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ABSTRACT. We study the action of Gal(Q/Q) on the category of Belyi func-
tions (finite, étale covers of ]P%\ {0,1,00}). We describe a new combinatorial

Gal(Q/Q)-invariant for a certain class of Belyi functions. As a corollary, we
2

obtain that for all £ < 2V 3 and all positive integers N, there is an n < N

such that the set of degree n Belyi functions of a particular rational Nielsen

class must split into at least €2 (k\/ﬁ) Galois orbits.

1. INTRODUCTION

In his Esquisse d’un Programme [0], Grothendieck expressed a program to un-
derstand the structure of Gal(Q/Q). The idea is that there is a faithful, outer
action of Gal(Q/Q) on the tower of profinite mapping class groups (the étale fun-
damental groups of the moduli spaces My, of curves of genus g with n ordered
marked points over Q). Grothendieck conjectured that the action is “generated”
on the dimension 1 moduli spaces with “relations” in dimension 2. The moduli
space My 4 is of dimension 1, and is isomorphic to P}@\ {0,1, 00}, and therefore as

part of the program, one wishes to study the action of Gal(Q/Q) on the category of
étale covers of ]P% \ {0,1,00}. Grothendieck’s dessins d’enfants encode the covers

combinatorially, and one can try to understand the faithful action of Gal(Q/Q) on
them. A first step is to determine a set of invariants, perhaps algebraic, arithmetic,
geometric, or topological in nature, that can distinguish distinct Gal(Q/Q)-orbits
of dessins. In this paper, we construct a new invariant for a certain class of dessins
and describe it combinatorially.

The key idea is to consider commutative squares of the form

Y «—— X

L

P! «— P!
(z+1)2
4z
with X the normalization of the fibered product Y xp: P'. In certain cases,
Gal(Q/Q)-invariants of the left morphism extend to Gal(Q/Q)-invariants of the
right morphism. In particular, by considering the cycle types of the monodromy
generators of the left morphism as a Gal(Q/Q)-invariant, we partition the set of
possible right morphisms into Gal(Q/Q)-invariant subsets. We describe this new
invariant combinatorially as the square-root cycle type class. It provides non-trivial
information regarding only the Gal(Q/Q)-orbits of Belyi functions that have the
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same monodromy cycle type over 0 and co. However in Theorems [3.4] and [3.5] we
prove that our invariant is substantially stronger than the rational Nielsen class
(and therefore substantially stronger than the monodromy group and the mon-

odromy cycle type). As a corollary, we obtain that for all k£ < 2V3 and all positive
integers N, there is an n < N such that the set of degree n Belyi functions of a

particular rational Nielsen class must split into at least €2 (k\/ﬁ) Galois orbits.

The structure of this paper is as follows. In Section 2] we recall the basic def-
initions and discuss previous work. In Section [B] we state our main results, and
in Section [ we prove the basic properties of our new invariant. In Section [l
we prove our main theorems and we prove that our invariant is stronger than the
rational Nielsen class invariant in certain cases, and in Section In Section [B we
give concluding remarks and state open problems. Elementary computatations are
deferred to Appendix [Al
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2. PrREVIOUS WORK

Unless otherwise specified, a curve will mean a smooth, irreducible, projective
algebraic curve over C, or equivalently a compact Riemann surface. We will de-
note by P! the complex projective line Rlc. Fix an embedding Q — C. Let
x : Gal(Q/Q) — Z* denote the cyclotomic character.

Fundamental groups are topological unless otherwise specified. Fix a generating
set xg,T1,Too Of M (]P’l \ {O,l,oo},%) such that zox12o = 1 and in C\ {0, 1},
the loops have winding numbers of 1,0,—1 about 0 and 0,1, —1 about 1, respec-
tively. Sending the generators z,y of F5, the free group on two letters, to xg, x1,
respectively, yields an isomorphism Fp = m (P*\ {0, 1,00}, 3).

By a weak action of a group G on a category C, we mean a group homomorphism
from G to the group of equivalences from C to C, modulo natural isomorphism.
Let G denote the profinite completion, G* the abelianization, and G’ the derived
subgroup of a group GG. Given a pro-finite group G, elements g1,g2 € G and f € 1/7;,
let f(g1,g2) denote the image of f under the homomorphism from F to G that
sends the generators x,y to g1, g2, respectively.

Given a partition A 4 n, let the ramification number of A, which we denote by
ram()), equal n — k, where k is the number of parts of \. We can extend the
definition of ram to permutations o € S,, by defining the ramification number of o
to be the ramification number of the cycle type of o.

2.1. The action of Gal(Q/Q) on profinite fundamental groups. Let P be a
geometric point of IE%\ {0,1, 00}, let p be the corresponding geometric point of I%,
and let pc be the base-change of p to C. There is an isomorphism between étale
fundamental groups and profinite completions of topological fundamental groups [7,
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Exposé X, Corollaire 1.8]:

7'1'16t (P}@\ {07 1; Oo}aﬁ) = 7'1'16t (Pé \ {O, 1, OO},pc) = T (Pé \ {O, 17 OO}7p(C) o~ ﬁg,

where the first two isomorphisms are canonical and the last given by fixing gener-
ators for m (P¢, pc). Furthermore, there is an exact sequence of étale fundamental
groups [7, Exposé IX, Théoréme 6.1]

1= 7t (PE {0, 1,00} ) = 7t (Ph\ {0, 1,00}) = Gal(@/Q) — 1.
This induces an outer action
(1) Gal(@/Q) — Out (E) .

