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Abstract. The minimum number of crossings for all drawings of a given graph G on a plane is called
its crossing number, denoted cr(G). Exact crossing numbers are known only for a few families of graphs,
and even the crossing number of a complete graph Km is not known for all m. Wenping et al. showed
that cr(Km2Cn) > n · cr(Km+2) for n > 4 and m > 4. We adopt their method to find a lower bound
for cr(G2Cn) where G is a vertex-transitive graph of degree at least 3. We also suggest some particular
vertex-transitive graphs of interest, and give two corollaries that give lower bounds for cr(G2Cn) in terms
of n, cr(G), the number of vertices of G, and the degree of G, which improve on Wenping et al.’s result.

1 Introduction

For basic definitions and notations that are not explained, the readers are referred to Diestel [3]. If G
is a graph, we denote its vertex set by V (G) and its edge set by E(G). Cn, or the n-cycle, is the graph
with some n vertices {v1, ..., vn} with an edge set {v1v2, ..., vn−1vn, vnv1}. Kn, or the complete graph on n
vertices, is the simple graph with n vertices in which any two vertices are joined by an edge. Kl,m denotes
the graph whose vertex set can be partitioned into two subsets of size l and m, such that any two vertices
in the same subset are not joined and any two vertices in different subsets are joined.

Calculating the crossing number of a given graph is a major area of research in topological graph theory.
It has proven to be a very difficult task, and there are only few families of graphs whose crossing numbers
are known. In fact, in 1983 Garey and Johnson [3] showed that the calculation is NP-complete. However,
crossing numbers of some graphs are known, and one of the most interesting families of graphs have been
the Cartesian products of two elementary graphs, such as paths, cycles, stars, complete graphs, complete
bipartite or multipartite graphs (see, for example, Klešč [5]). A major result was achieved by Glebsky and
Salazar [4] when they calculated the crossing number of the Cartesian product of two cycles, cr(Cm2Cn),
for all but finitely many n greater than each given m:

Theorem 1.1 (Glebsky and Salazar, 2004). If n > m(m + 1) and m > 3, then cr(Cm2Cn) = (m− 2)n.

In a similar line, we continue investigating the crossing number of Cartesian products of graphs, but in
this case, a much larger family of graphs: namely, the Cartesian product of any vertex-transitive graph G of
degree at least 3 with a cycle. We obtain lower bounds for their crossing numbers in terms of a small graph
G′, whose order is 2 bigger than that of G.

We only consider finite simple undirected graphs. Let G be a graph with a vertex set V and an edge
set E. We only consider “good drawings” of G, in which

1. no edge crosses itself,

2. no incident edges cross,

3. no more than two edges cross at a common point,

4. edges do not cross vertices, and
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5. edges that cross do so only once.

The first two types of crossings can always be eliminated, and the next three conditions are by our choice.
We denote the crossing number of G for the plane by cr(G). If D(G) is a good drawing of G, then we
denote by v(D(G)) the number of crossings in D(G). The Cartesian product G2H of graphs G and H has
vertex set V (G) × V (H) and edge set E(G2H) = {{(x1, y1), (x2, y2)}|x1 = x2 and y1y2 ∈ E(H) or y1 =
y2 and x1x2 ∈ E(G)}.

In 2008, Wenping et. al [7] showed the following:

Lemma 1.2 (Wenping et al., 2008). cr(Km2Cn) > n · cr(Km+2) for n > 4 and m > 4.

Using their method, we prove a much more general theorem which applies to any vertex transitive
graph, a graph such that for any two vertices v1, v2 there exists a graph automorphism on the vertex set
that maps v1 to v2. Of course, the complete graph Km is vertex transitive. The key observation is that,
for any vertex-transitive graph G, every subgraph formed by the union of a copy of G and a copy of Cn in
G2Cn are isomorphic to each other. In the following theorem, the graph G′ is obtained from G by adding
two vertices, fixing any vertex in G that we call v0, and joining each of the two new vertices to v0 and all of
its neighbors as well as to each other.

Theorem 1.3 (Main Theorem). Suppose that G is a vertex-transitive graph with degree p ≥ 3. Let us denote
|V (G)| = m. Then for n > 4 and m > 4, we have the following lower bound for the crossing number of the
Cartesian product of G and Cn:

cr(G2Cn) >

[
m

p + 1
· cr(G′)− (

m

p + 1
− 1) · cr(G)

]
· n.

Corollary 1.4. In the same condition,

cr(G2Cn) ≥ n · cr(G′).

