/Ms can be identified with the algebra Qcye,(C™)
of even differential forms on C™ with Fedosov product. Thus, one can wonder whether there are
other incarnations of classical geometric objects hidden in the N;(A)’s.

This is a difficult question, and a first approach to understand the N;(A)’s is to determine
their dimensions. We do not want to restrict ourselves to free algebras, but consider instead alge-
bras with relations. We work with fields or rings different than Q, for example over the integers

Z or a finite field k of characteristic p, as these are more accessible to computer assisted exploration.

In the first section, we consider algebras of the form A := A, /(f1, f2,..., fm). We show in
Theorem that Wy (k), the Weyl algebra with divided powers, acts on N;(A). More generally
there is an action of W, (k)®,.. ® W, (k), and one obtains (corollary that dim(N;(A)) is
divisible by p2=™. We also deduce (corollary that the Hilbert series of N;(A) with respect to
the corresponding variables X1, ..., X, is divisible by (1 + X3 4+ --- + anl_l) 1+ X4+
X2,

In the second section, we work over Z and consider algebras of the form A := Ay /(2" z%). We
prove that the Z-module structure of No(A) and N3(A) are given by the tables
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Table 1: Bigraded Description of Na(A)
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Table 2: Bigraded Description of N3(A)

We give an explicit basis of the non-torsion part and also compute the torsion in terms of m

and n.

2 Divisibility of Total Dimensions in characteristic p

The main tool of this section, Proposition states that any finite dimensional module over
W (k), a sub algebra of the Weyl algebra with divided power structure, has dimension divisible
by p’V. We show in Theorem that N;(A) can be equipped with an action of Wy (k), and as a
corollary, one obtains (corollary that dim(N;(A)) is divisible by p>="3.
2.1 Weyl algebra with divided powers

We first recall the definition of the algebra W (k) and then give in lemma a system of
generators in order to formulate the definition of W (k).



Definition 2.1 The Weyl algebra with divided powers over Z, W(Z), is the algebra of linear
operators of the form
DI
> ey’ =,
i I

0
where D := — and the coefficients a;j are in Z. For a commutative ring R, one defines W(R) :=
W(Z)® R.

Note that the elements of W(Z) define endomorphisms of Z[x| despite the denominators. If we
denote D; := D7/j! it is clear that x, together with D; for all non-negative j generate W(Z). Also

DiD"  (j+r) DItr j+r
DjDr = 1 = T . ! = . DjJrr- (1)
jlr! girt (4 r)! j

From now on, R will be a field k of characteristic p. We have a well-known Lemma:

one has:

Lemma 2.2 If k has characteristic p, the algebra generated by D; for all non-negative j is also
generated by D, for all non-negative i. More precisely, if a is a non-negative integer with repre-

sentation a = app"™ + - -+ + ap in base p, we have

D, = %H(Dps)as, with € = [[(as). )

Proof One can write a as the sum of 2 elements b and ¢, in a compatible way with its decomposition
in basis p:

a=anp" +--+ap’ +app" +- +ap.

Vv vV
b c

We claim that
D, = DyD..

According to eq. , we already know that

(Z) D, = DyD..

Therefore it suffices to prove, that (Z) =1 (mod p).

Let us recall Lucas’s Theorem: for all non-negative integers m,n and prime p, we have

(") = I (™) wod p) 3)

n
i=0 v



where m = Zf:o mip’ and n = Zf:o ngp'. In our setting:

(§)-n(5)

But we can decompose this product into two products (for s < k — 1 and for s > k — 1) and use

. a;, ifs>k—-1,
the remark that by definition of b, by =
0  otherwise.

In other words (mod p):

a
= Hs>k—1< S>Hs§k—1< N
Qs 0
= 1.
Iterating this result, one gets
Dy =T1,D,_ps. (4)

We now want to prove by induction that
Oé!Dapi = (Dpi)a. (5)

By eq. (1)),

ap’
(pi )Dap" = D(a-1)pi Dps;

so we are looking for the expression of (o;f;l) But Lukas’ theorem gives

ap’ e
= =
P’ 1 ’
which completes the induction step. [

Thus, W (k) is generated by z and D,; for all i > 0.