The scheme I% \ {0,1,00} can be replaced by any quasi-compact, geometrically
connected scheme X over Q and ]P’}@\ {0,1,00} (resp. P\ {0,1,00}) by the base-

change of X to Q (resp. C), but the choice of P, \ {0,1, o0} has special properties,
such as Theorem [2.I] to be outlined in the next subsection.

2.2. Belyi functions and dessins d’enfants. A Belyi function is a finite, étale,
connected cover of P}@\ {0,1,00}. Due to [7, Exposé X, Corollaire 1.8], we can

equivalently view a Belyi function as a finite, étale, connected cover of P£\ {0, 1, 0o},
which is a meromorphic function on a curve X that is unbranched outside {0, 1, co}.
A dessin d’enfant is a bipartite, connected graph G with parts Vp, V1 together with
an embedding G — X where X is a compact, oriented, topological 2-manifold,
whose image is the 1-skeleton of a CW-complex structure on X.

The following data are then equivalent [8] [14]:

(1) an isomorphism class of Belyi functions of degree n;

(2) an isomorphism class of dessin d’enfants with n edges; and

(3) aconjugacy class of transitive representations (Fy =) 71 (P*\{0, 1, 00}, 3) —

Shp.
To a Belyi function f, we associate the dessin f~1([0,1]) with Vo = f~1(0) and V; =
f71(1), and the monodromy representation of i : F» = 71 (P* \ {0,1,00},3) — S,,.
It follows from the Riemann Existence Theorem that one can associate a Belyi
function to any dessin or representation Fp — S,,.
There is a natural action of Gal(Q/Q) on the category of Belyi functions: viewing

the category of Belyi functions as the category of étale covers of P!\ {0, 1,00} and
given an automorphism o € Gal(Q/Q), we can base-change by Spec . There is an

action of Gal(Q/Q) on the category of representations of F, on finite sets where
o € Gal(Q/Q) acts by sending h to h o a(c); the image of h is defined only up
to isomorphism because Gal(Q/Q) acts canonically only by outer automorphisms.
The category of Belyi functions is equivalent to the category of representations of
F, on finite sets, (where Fj is identified with m; (P'\ {0,1,00},2)) which is in
turn equivalent to the category of representations of ﬁ'; on finite sets and therefore
Equation [ yields a weak action of Gal(Q/Q) on the category of Belyi functions.
The fact that the two actions are equivalent follows from the definition of the exact
sequence in Equation[I and the fact that the group of isomorphism classes of self-
equivalences of the category of representations of 1/7; on finite sets is canonically

isomorphic to Out (E)
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A key result regarding the action of Gal(Q/Q) follows from following theorem of
Belyi.

Theorem 2.1 ([I], Theorem 4). A curve admits a Belyi function if it is defined
over Q.

By considering the action of Gal(Q/Q) on the j-invariants of elliptic curves, it
follows the actions of Gal(Q/Q) on Fy, the category of Belyi functions, and the set
of isomorphism classes of dessins are faithful [g].

2.3. Gal(Q/Q)-Invariants. The outer action of Gal(Q/Q) on Fs yields an injection
of Gal(Q/Q) into the (profinite) Grothendieck- Teichmiiller group GT. In particular,
the action of Gal(Q/Q) satisfies the following property.

Theorem 2.2 ([4], Proposition 3.2). Let o € Gal(Q/Q) and let { € Aut (IE‘;) be

a lift of a(o). Then for i € {0,1,00}, ((x;) is conjugate to xi‘(g) in By, where
X : Gal(Q/Q) — Z is the cyclotomic character.

Theorem 22 yields Gal(Q/Q)-invariants of Belyi functions and dessins d’enfants.
Fix a Belyi function f : X — P! of degree n. We obtain an associated dessin
I' C X and a monodromy representation h : w1 (P'\ {0,1,00},2) — S,. Let A; 4n
denote the cycle type of o; = h(z;) for i € {0,1,00}. One can easily verify (from
Theorem or otherwise) that the cycle type of the monodromy (Ag, A1, Aso) is
Gal(Q/Q)-invariant. In fact, Ao is the degree multiset of Vj, )\ is the degree
multiset of V7, and Ay, is the multiset of half the number of edges bounding each
face of T [9, p.4].

Another Gal(Q/Q)-invariant is the monodromy group, defined as the image of
the monodromy representation h, which is Gal(Q/Q)-invariant by definition of the
action of Gal(Q/Q) on the category of Belyi functions. A third invariant is the
rational Nielsen class, which is the set of triples

{(3). 02, loX)) | A e 2%}

where [u] denotes the conjugacy class of u in the monodromy group of f; the
Gal(Q/Q)-invariance of the rational Nielsen class follows immediately from Theo-
rem Let N(n) denote the family of pairs of a group G acting transitively on
[n] and a rational Nielsen class in G.