Observe that Wenping et al.’s result is a particular case of the above corollary. The proof is simple.

Proof. Since m ≥ p+1 and cr(G′) ≥ cr(G), since G is a subgraph of G′, the right-hand side of this inequality
is at most that of the inequality in Theorem 1. They are equal if and only if G = Km, the complete graph
of order m > 4, in which case m = p + 1.

It is known that cr(K3,n) =
⌊
n
2

⌋ ⌊
n−1
2

⌋
(see Richter and Širán, [6]). Observe that for any vertex

transitive graph G, the subgraph of G′ above induced by v0, its adjacent vertices, and the two new vertices
has K3,p as a subgraph. Also, the intersection of this K3,p and the original copy of G in G′ is isomorhic to
the star with p+ 1 vertices. Since a star does not cross itself in a good drawing, no crossing of the K3,p in a
good drawing occurs within the copy of G. Therefore, we have cr(G′)− cr(G) > cr(K3,p) =

⌊
p
2

⌋
bp−12 c, and

obtain the following corollary:

Corollary 1.5. Suppose that G is a vertex-transitive graph with degree p ≥ 3. Let us denote |V (G)| = m.
Then for n > 4 and m > 4,

cr(G2Cn) >
m

p + 1

⌊p
2

⌋⌊p− 1

2

⌋
· n + cr(G) · n.

This corollary shows that we can always obtain a lower bound that is better than the obvious one, cr(G) ·n.
Notice that for a random graph G, we have cr(G) 6

(
m
2

)
·
(
m−2
2

)
= O(m4). It is of interest for future research

to find a lower bound that is asymptotically greater than cr(G) · n by a constant multiple, or a lower bound
that is Ω(m4), if possible.
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2 Proof of the Main Theorem

Proof. Parts of the proof we give here for Theorem 1.3 closely follow the counting method developed for the
proof of Theorem 2.2 in Wenping et al. [8]. However, for completeness and clarification of differences in
the proofs we will include the entire proof with only a few omissions and also re-introduce some borrowed
notations and lemmas. In particular, if A, B are two disjoint subsets of E(G), the number of crossings
between edges in A and edges in B in a drawing D is denoted by vD(A,B). The number of crossings that
occur between edges of A is denoted by vD(A), so that v(D)=vD(G). Also, if X is a subset of V (G) or
E(G) for a given graph G then G[X] denotes the subgraph of G induced by X. We borrow the following
straightforward lemma:

Lemma 2.1 (Wenping et al., 2008). Let A, B, C be mutually disjoint subsets of E(G). Then, vD(C,A∪B) =
vD(C,A) + vD(C,B), and vD(A ∪B) = vD(A) + vD(B) + vD(A,B).

Throughout this proof, we consider G to be a finite simple undirected graph that is vertex-transitive
with a regular degree p. Let V (G) = {v0, ..., vm−1} so that |V (G)| = m. Let G′ be defined as in Theorem 1.3
(we may also use the apostrophe notation for a graph obtained similiarly from a vertex-transitive graph other
than G). In order to simplify the notations, we define a function f : J×J → {0, 1}, where J = {0, ...,m−1},
related to the adjacency matrix of G as in the following:

f(x, y) =

{
0, if vxvy /∈ E(G)

1, if vxvy ∈ E(G)
.

Observe that f(x, x) = 0 for all x ∈ J , and if G = Km for some m, then the value of f(x, y) = 1 iff x 6= y.
Now let us consider our Cartesian product G2Cn = H. Using f , we can define the vertex set and edge

set of H as in the following:
V (H) = {vji | 0 6 j 6 m− 1, 0 6 i 6 n− 1},

E(H) =

(
n−1⋃
i=0

{vijvik | f(j, k) = 1}
)⋃(n−1⋃

i=0

{vi−1j vij | 0 6 j 6 m− 1}
)
.

Here and throughout Section 2, superscripts are read modulo n and subscripts are read modulo m.
We analyze H by considering it as a disjoint union of subsets of V (H) and E(H). For 0 6 i 6 n − 1,

let V i = {vij | 0 6 j 6 m− 1}, Ei = {vijvik | f(j, k) = 1}, Gi = (V i, Ei), and M i = {vi−1j vij | 0 6 j 6 m− 1}.
Then
Ei ∩ Ej = ∅ for 0 6 i < j 6 n− 1,
M i ∩M j = ∅ for 0 6 i < j 6 n− 1,
Ei ∩M j = ∅ for 0 6 i 6 n− 1, 0 6 j 6 n− 1,

E(H) =

(
n−1⋃
i=0

Ei

)
∪
(

n−1⋃
i=0

M i

)
.