Definition 2.3 Denote by Wy (k) the subalgebra generated by x and Dy, --- , D

oN-1. By Lemma
it 1s generated by x and all D; with j < pV.

For example, Wi (k) is generated by = and D with relations [D,z] =1 and DP = 0.

We will need the following lemma in the proof of proposition [2.6



Lemma 2.4 For j < p", all D; € Wn(k) are nilpotent. Moreover 2P is central in this algebra.

Proof To show that all D; are nilpotent, we first show that all D,; are nilpotent.
Since D(mil)piDpi (W;IZZ)D

that m!D,,; = Dg}. In particular, for m = p, we have that

. . . i @
an induction with Lucas’s theorem (’Zf ) (T) = m shows

mpts

Dgl = p!Dpi+1 = 0. (6)

For arbitrary 0 < j < p", we have by the proof of Lemma that
P
D‘]]? = (H ‘Djsps> = H(‘Djsps)p'
S S

It remains to show that one of the terms in this product vanishes. Choosing any term in the product

and noting that since all js < p, js! # 0, one has

N ) } |
DP (Di’s) (D) _ (Dp)» @ o _

y S . == = —
JsP ]S'

Js? Js'? Js'?

(7)

Thus, we have shown that all D; are nilpotent.
It is clear that 2" commutes with z. We now show that it commutes with Dj as well. According
to lemma it suffices to show it for D, with p* < pN. To this end, note that

N . .
[D acpN]xe =D i(ZUpN.'BZ) - xpN(DpixZ) = <p ﬂ—g)xpNMpl - <£.>xpN+Zpl.

Pt p pz pz

Now, we show that 0 = ((p];fé) — (zi)) But, by Lucas’s Theorem we have that

(prj g) B <]f> = (é) ]ﬁ <£> — ]ij[l <£> —0.0

2.2 Divisibility of dimensions of Wy (k)-modules

For the rest of this section, we assume that k is algebraically closed.

Lemma 2.5 Let V be a Wi (k) module. Then all of the D; share a common null vector v € V.

Moreover, if V is irreducible, 2P acts by a scalar s € k.

Proof The D;’s commute with each other and, by Lemma , are nilpotent. We will prove by
induction that they all share a common null vector. Our base case is true: as D; is nilpotent, for
any v, there exists a certain power n for which vy := D}wvy is nonzero, but D?Hvk vanishes, so

one has D (v1) = 0. Now, suppose that Dy, ..., Dy all share a common null vector vy € V. Since



Dy, is nilpotent, there exists some integer ¢ such that D£+1 (vg) = 0 and vg4q = Di;ll (vg) # 0.
In particular Dyyq(vp41) = 0. Additionally, for any j < k, we have Dj(vg11) = Dj(DijrllUk) =
Di:_lle (vg) = 0, so our induction is done.

In addition, since 2P" is central in Wy (k), and since V is an irreducible Wy (k)-module, Schur’s

lemma asserts that 27" acts by multiplication by a scalar. [J

This lemma enables to derive the main result of this section:
Proposition 2.6 Any finite dimensional module over W (k) has dimension divisible by p" .

We recall the following basic result whose proof we omit:

Lemma 2.7 Let E, F be subspaces of vector spaces V, W respectively. Given a linear mapping
¢ :V — W such that ¢(E) C F, the map ¢ : V/E — W/F given by ¢([v]) = [¢p(v)] for v € V is

well defined and linear.

Proof Let M be a finite dimensional module over Wi (k). If M is not already irreducible, then we
may find an irreducible submodule V; of M; then, we have that M = Vi & M/Vy. If M/V; is not
yet irreducible, then we may find an irreducible submodule Vo C M /Vi; this implies the existence
of a module Fy C M such that F} := V) C Fy and Fy/F; = V5. By continuing this process we
build in a finite number of steps an exhausting filtration Fy C --- C F,, = M of M. The associated
successive quotients V; := F;/F;_; are by construction irreducible modules and together form the

Jordan-Holder decomposition of M :
M=VieV& &Vl

To prove the proposition, it suffices to show that each V; has dimension divisible by p”¥. Let V be
one of these V;.