There are other combinatorial invariants, such as the Ellenberg’s braid group
invariant [4] and Serre’s lifting invariant. Zapponi [I5] defined an invariant for
plane trees (equivalently, Belyi polynomials) that is merely a sign +1, but that is
particularly interesting in that it is not combinatorial.

2.4. Hurwitz existence problem. We investigate Belyi functions with mon-
odromy of fixed cycle type. Let B be the set of monodromy cycle types of Belyi
functions. Determining B is an unsolved case of the Hurwitz existence problem,
which deals with the possible sequences of monodromy cycle types of étale covers
of arbitrary curves over C with removed points, but is a purely group-theoretic
question regarding finite permutation representations of the fundamental groups of
Riemann surfaces with points removed.

In the case of P*\ {0, 1, 00}, the question is: given a finite group G' and conjugacy
classes c¢g, ¢1, oo, how many triples (0p,01,0x) are there of elements o; € ¢; such
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that o0go105 = 17 There is a formula for the number of solutions in terms of the
characters of G (see, for example, Serre [12, Theorem 7.2.1]), but this is not simple
to evaluate in general. Edmonds-Kulkarni-Stong [3] construct a family of elements
of B.

Theorem 2.3 ([3], Proposition 5.2). Let n be a positive integer, and let o, B = n.
Let P be the total number of parts of o, 5. A Belyi function with monodromy of
cycle type (o, B,n) exists if and only if P=n+1 (mod 2) and P <n+ 1.

Necessity follows immediately from the Riemann-Hurwitz formula, and suffi-
ciency is proven constructively. If one of the partitions is not n, the Riemann-
Hurwitz condition on the total number of parts of the three partitions is not in
general sufficient.

3. STATEMENTS OF THE MAIN RESULTS

3.1. A new Gal(Q/Q)-invariant for Belyi function with monodromy of
cycle type (\, p, \).

Definition 3.1. Let n be a positive integer, A, x 4 n, and f a Belyi function with
monodromy of cycle type (A, u,\). Suppose that f has monodromy generators

00,01, 000, Over 0, 1, 0o, respectively. The square-root class of f, denoted by Sqrt(f),
is defined as

Sqrt(f) = {(oalel,Tl,oo) €83 |12 =0y and 0o = Tfloon}.

Because 0y, 01,04 are only defined up to simultaneous conjugation in S,,, each
element of Sqrt(f) is only defined up to such conjugation.

Definition 3.2. Let the square-root cycle type class of f, denoted by SqCt(f), be
the multiset of triples (Ag, A1, Aoo) Where ); is the cycle type of 7; for (79,71, 700) €

Sart(f).

For each positive integer n, the action of Gal(Q/Q) on the set of conjugacy
classes of representations of F in S, induces an action of Gal(Q/Q) on the power
set of the set of such representations. Hence, for all ¢ € Gal(Q/Q) and all Belyi
functions f, one can define o(Sqrt(f)). A key property of the square-root class is
its Gal(Q/Q)-equivariance. This yields a key property of the square-root cycle type
class, which is that it is Gal(@/ Q)-invariant, and in certain cases it can distinguish
Gal(Q/Q)-orbits of dessins that are indistiguishable by the monodromy group and
the rational Nielsen class. The square-root cycle type class is a purely combinatorial
invariant, albeit difficult to compute explicitly. In order to state the final properties
of the square-root cycle type class, we define the genus of an element of SqCt(f);
for all A = (Ao, A1, Aoo) with A; 4 n, let
s = Eie{O,l,o;} ram(\;)
We can naturally extend g to take arguments that are elements of S,, instead. If
o; is a permutation of cycle type \; for i € {0,1, 00}, such that ogo10, = 1 and
the o; generate a transitive subgroup of 5,,, the Riemann-Hurwitz formula implies
that this is simply the genus of the curve X that admits a Belyi function with
monodromy of cycle type (09,01, 0x) -

Now, we are prepared to state the key facts regarding the square root class and
the square-root cycle type class.

—n+1.
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Theorem 3.3 (Properties of Sqrt and SqCt). The function Sqrt is Gal(Q/Q)-
equivariant and thus the function SqCt is Gal(Q/Q)-invariant. Let f : X — P! be
a Belyi function and suppose that X has genus g. Then,

(a) |SqCt(f)| is at most the number of non-trivial involutions on X, and in par-
ticular, if g > 1, then | SqCt(f)| < 84(¢9 — 1) — 1;

(b) if there exist odd positive integers k,c and a triple (uo, 11, tioo) € SQCH(f) such
that p1 has ¢ parts of size k and no parts of size 2k, then |SqCt(f)| = 1;

(c) if g > 1, then there exists at most one triple A = (Ao, M1, Aoo) € SACt(f) such
that g (\) = 0.

3.2. The monodromy cycle type and the rational Nielsen class are im-
precise invariants. For all positive integers n, let

number of Gal(Q/Q)-orbits of Belyi
CI(N) = max — max functions with monodromy of
EN AL A A cycle type (A1, A2, A3)

Using the tools of Section [B.3] we derive the following optimized lower bound.