For any drawing D of H we have vD(H) = vD

((
n−1⋃
i=0

Ei

)⋃(n−1⋃
i=0

M i

))
. By Lemma 2.1 it follows that

vD(H) =
n−1∑
i=0

vD(Ei) +
∑

06i<j6n−1
vD(Ei, Ej) +

∑n−1
i=0 vD(M i) +

∑
06i<j6n−1

vD(M i,M j) +
n−1∑
i=0

n−1∑
j=0

vD(Ei,M j).

Furthermore, by considering the parity of n, we obtain

vD(H) =

n−1∑
i=0

vD(Ei) +

n−1∑
i=0

vD(M i) +

n−1∑
i=0

n−1∑
j=0

vD(Ei,M j)

+

n−1∑
i=0

bn−1
2 c∑

j=0

vD(Ei, Ej) +
(n + 1) mod 2

2
·
n−1∑
i=0

vD(Ei, Ei+bn2 c)

+

n−1∑
i=0

bn−1
2 c∑

j=0

vD(M i,M j) +
(n + 1) mod 2

2
·
n−1∑
i=0

vD(M i,M i+bn2 c). (1)
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Figure 1: Hi
j and H[Ei]′.

Now, let us consider different subsets of E(H). From here on, we fix the range of l to be 0 6 m − 1,
and that of k to be 0 6 n − 1. Let Ei

j = {vijvil |f(j, l) = 1, M i
j = {vi−1l vil |j = l or f(j, l) = 1}, Rj =

{v0j v1j , v1j v2j , ..., v
n−1
j v0j }, and Ri

j = Rj\{vi−1j vij , v
i
jv

i+1
j } =

⋃
k 6=i,i+1{v

k−1
j vkj }, where 0 6 i 6 n − 1 and

0 6 j 6 m− 1. Then, we can conclude that
⋃m−1

j=0 Rj =
⋃n−1

i=0 M i and
⋃m−1

j=0 Ri
j =

⋃
k 6=i,i+1 M

k.

For 0 6 i 6 n− 1 and 0 6 j 6 m− 1, let Hi
j = H[Ei ∪Ei−1

j ∪M i
j

⋃
Ei+1

j ∪M i+1
j ∪Ri

j ], the graph in H

induced by the given union of edge sets. Then we can see from Figure 1 that Hi
j is a subdivision of (H[Ei])′

which is isomorphic to G′. Figure 1 shows the subgraph Hi
j and its corresponding graph (H[Ei])′, where the

edges of Ei+1
j , Ei

j , and Ei−1
j are not drawn for clarity. Also, Figure 1 shows that in the corresponding drawing

of G′ for a good drawing D of H, the crossings within each of vD(Ei−1
j ∪M i

j ∪Ri
j) and vD(Ei+1

j ∪M i+1
j ∪Ri

j)
need not be counted since they are either self-crossings of edges in the corresponding drawing of G′ or they
appear on edges emanating from the same vertex. Similarly, for f(j, l) = 1, the crossings between {vi−1j vi−1l }
and {vi+1

j vi+1
l } need not be counted since they both emanate from vil . Therefore we have:

vD(Hi
j) > cr(G′) + vD

(
Ei−1

j

⋃
M i

j

)
+ vD

(
Ei+1

j

⋃
M i+1

j

)
+ vD(Ri

j)

+ vD

(
Ei−1

j

⋃
M i

j , R
i
j

)
+ vD

(
Ei+1

j

⋃
M i+1

j , Ri
j

)
+

∑
f(j,l)=1

vD
(
{vi−1j vi−1l }, {vi+1

j vi+1
l }

)
.

Since

vD(Hi
j) = vD(Ei) + vD

(
Ei−1

j

⋃
M i

j

)
+ vD

(
Ei+1

j

⋃
M i+1

j

)
+ vD

(
Ri

j

)
+ vD

(
Ei, Ei−1

j

⋃
M i

j

)
+ vD

(
Ei, Ei+1

j

⋃
M i+1

j

)
+ vD

(
Ei, Ri

j

)
+ vD

(
Ei−1

j

⋃
M i

j , E
i+1
j

⋃
M i+1

j

)
+ vD

(
Ei−1

⋃
M i

j , R
i
j

)
+ vD

(
Ei+1

j

⋃
M i+1

j , Ri
j

)
,

for 0 6 i 6 n− 1 and 0 6 j 6 m− 1, we obtain

cr(G′) 6 vD(Ei) + vD

(
Ei, Ei−1

j

⋃
M i

j

)
+ vD

(
Ei, Ei+1

j

⋃
M i+1

j

)
+ vD

(
Ei−1

j

⋃
M i

j , E
i+1
j

⋃
M i+1

j

)
+ vD

(
Ei, Ri

j

)
−

∑
f(j,l)=1

vD
(
{vi−1j vi−1l }, {vi+1

j vi+1
l }

)
. (2)
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So, taking the sum of both sides of (2) over all j yields