Our strategy is to show that V = k[a:]/(asz —s), with s given by lemma A filtration
on k[z] is given by spaces F; of polynomials of degree less than i. It induces a filtration Fj
on Q) = k:[:z:]/(:z:pN — ), such that F; = F,v for i > pY. One has k[x]/(xpN) = gr(Q) where
gr(Q); = F;/F;_1. Tt is clearly of dimension p". One will conclude with the property that a
filtered k-module and its associated graded share the same dimension.

Therefore, we want to build an injective map f : k[x]/ (zP" — s) =5 V’ for V' a non-zero
submodule of V: since V is irreducible, one will get V' = V' and hence the result.

By Lemma there exists a common null-vector v to all the D;. Set V' = Wy (k) -v to be the
W (k) submodule of V' generated by v.

Consider Wy (k) - b, the one-dimensional free Wy (k) module generated by a symbol b. Then,
we have a map

f:Wn(k) -b— Wy(k)-v.

1V, may not be a submodule of M, as this is a decomposition as vector spaces.



It is defined on b by f(b) := v, and extended to w-b € Wy (k)-b by f(w-b) = w- f(b) = w-v. This
map is clearly surjective. We want to show that k[z]/ (zP" — s) - b is a quotient of W (k) - b and
that f will induce the map f that we are looking for. More precisely we will show that f produces

a surjective module morphism

friklx]-b— Wn(k)-v,

which in turn will induce

Foklz]/ @ —s) b — Wi(k)w.

Let (D,i) be the left ideal generated by all D, for 0 <i < N. Then, (D,;) - b is a submodule
of Wi (k) - b. If we show that (D) - b C Ker(f), then by Lemma there is an induced map

i Wn(k)-b/(Dyi)-b— Wn(k)-v.

Since Wy (k) -b/(D,i)-b = (Wi (k)/(Dyi)) -b = k[z] - b, we will have the desired map f : k[z]-b —
Wy (k) - v.

We therefore show that (D,:)-b C Ker(f). Consider an arbitrary element in (D) - b. It is of
the form uD,;i - b for some u € Wi (k). Since f(uD,;i-b) = uD,i - f(b) = uD,; - v, and since we have
chosen v so that Dyv = 0, we are done.

It remains to show that this map

friklz] b — Wn(k)-v

that we have just built indeed descends to a map

Foklz)/(@" —s) b — Wa(k).
By Lemma a?" (v) = s(v), so we have that (a:pN —5)-b € Ker(f), and we have a map
fklz]/(a?™ =) -b— Wx(k)-v by Lemma
To show that f is injective, it suffices to show that k[z]/(2?") is irreducible. So, let B be
a non-trivial submodule of k[z]/(zP" ), we will show that it coincides with k[z]/(zP" ). We want
to show that B contains an element of the form 1+higher terms, since such an element generates
the module k[z]/zP" over k[z]. Let b be an arbitrary nonzero vector in B. Let 2™ be the lowest

monomial it contains. (We normalize b so that b = 2™ + higher terms.) As
D,b =1+ higher terms,

we have that B = k[z]/(z?" ). O



2.3 Applications

Suppose that we work over an algebraically closed field k of characteristic p. Denote the

algebra A, := k(z1,z2,...,2,). Our noncommutative algebra is A := A, /(f1, f2,- .., fm), where
each f; = g;oh for g; € A, and h(z1,...,z,) = (:C‘TN, ey ).

Theorem 2.8 In the above setting, the algebra Wi (k) acts on N;(A).

Proof We first describe the action on A. Let z act by x(a) = x1a. To define the action of D,,,
consider the automorphism 7" of the algebra A ® k[t]/ " given by

1+t 1=1
T 1> 1.