Theorem 3.4. For all positive integers N, we have

CI(N) > %2\/"%

For a positive integer N, let
( number of Gal(Q/Q)-orbits of Belyi >

Cl'(N) = max max

n<N ceN(n) \ functions with rational Nielsen class ¢

We also prove the following theorem.
Theorem 3.5. For all k < 2\/3 we have
CI'(N) = Q (km ) :

The monodromy group of the rational Nielsen class achieving the given inequality
can be chosen to be A,,.

Remark 3.6. Theorem [3.4] is not special case of Theorem [3.5 because it provides

an explicit constant as well as a base of V3 instead a base of arbitrarily close to

23,

3.3. Tools to prove the lower bounds. In this section, we state the specific
consequences of the key properties of the square-root cycle type class used to prove
the lower bounds stated in the preceding subsection. First, we describe a coarse
analogue of SqCt.

Let n be a positive integer, and let A, < n. We define a set M (A, i), of which
SqCt(f) will be a subset for all Belyi functions f of monodromy cycle type (A, &, A).
First, we define an auxiliary set M’(\, u). Suppose that p has ¢; parts of size i for
all 7, and let \g = n.

(U, Uty -y Up) | % <wu; </{; foriand i =0,u; = %
for non-zero even 4,7 +ug +uy + -+ uUp — N
is an even integer that is at most 2, and there exists

an odd positive integer ¢ such that u. = ¢, is odd

M/(/\hu) =
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where r is the number of parts of A\. Given a (n + 1)—tuple u = (ug, u1,...,un) €
M’ (X, 1), we associate partitions a(u), S(u) 4 n. The partition a(u) is defined by
having 2ug — ¢y parts of size 1 and €y — ug parts of size 2, and f(u) is defined by
having 2uy — ¢; parts of size k for k odd, and Ek — Uk + 2ug — £y, parts of size k for
k even. It is clear that o, 8 4 n. Let M(\, ,u) = {(« ( ), B(w),A) | uwe M (A}
The constraints on M’(A, ) are chosen so that elements of M (A, i) are consistent
in that the existence of a Belyi function with monodromy cycle types given by any
element of M (A, 1) would not violate the Riemann-Hurwitz formula.
One specific application of part (b) of Theorem B3] is the following theorem.

Theorem 3.7 (Main Theorem). Let n be a positive integer and let A, 4 n. Then,
there are at least |[M(\, ) N B| Gal(Q/Q)-orbits of Belyi functions with monodromy
of cycle type (X, p, A).

An existence result for Belyi functions, due to Edmonds-Kulkarni-Stong [3],
yields the following corollary.

Corollary 3.8 (n-cycle Theorem). If A = n - n, then M(\, ) C B. Hence, if
p = n, then there are at least |M'(\, p)| Gal(Q/Q)-orbits of Belyi functions with
monodromy of cycle type (n, p,n).

In certain cases, the constraint that . = £, is odd for some odd c in the definition
of M’(X, i) is restrictive, in that there are A, p for which the Main Theorem gives
weak bounds on the number of Gal(Q/Q)-orbits of Belyi functions with monodromy
of cycle type (A, i, A). We prove an alternate form that applies even in those cases,
but is weaker in other cases. For example, consider n = 11, with A\ = 11 and
p = 2222111. The n-cycle Theorem implies that there are at least 0 Gal(Q/Q)-
orbits of Belyi functions with monodromy of cycle type (A, u, A); the alternate form
will imply that there are at least 2 Gal(Q/Q)-orbits.

Once again, let n be a positive integer, and let A\, u 4 n. Suppose that p has ¢;
parts of size ¢ for all ¢, and let A\g = n. Let

(Uo, Uty ..oy Uy) | % < wu; <¥; for odd 7 and ¢ = 0,

M{(X\, 1) = { there exists an odd i with u; # %,ui = % for ,

non-zero even ¢, and r +ug+u1 + -+ u, =n—+2

where r is the number of parts of A. Define Mo(\, ) = {(a(u), B(u),N) | v €
M\, 1)}. We prove the following analogue of the Main Theorem, which follows
from Theorem B.3|(c).

Theorem 3.9 (Main Theorem, Alternate Form). Let n be a positive integer and let
A, A n. Suppose that A has 1 parts and p has s parts, and 2r+s < n. Then, there
are at least | Mo (X, 1) N B|; and Gal(Q/Q)-orbits of Belyi functions with monodromy

of cycle type (X, i, A).

Similar to the n-cycle Theorem, we obtain the following corollary.
Corollary 3.10 (n-cycle Theorem, Alternate Form). If A = n - n, then M;(A, p) C
B for i = 0,1. Hence, if p 4 n has less than n — 2 parts, then there are at

least |Mo(\, i1)| Gal(Q/Q)-orbits of Belyi functions with monodromy of cycle type
(n, 1,m)-
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4. PROOF OF THEOREM [3.3]

Let f and t be affine coordinates centered at 0 on ]P)}c and P}, respectively. Define

2
the morphism ¢ = % : ]P’} — P}

4.1. Choosing generators of 7 (]P’1 \ {0,1, 00}, b). We need to deal with mon-
odromy representations induced by different base-points and different identifications
of Fy with the 71 (P*\ {0,1,00},b). To this end, we prove the following proposition.