m · cr(G′) 6
m−1∑
j=0

[
vD(Ei) + vD

(
Ei, Ei−1

j ∪M i
j

)
+ vD

(
Ei, Ei+1

j ∪M i+1
j

)
+ vD

(
Ei−1

j ∪M i
j , E

i+1
j ∪M i+1

j

)
+ vD

(
Ei, Ri

j

)
−

∑
f(j,l)=1

vD
(
{vi−1j vi−1l }, {vi+1

j vi+1
l }

) ]

=

m−1∑
j=0

[
vD(Ei) + vD(Ei, Ei−1

j ) + vD(Ei,M i
j) + vD(Ei, Ei+1

j )

+ vD(Ei,M i+1
j ) + vD(Ei−1

j , Ei+1
j ) + vD(Ei−1

j ,M i+1
j )

+ vD(M i
j , E

i+1
j ) + vD(M i

j ,M
i+1
j ) + vD(Ei, Ri

j)

−
∑

f(j,l)=1

vD
(
{vi−1j vi−1l }, {vi+1

j vi+1
l }

) ]
. (3)

By observing how many times each type of crossing is counted in the above sum, we have:
m−1∑
j=0

vD(Ei) = m · vD(Ei),

m−1∑
j=0

vD(Ei, Ei−1
j ) = 2vD(Ei, Ei−1),

m−1∑
j=0

vD(Ei,M i
j) = (p + 1) · vD(Ei,M i),

m−1∑
j=0

vD(Ei, Ei+1
j ) = 2vD(Ei, Ei+1),

m−1∑
j=0

vD(Ei,M i+1
j ) = (p + 1) · vD(Ei,M i+1),

m−1∑
j=0

vD(Ei−1
j ,M i+1

j ) 6
m−1∑
j=0

vD(Ei−1
j ,M i+1) = 2vD(Ei−1,M i+1),

m−1∑
j=0

vD(M i
j , E

i+1
j ) 6

m−1∑
j=0

vD(M i, Ei+1
j ) = 2vD(M i, Ei+1),

m−1∑
j=0

vD(M i
j ,M

i+1
j ) 6

m−1∑
j=0

vD(M i,M i+1
j ) = (p + 1) · vD(M i,M i+1), and

m−1∑
j=0

vD(Ei, Ri
j) = vD

(
Ei,

m−1⋃
j=0

Ri
j

)
= vD

(
Ei,

⋃
k 6=i,i+1

Mk

)
.

These equalities and inequalities, together with the inequality (3), result in the following:

m · cr(G′) 6 m · vD(Ei)

+ 2 ·
[
vD(Ei, Ei−1) + vD(Ei, Ei+1) + vD(Ei−1,M i+1) + vD(M i, Ei+1)

]
+ (p + 1) ·

[
vD(Ei,M i) + vD(Ei,M i+1) + vD(M i,M i+1)

]
+

m−1∑
j=0

vD(Ei−1
j , Ei+1

j )−
∑

f(j,l)=1

vD({vi−1j vi−1l }, {vi+1
j vi+1

l })


+ vD(Ei,

⋃
k 6=i,i+1

Mk).

Furthermore, Wenping et al. [8] analyze different types of crossings between Ei−1 and Ei+1 and obtain the

inequality
∑m−1

j=0

[
vD
(
Ei−1

j , Ei+1
j

)
−
∑

f(j,l)=1 vD
(
{vi−1j vi−1l }, {vi+1

j vi+1
l }

)]
6 vD(Ei−1, Ei+1). More pre-
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cisely, they did not need to specify the condition f(j, l) = 1, but the exactly same argument can be used to
show the above inequality. The details are trivial and we omit them.
Therefore, for 0 6 i 6 n− 1, we have

m · cr(G′) 6 m · vD(Ei) + vD(Ei−1, Ei+1)

+ 2 ·
[
vD(Ei, Ei−1) + vD(Ei, Ei+1) + vD(Ei−1,M i+1) + vD(M i, Ei+1)