To show that this is well-defined, we check that T'(f) = f for f = goh. Since f isin k(:csz, Loy ...y Tn),
it is of the form f = Z(Hjozj:c’fN)oq, with oy € k(xa,...,zp)
Therefore

T(f) = Y (Tt ))ey = f.

by definition of T and since T(xlfN) = (T(z1))?" = (21 + t)P" = :csz + " = fo.
Now, define the action of D; on N;(A), for j < p, to be the coefficient of t/ of T' acting on
N;(A). So, T(v) = >t D;(v). This defines the required action. [J

Corollary 2.9 With the conditions of Theorem (2.8, if N;(A) is finite dimensional (i.e. if the
abelianization Ay is finite dimensional), then dim(N;(A)) is divisible by p™. More generally, if we
instead define h as

e (0™ r
i, ...,z xn) = (2] ,...,2l  2pg1, .., )
. . . . . 1 r
(i.e. the relations are noncommutative polynomials of the first v variables « ...,z "), then

dim(N;(A)) is divisible by p>=".

Proof According to Proposition each finite dimensional representation of Wy (k) has dimension
divisible by pV. In the case of the relations being polynomials of xfni with 1 < 7 < r, the
tensor product algebra ), Wi, (k) acts on N;(A). Because this is a tensor product of irreducible
representations of Wy, (k), each of its irreducible representations has dimension divisible by pmi,
O

Corollary 2.10 FEzcept for finite dimensionality of N;(A), suppose that in the situation of Corol-
lary the relations are homogeneous in x1, ..., x,. Then, the Hilbert series of N;(A) with respect



to the corresponding variables X1, ..., X, is divisible by
A+X + 4+ XY O+ X+ X7,

in the sense that the ratio is a power series with non-negative integer coefficients.

Proof Consider the case r = 1, as the general proof follows similarly. Let M = N;(A). It is a
Z-graded module over Wy (k), with a grading given by deg(x) = 1, deg(D) = —1, and nonnegative
degrees of the vectors. Because of this, we may take any homogeneous vector and apply D; until
getting 0; thus, there exists a common null vector of D;, namely v; # 0. Let M; = F; be the
submodule generated by vy, then it has a basis of (v, zvy, z?v1...). Thus, we have two cases for
M. First, if none of these x%v; = 0, then My = k[x]. Second, if z°v; = 0, where s is minimal but
positive, then we have that s is a multiple of p™ as by Theorem Thus, My = k[z]/(2/P"") for
some positive integer j.

Next, let va # 0 be a common null vector of D; € M/F;. We define M, as the submodule in
M/ Fy generated by ve, and F» as the preimage of M in M. Continuing this construction, we make
an exhaustive filtration F; C Fy C F3 C ... of M such that F;/F;_1 = M;, and all M; = k[z] or
kla]/(27P").

If £ is a graded vector space, denote hg as the Hilbert Series of E, i.e., if E = @, E;, then
hg =Y, dim(E;) X"

Since hp,ay = hary, + har, + -+ -, we are done if each hyy, is divisible by the desired polynomial.
To this end, note that if M; = k[z] -v = (v, zv,...) and deg(v) = £, then hy;, = X + X1 ... =
A+ X+ F XP)(XO 4 XAP™ ), And, if M; 22 k[z]/(2P"'7) - o, where deg(v') = ¢, then
hag, = XE 4 X po p XOHG-DP™ = (T X 4o XM (XY X XU,
O

3 Bigraded Structure of N, and N3 over 7Z

In this section, we give complete descriptions of the abelian group of N;(A) for i = 2,3 and
A = Ay/(2", 2%), where Ay = Z(x1,x2). A bigrading of Ay, the free algebra with k generators,
is given by the total degree in x1,x9,...,x. This gives us more information about the inherent
structure of the algebra.

However, with the added relations from the ideal (z]", z), which is generated by homogeneous
terms in z1,z2, A inherits a bigrading from Ay which is bounded by ,,,n). More precisely, the
bigrading of a monomial P is given by (|P|s,, |P|sz,), where |P|;, denotes the total degree in z; of
P and |P|,, denotes the total degree in xy of P. For example, the bigrading of the term xz3z; is
given by (2, 3).