Proposition 4.1. Let by,by € P*\ {0,1,00}, let p be a path from by to by in
P\ {0,1, 00} and let p* denote the induced isomorphism from w1 (P*\ {0,1, 00}, b2)
to m (P*\{0,1,00},b1). Let

i1,d2 0 Fy — mp (P {0,1,00},b1) , w1 (P'\ {0, 1,00}, b2)

be isomorphisms such that i1(x),i2(x) (resp. i1(y),i2(y)) have winding numbers 1
and 0 (resp. 0 and 1) about 0 and 1, respectively. Then, ifl op*oiy is an inner
automorphism of Fy. In particular, if f : X — P! is Belyi function of degree n, then
the monodromy representations of Fo associated to [ induced by the identifications
i1,%2 are isomorphic.

The key tool we use is the fact that the natural map
2) Out (F) — Aut (Fgab) (2 GLy(Z))
is an isomorphism (see [13, §0.1]).

Proof. Because P!\ {0, 1,00} is path-connected, it suffices to prove that if iy, is are
isomorphisms from F to m (P! \ {0, 1, 00}, b) such that i1 (z),i2(x) (vesp. i1(y),i2(y))
have winding numbers 1 and 0 (resp. 0 and 1) about 0 and 1, respectively, then
il_l 019 is an inner automorphism of F5. By the constraint on winding numbers, the
automorphism ifl o iy descends to the identity on F»%® 2 Z2, and the conclusion

follows by Equation O

In particular, the outer action of Gal(Q/Q) on E in Equation[I]is independent of
the choice of (geometric) base-point and isomorphism of F with 71 (P*\ {0,1, 00}, b).
In the remainder of this paper, we often suppress base-points and identifications
of F5 or E with the appropriate fundamental groups when discussing monodromy
representations and the action of Gal(Q/Q).

4.2. Proof that Sqrt is Gal(Q/Q)-equivariant. Let by = 17—‘2/7_3 be the basepoint
of Py \ {=1,0,1,00}, and let b; = t(by) = 3 be the corresponding basepoint of
Pt \ {0,1,00}. Let by = 1+_\2/T3 be the element of the fiber of ¢ over b; other than
by. Fix a generating set y_1, Yo, Y1, Yoo for ﬁl(P} \{—1,0,1,00},by) as in Figure[]
and a generating set zg, T1,Too for m1 (P} \ {0,1,00},b;) as in Figure @l It is clear
that ¥_1Y0¥1Y00 = 1 and z9z12o = 1. Let £ be the shown path from b; to b} in
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FIGURE 1. Let x_; be the shown loop that traces the path from
by to b’f that intersects [—1, 0], followed by the path from b}. to by
that intersects (—o0,0], and let x; be defined similarly about 1.
Let 2y be the shown loop based at by that winds counterclockwise
around 0, and let £ be the shown path from by to b, that intersects
[1,00).

]P’} \ {—1,0,1,00}. Then, one can easily verify the following relations:

LYo = Too
tey—1 =
tey1 = xf
tol = xq,

where the equalities are in the fundamental groupoid of P*\ {0, 1,00}. Let 3 be the
lift of zos to Vs, and let yoo = £71 B4, so that t,yse = xflxooxl in the fundamental
groupoid of P\ {0, 1, cc0}.

Let n be a positive integer, and let g : X — P} be a Belyi function of degree n
defined on an algebraic curve X. Let X’ be the normalization of X Xp1 ]P’}c, and let
X = ]P)} be the projection. The curve X’ may not be irreducible.



10 RAVI JAGADEESAN

FIGURE 2. Let yo be the shown loop based at b; that winds coun-
terclockwise around 0, and similarly for y; about 1. Let yo, be the
shown loop based at b; that traces the outer circle.

Definition 4.2. We write f = ¥(g), so that 3 defines a function from the set of iso-
morphism classes of Belyi functions to the set of isomorphism classes of morphisms
of curves X’ — P!, where X' is not necessarily irreducible.

X = X

'] lf
P; «——— P}
= D2
17

The projection a : X’ — X induces a bijection between the fibers g=1(b;) and
(¢')"'(bs). We order the fiber g!(b;), which gives an order on (g')~'(bs) via
the restriction of a. Using these orders, we can define the monodromy of f and
g as fixed representations (not isomorphism classes of representations) of (]P’}c \
{~1,0,1,00},by) and 71 (P} \ {0,1,00},b;) on [n]. Let px € S,, be the image of zy,
under the representation of 1 (P} \ {0,1,00},b,) for k € {0,1,¢}, and let o4, be



A NEW Gal(Q/Q)-INVARIANT OF DESSINS D’ENFANTS 11

the image of y, under the monodromy representation of m; (P} \ {—1,0,1, 00}, by)
for k € {-1,0,1, c0}.

For all Belyi functions g, the fact that X(g) is étale outside {—1,0,1, 00} fol-
lows from the fact that étaleness is preserved under base-change. The following
proposition is immediate by lifting loops.