]
+ (p + 1) ·

[
vD(Ei,M i) + vD(Ei,M i+1) + vD(M i,M i+1)

]
+ vD(Ei,

⋃
k 6=i,i+1

Mk), (4)

so by taking the sum of both sides of (4) over all i, we get

mn · cr(G′) 6
n−1∑
i=0

[
m · vD(Ei) + vD(Ei−1, Ei+1)

+ 2 ·
[
vD(Ei, Ei−1) + vD(Ei, Ei+1) + vD(Ei−1,M i+1) + vD(M i, Ei+1)

]
+ (p + 1) ·

[
vD(Ei,M i) + vD(Ei,M i+1) + vD(M i,M i+1)

]
+ vD(Ei,

⋃
k 6=i,i+1

Mk)

]

= m ·
n−1∑
i=0

vD(Ei) +

n−1∑
i=0

vD(Ei, Ei+2) + 4 ·
n−1∑
i=0

vD(Ei, Ei+1)

+ 2 ·
n−1∑
i=0

vD(Ei,M i+2) + 2 ·
n−1∑
i=0

vD(Ei,M i−1) + (p + 1) ·
n−1∑
i=0

vD(M i,M i+1)

+ (p + 1) ·
n−1∑
i=0

vD(Ei,M i) + (p + 1) ·
n−1∑
i=0

vD(Ei,M i+1)

+

n−1∑
i=0

vD(Ei,
⋃

k 6=i,i+1

Mk). (5)

Comparing (5) with (1), we find that if p > 3 and m,n > 4, then

mn · cr(G′) 6 (m− p− 1) ·
n−1∑
i=0

vD(Ei) + (p + 1) · vD(H).

Since this inequality is also true for the optimal drawing D such that vD(H) = cr(G2Cn), we obtain

cr(G2Cn) >
mn

p + 1
· cr(G′)− (

m

p + 1
− 1) ·

n−1∑
i=0

vD(Ei)

>
mn

p + 1
· cr(G′)− (

m

p + 1
− 1)n · cr(G).

3 Conjectures and Further Research

The well-known crossing lemma states that any graph G with v vertices and e > 4v edges satisfies

cr(G) > 1
64

e3

v2 . Using this, we can find that cr(G2Cn) > {(0.5p+1)mn}3
64(mn)2 = O(mn). However, our main
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theorem predicts cr(G2Cn) > O(cr(G) ·mn), so it is a stronger result.
It would be interesting to be able to use this theorem to obtain lower bounds for cr(G2Cn) where G is

the hypercube graph Qn, the regular bi- or multi- partite graph Km,m or Km,...,m, the Petersen graph, or
a generalized Petersen graph, all of which are vertex-transitive. Another interesting example would be the
family of Cartesian products of multiple copies of isomorphic cycles, i.e. Cn2...2Cn, suggested by Chiheon
Kim — if possible, this would be the first general result concerning the crossing number of the Cartesian
product of more than two graphs.

We can make a conjectural lower bound of cr(G2Cn) for a given vertex-transitive graph G using
a conjectural value of cr(G′) (better yet if we can calculate cr(G′)). For example, let Q3 be the cubic
hypercube graph, and let P be the Petersen graph. Remember that cr(Q3) = 0 and cr(P ) = 2 and that for
both graphs we have p = 3. We propose the following conjectures based on Figure 2:

Conjecture 3.1. cr(Q′3) = 3, and therefore cr(Q32Cn) > 6n.

Conjecture 3.2. cr(P ′) = 6, and therefore cr(P2Cn) > 12n.

Figure 2: Q′3 and P ′.

These, if true, are stronger than the lower bounds we can find by using the disjoint subcycles of G:
cr(Q′32Cn) > 4n and cr(P ′2Cn) > 7n.

A different direction of research that may be fruitful is applying the theory of arrangements developed
by Adamsson [1] and Adamsson and Richter [2]. For an application of the theory, see Gelebsky and Salazar
[5]. It may be possible to use the theory of arrangement to calculate the crossing numbers or their lower
bounds for certain small vertex-transitive graphs G and the corresponding G′, such as ones mentioned above.

Finally, considering the intricate relationship between our function f and the adjacency matrix of G,
it may be possible to use methods from algebraic graph theory in order to exploit subtler symmetries in
non-vertex-transitive graphs and further generalize our Main Theorem.
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[6] Klešč M. The crossing number of K2,32C3. Discrete mathematics 251 (2002), 109–117.
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