In fact, the bigrading over Az and A induce a grading over No(A) and N3(A).

When we view N;(Aj3) as finite-dimensional abelian groups, we may induce a bigrading based

upon the degrees of each generator.



Since these are abelian groups, they may be decomposed into a free part (copies of Z) and a
torsion part (direct sum of Z,, for integral m) by the Fundamental Theorem of Finitely Generated
Abelian Groups. Thus, using the data generated by our MAGMA program, we conjecture and
prove the structures of No and Ns.

We will use the simple but well-known Leibniz Rule throughout:

Lemma 3.1

[ N E aip...aj—1 CLZ, b]ai+1 R 7

and

[a,by ... Zbl bi—1]a, bilbir1 . . . bn.

3.1 Structure of N,
The aim of this section is to show that the abelian group structure of Ns is given by the following
table:

[(m.n) [O]1 [2 | [n—1[n |
0 07-

1 n

2 n
m—-1|:12 |z |--- - |Z Lo,
m : /R I/ P /A Z(mm)

Table 3: Bigraded Description of Na(A)

where (m,n) = ged(m,n). In other terms we want to show that

Theorem 3.2 The free part of Na(A) as a Z-module has a basis {mﬁxéy |0<i<m—-1,0<j<
n —1}. (Free part description)

and that

Theorem 3.3 As a Z-module, the elements z'izh 'y for 0 < i < m —2 (resp =" x%y) are of
torsion of order m (resp m), except when i = m — 1 for which z7"~ lxg Yy is of order (m,n).

(Torsion part description)

Our chain of reasoning in proving Theorem starts with forming a basis of Ma(Asz) (Lemma
[3.5). This induces a generating family of No(Ag) = Ma(As)/Ms(As) with eventually some redun-

dancy. In order to eliminate this redundancy, we will rewrite these elements using R to arrive to a



normal form and obtain a basis of Na(Az). Finally, if we take into account the extra relations of A
to find as basis of Na(A) (Theorem , then some torsion appears. This torsion part induced by
the relations will be separated from the free part of Na(A).

Let us recall a presentation of A/Msz from [BEJT12], inspired by the seminal paper [FS07] by
Feigin and Shoikhet.

Theorem 3.4 Ay/Ms = (x1,x2,y)/(R) where R is the set of relations

[z1, 2] =y, (8)
21, y] = [w2,y] = y* = 0. (9)
Below are three tools we use intermediately to prove |3.2
Remark A basis of A,, denoted B(A4,,), is given by monomials in the generators 1, - , .
Lemma 3.5 A basis of Ma(As) is given by {vyw | v,w € B(Ay)}.
Proposition 3.6 A basis of Na(As) as a Z-module is given by {xialy}.

Proof Recall the definition of Ma(Ag) = AaLa(Az)As = Ag[Ag, A2]As. Any element in this Mo is
a linear combination of u[v, w]z where u,v,w, z € B(A3).

The Leibniz rule gives ufv, w]z = u(}_ viyw;)z for some v;,w; € B(As2); note this means that
there is at least one y term in each monomial, and Ms is spanned by {v'yw’ | v/, w’ € B(A3)}. Tt is

simply a routine checking to verify the linear independence of this basis. [J
We now prove Proposition [3.6]

Proof Starting with a basis By of Mz(As) given by Theorem 3.4} we use the relations from Theorem
to rewrite the elements of its image By in No(Ag) = Ma(As)/Ms(Az) in a normal form. Using
relation (2), we may commute y anywhere within, so we push them to the right of every term by
convention.

We now show that x1 and x2 commute in monomials which contain a y. Let u,w € B(As2):

(8
UT2T1WY Q u(z1Te — Y)Wy = UT1T2WY — uy2 = uriTowy.