Proposition 4.3. Let g : X — P! be a Belyi function, with monodromy generators
T0,T1, Too- LThen, X(g) is unbranched outside {—1,0,1,00}. Let 0_1,00,01,0 be
the monodromy of the function X(g) over —1,0, 1, 0o, respectively (the permutations
are defined up to simultaneous conjugation in S, because we fized loops of winding
number 1 about each branch point in both P} and ]P’}) Then, we have 09 = Too,

o1 =7, 0.1=1%, and 0o = Tl_lTooTl.

We are now ready to link the constructions of this subsection to the square-root
class.

Definition 4.4. Let f: X — P! be a Belyi function. Define

Sart/(f) = {g | ©(9) = [},
and call Sqrt’(f) the fibered product square-root class of f.

Theorem 4.5. (a) The function Sqrt’ is Gal(Q/Q)-equivariant.
(b) Let n be a positive integer, and let f : X — P! be a Belyi function of degree n.
Then, Sqrt(f) is the set of monodromy triples of elements of Sqrt’(f).
In particular, the function Sqrt is Gal(Q/Q)-equivariant.

Proof. We begin by proving part (a). We treat Belyi functions as finite étale covers
of ]P’}@\ {0,1,00}. The fact that ¥ is Gal(Q/Q)-equivariant then follows from the
fact that F, preserves fibered products and normalizations.

Part (b) follows immediately from Proposition .3l O

4.3. Proof of Part (a). Let f : X — P! be a Belyi function. The key to the proof
of this part is to construct an injection from Sqrt’(f) to the set of involutions on X.
The remainder of the statement follows from Hurwitz’s Automorphism Theorem.

Proof of Theorem[3:3(a). Let Inv(X) denote the set of non-trivial involutions on
X. We construct an injection i : Sqrt’(f) — Inv(X). Let g € Sqrt’(f), so that we
have a diagram

y 2 X

3) 5| |+

P} «—— P,
p= D2 '
—i

with X the normalization of the fibered product Y Xp1 ]P’}». The bottom morphism
is of degree 2, and the vertical morphisms are of degree n, which implies that the
top morphism « is also of degree 2. There is an involution ¢ : X — X, which is
the unique deck transformation for the restriction of « to its unramified locus. Let
i(g) = t. Note that a : X — Y is the quotient of X by ¢, so that ¢ determines o up
to composition by an automorphism of Y.
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To prove that ¢ is injective, it suffices to prove that «, f, and the bottom mor-
phism uniquely determine g. This is obvious, because « is surjective and dia-
gram [3] is required to commute. Therefore, | Sqrt’(f)| < |[Inv(X)|, and the fact
that | Sqrt(f)| < |[Inv(X)| follows by Theorem E35(b). O

4.4. Proof of Part (b). We transfer to representations of F; to analyze the fibered
product square-root class. Fix a generating set F» = (z,y) and a positive integer
n. For all positive integers k, let [k] denote the set {1,2,...,k}. Let T, be the
set of conjugacy classes of transitive representations m : Fo — S, such that there
exists an odd positive integer ¢ such that m(y) contains an odd number of cycles
of length ¢ and no cycle of length 2¢. Let £ denote the representation of F5 on S

with &(z) = (1)(2) and £(y) = (12).

Proposition 4.6. Let n be a positive integer. Let m € T, be a transitive represen-
tation m : Fy — S, and let m’ be a representation m’ : Fy — S,,.

(a) The representation m X £ is transitive.
(b)) If mx £=2m' x &, then m=m/.

Proof. Suppose that m, m’ satisfy the conditions of the proposition. Let mg = mx¢
and let my = m x &.

First, we prove part (a). Let (a,b),(a/,0’) € [n] x [2], and we will prove that
there exists a word w € F» such that me(w)(a,b) = (a/,0’). By definition, the
permutation m(y) € S, must have an odd cycle in its cycle decomposition. Suppose
that (p1ps --- px) be a cycle in m(y) with k odd. Let wg,w; € F» be such that
m(wo)(a) = p1 and m(w;)(p1) = a’; because m is transitive, such wg, wy exist. If
&(wiwp)(b) = b, then we can take w = wywy because m(wiwp)(a) = a’. Hence, we
can assume that &(wiwp) # b'. Let w = wiy*wy. Because k is odd, &(w)(b) = b/,
and it is easy to see that m(w)(a) = a’. It follows that mj is transitive.

We now prove part (b). It follows from part (a) that m’ is also transitive. There
is an automorphism « of [n] X [2] such that ao (m x &) = m’ x . Let G be the
kernel of &; it is a normal subgroup of index 2 in F5. Note that the m-action (resp.
m’-action) of G' on [n] x [2] fixes the second coordinate. Because mg¢ and my are
transitive representations, the group Fy/G = (Z/2Z)" acts transitively on the set
of mg-orbits (resp. mg-orbits) of G in [n] x [2]. In particular, there are at most 2
mg-orbits (resp. my) orbits of G, so that me(z) and me(y?) generate a subgroup of
Sinjx[2) that acts on [n] x [2] with two orbits, [n] x {1} and [n] x {2}, and similarly for
m/. The action of o must preserve these orbits. Therefore, the second coordinate
of a(i,j) must be j for all 4, j. Furthermore, G acts transitively on [n] x {1}.

Suppose that m(y) contains 2k + 1 of cycles of length ¢ and no cycle of length
2c. Then, mg(y) contains 2k + 1 cycles of length 2c. Therefore, mj(y) must also
contain 2k + 1 cycles of length 2¢. Suppose that m/(y) contains a cycles of length
c and b cycles of length 2c. Then, mg(y) contains a + 2b cycles of length 2¢, from
which it follows that a is odd and thus a > 1. Let ¢’ be a cycle of length ¢ in mg
and 7" = (" x {(y) the corresponding cycle of length 2c in mj. Let 7= a~!
be the corresponding cycle of length 2¢ in mg. Because m(y) does not contain any
cycle of length 2¢, we must have 7 = ¢ x £(y) for some cycle ¢ of length ¢ in m(y).

Without loss of generality, we assume that 1 is not fixed by (, and we may also
assume that the second coordinate of a(1,1) is 1. Let a(1,1) = (8(1),1). Then, we

OT/OO(
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have 7¢(1,1) = (1,2) and 7°(1,2) = (1, 1), and similarly that 7'¢(8(1),1) = (5(1),2)
and 7°(3(1),2) = (3(1),1).

It suffices to prove that there is a permutation § € S, such that a(i,j) =
(B(i),7), as this would imply that the representations m and m’ differ only by
conjugation by an element of S,,. Fix i and let g € G be such that me(g)(1,1) =
(,1). We must have m(g)(i) = 1, from which it follows that m¢(g)(1,2) = (4, 2).
We have

me(g) o 7¢(i,1) = (i,2).
It is clear that

me(9)(B(i),1) = aome(g) oo™t = (B(1),1).
Thus, we have m’(g)(8(i)) = B(1) from which it follows that mg (5(i), 2) = (8(1),2).

However, we have
a(i,2) = aome(g) o ¢ ome(g) (i, 1)
= (ome(g) o ofl) o(woTto a ') (a(1,1))
=my(g) o 7(B(1),1) = me(9)(B(1),2) = (B(7),2),

as desired. The proposition follows. (|

Fix the isomorphism (z,y) = Fp = m(P'\ {0,1,00},3) with # — 2 and
y — x1. Taking monodromy representations gives a bijection K = K, between
the set of isomorphism classes of degree n Belyi functions and the set of transitive
representations m : F5 — S,. An important auxiliary proposition that we use in
the proof of Theorem as well as the proof of the Main Theorem is the following.

Proposition 4.7. Fix a positive integer n. For all Belyi functions g of degree n,

K(X(g)ot) = K(g) x &, where t = %.

Proof. Let C be the category of étale covers of P!\ {0,1,00}. The function K is
the object function of a contravariant functor from C to FinSet®?, the category
of representations of Fy on the category of finite sets. It is well-known that K
is in fact an equivalence of categories. In particular, K preserves products. But,
Y(g) = g x t (in C), and the conclusion follows. O

Proof of Theorem[33(b). Let f : X — P! be a Belyi function of odd degree n, let
(0, T1,Too) € Sqrt(f), and let u = n be the cycle type of 71. Suppose that k,c
are odd positive integers such that p has ¢ parts of size k and no parts of size
2k. Let m be the representation of Fy on S, that sends = to 79 and y to 7. By
Proposition [£.6], if a representation m’ : F» — S, satisfies m x £ = m/ x &, then in
fact m = m/.

Suppose that 7" = (74,71, 75) € Sart(f) and m’ : F» — S, is the corresponding
representation. It follows from Theorem 5(b) and Proposition 7 that m' x & =2
K(fot) =2 m x &, which implies that m = m’. Therefore, (7,71, 7.,) is conjugate
to (70,71, Teo). Since the choice of 7/ was arbitrary, | Sqrt(f)| = 1 and the result
follows. O

4.5. Proof of Part (c). Let n be an odd positive integer, and let A\, u < n. We
use the fact that a hyperelliptic curve admits a unique involution with a genus 0
quotient in the proof of Theorem [B3[a). Equivalently, we replace Proposition
in the proof of Theorem B.3[(b) with the fact about hyperelliptic curves.
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Proof of Theorem[T3(c). Let Ty denote the set of isomorphism classes of Belyi
functions of that P! admits. Note that g(A\og, A1, Aso) is the genus of a curve that
admits a Belyi function with monodromy cycle type (Ao, A1, Ao), if such a curve
exists. Therefore, by Theorem L5(b), it suffices to prove that the restriction of X
to Tp is injective.

Consider two commutative squares

Pl % X Pl % X
T
P} «——— P} P} +— P,
t:% t:(f+})2 f

4

where in both diagrams X is the normalization of the fibered product P} Xp1 PL,
and the left morphisms are Belyi functions of degree n. Because a hyperelliptic
curve of genus at least 2 admits a unique degree 2 function to P!, there must be an
automorphism 3 of the top left copy of P! such that o/ = o . Hence, we have
goa =tofand (¢ of) oa = to f. Because a is surjective, this implies that
g=9g'op. 0

5. PROOFS OF THE MAIN THEOREM AND THE n-CYCLE THEOREM AND LOWER
BOUNDS ON Cl(n), CI'(n)

5.1. Proofs of the Main Theorem and the n-cycle Theorem. Fix a integer
n and partitions A, 4 n. For «, 5 4 n, define S, g to be the set of isomorphism
classes of Belyi functions with monodromy of cycle type (a, 8, \). Let

S = U Seps and Sy = U Se.g.
(e,B,N)EM (N, u)NB (e,B,A\)EMo(A\,n)NB

Let f € X(S) U X(Sp). Proposition 3] implies that f is étale when restricted to
the pre-image of P! \ {0,1, 00}, and has monodromy of cycle type (A, pu, ). By
Propositions [£.6(a) and E7 the monodromy of f acts transitively on the fiber
above the base-point, and it follows that the domain of f is irreducible and f is
a Belyi function. The Main Theorem, in its ordinary and alternate forms, follow
from Theorem B3 parts (b) and (c), respectively.