Thus, any element of By may be rewritten in the form of :cilx%y; the set of all such elements is still

a generating family, but now is linearly independent in the quotient. [

These set us up for the proof of Theorem



Proof Now, we finally work with No(A). To show that 0 <i <m —1and 0 < j < n — 1, recall
that A has the additional relations z1*, x4, so if ¢ > m or j > n, then $21£L‘%y vanishes. But, for
0<i<m-—1and 0 < j <n—1, no torsion can occur in total degree i + j < m or n. This is

because m and n are the degrees of A’s relations. [J

And Theorem 3.3

Proof For each bidegree with torsion, we specifically calculate the terms causing torsion. For
example, to find those with bidegree (m, 1), we first note that the term must be of the form z]y
by Proposition The generators of Ny(A) are the images of the generators of Ny(Az) modulo

relations x7* = 0,z = 0. To show its torsion, note that:

3

m—1 m—1
_ m _ S m—s—1 __ S m—s—1 __ m—1_ m—1
0= [z{", 22] = ri[z1, 2] 7] = E T1YTy = E Ty y=mxy Y.
s=0 s=0

s

Il
o

Similarly, we find that nxg_ly =0.
Thus, for all j < n, we have that mxi”flxéy = 0, so there is Z,, torsion there. Likewise, we

find naixy ly = 0 for i < m, so there is Z,, torsion there.

However, let us consider what happens with mgnflwgfly. We know that mz:i”fla?g‘*ly =

nx’ln_lxg_ly = 0. Let k be the order of x’ln_laﬁg‘_ly; then, since for all a,b, amxT_lxg_ly =

bn:v’lnflngly = 0, by Bezout’s Lemma we have k | (m,n). Thus, the term generates the group

Zmny- O

m,n

3.2 Structure of Nj
In this section, we prove that the non-zero terms in the bigraded structure of N3 are given by

the following table:

[(mn) JO]1 | 2 |-~ - [n—1 | n [ n+1 \
0 0
1 ) 7 R A 7 Zf(n)
2 | Z A e | 28 72 @ Ln L @ Lg(n)
m—11:12 VA 4 723 7L, L, ® Lg(n)
m v/ 72 ® Ly, e | 222, Lo, ® T, L) ® Lim n)
mAL || i) | Zn @ Zpomy | - | T @ Lpiom | Ziyom) D Lonm) | Zomon)

Table 4: Bigraded Description of N3(A)

Where (m,n) = ged(m,n) and



Definition 3.7 The function f : N — N 1is defined by

k k odd
f(k) =1k By
5 even.
In addition to the notation y := [x1, z2] from the previous section, we introduce the following two

terms: 21 := [z1,y], 22 := [z2,y].
In this section, we prove the following lemmas about the structure of N3(A) using tools similar

to those from the previous section:

Lemma 3.8 The free part of N3 is generated as a Z-module by the following terms: acilx%zl, $Zil‘%22,

x“ia:ng, for0<i<m—1,0<j<n-—1. (Free part description)

m—1_7 2 m—1_J+1 i n—1_ 2 i+1_m—1
Lemma 3.9 As a Z-module, the z{" "xyy® and x' x5 21 (resp xjzy” "y* and x] x5 " 22)

terms are of torsion of order m and f(m) (resp n and f(n)), except when j = n — 1, for which

" Lxi Yy is of order (m,n). (Torsion part description)

First, we show that
Proposition 3.10 Mj is generated by u[z1,ylv, u[ze, ylv, and uyvyw, for u,v,w € A.

Proof We first show that Ms is generated by ulg, yJv and uyvyw, for u,v,w € A and g € {x1,x2}.
By definition, M3 = A[A, [A, A]]A, so any of its elements may be written as u[a, [b, ¢]Jv for some
u,a,b,c,vin As.

We will concentrate on showing that [a, [b, ¢||] can be written as a sum of u(g, [b, ¢|Ju’. Consider

a = aj---a, where each of a; € {x1,z2}. We are done if we use the Leibniz Rule:

k

la, [b,]] = [a1 -+ ag, [b.c]] =) a1+ aii[ai, [b,cl]aisr - ap.
=1

Next, we will show that [g, [b, ¢|]] can be written as a sum of u[g, ¢/, d]]v, with g,¢" € {z1, 22}
and u,d,v € A. We apply the Jacobi identity to get [g, [b, c]] = [b, [g, ]| — [¢, [g, b]]. Looking at the
first term [b, [g, c]], we can apply the Leibniz rule as before to show that it can be written as a sum
of ulg,[¢’,d]]v. Since the second term is the same up to order as the first term, we are done.

Finally, we consider terms of the form [g, [¢, d]], showing that they can be written as a sum of
the desired basis terms of u[g, y|v and uyvyw. Let d = d; - - - d;, with each d; € {x1,22}. We apply
the Leibniz rule once again, this time to d. Thus,

J J
l9:1g'd)) = lg. wilg', diloi] = > (wilg, ¢/, dillvi + wilg', dillg, vi] + [g, willg', dilvi)
i=1 i=1



for some u;,v; € A. The term w;[g, [¢, d;]]v; is of the form of u[g, y]v already, as [¢’, d;] = y or 0. To
show that [g,v;] (and simultaneously [g,u;]) is in the form of uyw (or is equal to 0) with u,w € A,

we apply the Leibniz rule to v; = v; 1 - - v; ¢ with v; j € {z1,22}.

¢ ¢
wiylg, vil = wiy Y vix- - vigoalgviglvigen o vie =Y uywiyv
J=1 Jj=1
Vi, i 79

with wj,v; € A, which completes the proof. [
Then, we recall a theorem by [EKMO09| that is the My analogue of Theorem (3.4

Theorem 3.11 A presentation of As/My is given by the generators x1,xo the following relations:
21, 20] = [w1,21] = [, 21] = [w2,20] = 0, yz1 =yza=y° =0, 2} = 2120 = 25 = 0.
Armed with Lemma and Theorem we can find a basis of M3/My = N3.

Proof Our aim is to rewrite the terms F and F' in a normal form using rewriting rules from My’s
basis, where E := u[z,y]v and F := uyvyw for u,v,w € A and x € {x1,x2}.

Using methods similar to those in Theorem (3.2 we find that x1 and x2 in monomials like E
commute, and so F = x’lxézl or xﬁxézz

Next, we will rewrite F'. We first note that if there is more than one y present in any monomial,
then all the y's commute with everything within that term, so F' may be rewritten as uvwy?. Like

previously, if F' = wvwy? # mﬁxéyQ, then we can also commute each x1 and x9 in these terms. [J

We will use a fact in the proof of Lemma [3.9
Proposition 3.12 Leti > 1. Then, ya;’i = :c’iy — ixzi_lzl and ymg = xéy — ia:g_lzg.

Proof To find the torsion, we identify all relations for bidegree (m + 1,2), and work our way up
from there.

We start off with some algebraic manipulation to get that

m(m — 1)

5 22 (10)

0=ma" 1y +

Let E be the right hand of equation (1).
First, we would like to prove m(m — 1)27"~'y? = 0. Starting with 0 = [E, 23], we get that
0 =m(m — 1)a"2y>.

Multiplying on the right by x; yields our first relation.



Second, we would like to show that mxT_1y2 = 0. Right multiplication on equation (1) by y

yields the relation.

Third, we will show that mxT_lxgzl = 0. With right multiplication by x2 on the equation

mmT‘lzl = 0, commutativity of z; with everything yields our desired relation.

(m — 1) m—1

Finally, we will show that m#xl 2921 = 0. If we right multiply equation (1) by x1, we

get the following:
m(m — 1)

2

m—1

0= xq 2.

To finish, we right multiply by x».

Notice that these monomials end with either y? or z;, which both commute with z; thus, if we
right multiply by a:j2 for 0 < 57 < n — 3 we get our desired results.

So, we have found two terms that generate groups: xgnflx%yQ, and :rgnflxgﬂzl, both with
bidegrees (m + 1,5 + 2). The first term generates a torsion part of order ged(m,m(m — 1)) = m,

W) Thus, the torsion in the bidegree

while the second generates a torsion part of order (m,
is Zoy, Z(m,m“g*))' For odd m, this is equal to Z,, & Z,, and Z,, & Z% for even m, so our prior
Definition of f(k) holds.

Since x1 is symmetric with respect to x3, we obtain the same results for the bidegrees (i+2,n+1)

for 0 <4 <m — 3; i.e., the torsion is Z,, ® Z

(n,20n10)- 1
4 Conclusion

In this project, we programmed MAGMA [BCP97] to compute data about the dimensions and
ranks of these lower central series ideal quotients for various algebras. Using this data, we formu-
lated and proved conjectures concerning these quotients N;(A). Just like how knowing sufficiently
the divisors of an integer, we have proven a partial result about the substructure of an infinite and
complex family of algebras in Section [2 And, in Section [3]| we characterized the bigraded struc-
ture of Na(A) and N3(A) for algebras with two generators over Z. In addition, we have gathered
over 250 bigraded tables and nearly 100 totally graded tables, which can aid further exploration of

these algebraic structures and applications.

5 Future Work

There is still much that may be explored in this topic. Over Z, we could describe the bi-
graded structure of Ny(Ag) by utilizing a recently published paper by [dCK13| that outlined
a basis of A/Ms. In addition, we could try to produce code and explore individual grading
of more than just 2 variables. In general, we would like to be able to describe N;(A), where
A= 7z, xp) /(a2 ™). Potential further work is to perform individual grading on the
B;(A) defined in the introduction.

There are several conjectures we were not able to prove by the time of submission:

1. By comparing Tables 5 and 6 in Section 5, where the only difference is that they were cal-



culated over Z versus I, we seem to be able to recover Table 6’s data from the others’. We
mod out the free parts by pZ, leaving a copy of Z,,. If there was torsion Z,, in the Table over

Z, then there would be a copy of Z,,,) over . All our tables support this.

2. We have a conjecture about generators for the free part of Ny(A), that they are z¢, a:%v, where
v € A has one of the following bidegrees: (1,3),(2,2),(3,1),(2,3),(3,2),(3,3).

3. Though we have a complete description of Na(A), with A = Ay/(2]*,25), we have found
proofs of the same fashion that allow us to conjecture the number of generating terms there

are in the basis Ny(Ay):
E
15) <k:>
Z 2i)°
i=1

By using a complex filtration, a closed form of this expression can be found:

Re((1+1)").

6 Methods and Tables

In order to calculate free and torsion subgroups of N;(A), we use preexisting code that calculated
N;(A) over Q for one relation. This required us to modify the code to allow for multiple relations,
calculations over Z and F,, and most importantly: to calculate bigraded data (that is, degrees of
individual generators in As). The code computes each N; after computing the corresponding L;
and M;, then moves on to the subsequent ;1.

However, computers can only handle linear systems of size a few thousands. The dimension
of A in degree n is 2™, so to compute data with degree n about N;(As), we need to solve linear
systems of size 2". Realistically, our last calculable value n = 12, as 2'2 = 4096 bigraded entries.
So, we work with many data tables of N;(A) for small i < 12, automating the collection process
by writing Java and BASH scripts to convert data to LaTeX tables. Below, we present a small
selection of our data collection, which contains over 350 tables.

The rows represent m and the columns represent n, where our relations are 1" = x5 = 0. A cell
with a small o represents no free component there, while a blank cell indicates that the computer
was not able to calculate data there. Each non-trivial cell is of the form R, (T'), where R represents
the rank of the free component (Z%), while (T), in parentheses, represents the torsion structure.
For example, in (2,5) of Table |§|, T = (2-4) represents Zy @ Zy4. Absence of parentheses indicates

an absence of torsion.
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Table 11:
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Table 16: Ny : Z(x,y)/(z®,y*), Time: 912.87 sec, Memory: 789.53MB

[(m,n) JO 1 ]2 [ 3 [ 4 [ 5 | 6 | 7 [8 ]9 ]10]11]
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Table 17: N5 : Z(x,y)/(x,y*), Time: 912.87 sec, Memory: 789.53MB
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