Proof of the Main Theorem. By Theorem B.3|(b), | SqCt(f)| = 1 for all f € X(S5).
By construction, SqCt(f) can take any value in M (\, u) N B as f ranges over S.
Because SqCt is Gal(Q/Q)-invariant, the theorem follows. O

Proof of the Main Theorem, Alternate Form. By Theorem[B.3(b) and the construc-
tion of Sy, SqCt(f) contains exactly one element (Mg, A1, Ao ) such that g(Ag, A1, Aoo)
0 for all f € X(Sp). Denote this element by R(f). Because SqCt is Gal(Q/Q)-
invariant, so is R(f). By construction of Sy, R(f) can take all values in M'(\, u)NB
as f ranges over Sy, and the theorem follows. O

By construction, the assertion that M (A, u) C B would not violate the Riemann-
Hurwitz formula. The fact that M (A, p) € B when A = n - n is immediate by
Theorem 2.3 and the n-cycle Theorems follow.



A NEW Gal(Q/Q)-INVARIANT OF DESSINS D’ENFANTS 15

5.2. Primitive subgroups of S,,. We need a result on primitive subgroups of
Sp, from Dixon-Mortimer [2] but due to Jordan. We also need a result describing
permutation groups that contain short length cycles.

Theorem 5.1 ([2], Example 3.3.1). Let n > 9, let G be a subgroup of Sy, and
suppose that there exists a nonidentity o € G with at least n — 4 fized points. If G
does mot contain a transposition or a 3-cycle, then G is not primitive.

Theorem 5.2 ([2], Theorem 3.3E). Let q be a prime, and let n > g+ 2. If a
primitive subgroup G of S, contains a q-cycle, then G contains A,,.

The form that we will need is the following proposition, which is immediate from
Theorems [5.1] and

Proposition 5.3. Letp > 7 be a prime, and let G be a subgroup of S, that contains
a p-cycle and a double transposition. Then G contains Ap.

Proof. A subgroup of S, that contains a p-cycle is primitive, and a double trans-
position in S, has p — 4 fixed points. By Theorem 5.1l G contains a 2-cycle or a
3-cycle. In both cases, Theorem [5.2] implies that G contains A,, as claimed. ([

Remark 5.4 (Noam Elkies, private communication). The proposition is false for
p = 5,7. For p = 5, one can take G = Dy, and for p = 7, one can take G =
PGL5(Z/27).

5.3. Proofs of Theorems [3.4] and We derive Theorems [3.4] and from
the Main Theorem and the results quoted in the preceding section. First, we begin
with a few computational lemmata, whose proofs are deferred to Appendix [Al

Let ¢t and k be positive integers with k& < ¢. Define

o= 22

For a positive integer ¢, define

t
At +2
no(t) =2t+1+ Y 2(2k—1) {%—1 —1J.
=1

Lemma 5.5. For all positive integers t, we have
482 412t +1 < ng(t) < 6(t +1)% — 4.

Lemma 5.6. Let t be a positive integer. Then, we have

no (t) '

S -

k=1

Lemma 5.7. Let t be a positive integer. Then, we have

Proof of Theorem[34] Let ¢ be a positive integer, and let n = ng(t). We will prove
a lower bound on Cl(n) which will imply the theorem. Let A = n - n. Define the
partition u - n by requiring that « have 2f(k) — 2 parts of size 2k — 1 for 1 < k < ¢,
and 1 part of size 2t + 1.
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We claim that

¢
(4) MO )| = [T £ (k).

k=1
Let S be the set of tuples (vg,v1,...,v,) such that f(k) — 1 < wvop—1 < 2f(k) — 2
forall 1 < k <t vy =1, v, =0foralli >2t+1and i = 2,4,...,2¢t, and

vg =n — r(v), where
t

r(v) =Y (2f (k) =2 —wp).
k=1
Notice that vory1 = 1, and p has 1 part of size 2¢ + 1 and no parts of size 4t + 2.
Hence, to prove Equation H] it suffices to prove that S C M’(A, u). It suffices to
prove that 7(v) < %. Indeed, we have

1 S -,
k=1

Lemma [5.6] implies that r(v) < & for all ¢,v.
The n-cycle Theorem implies that Cl(n) > [M (A, p)| > [T,—, f(k). By Lemmal[5.7]
it follows that Cl(n) > 22!, and Lemma [5.5] implies that

CL(6(t + 1)%) > 22
for all positive integers ¢. Fix a positive integer N > 24. If 6(t+1)%> < N < 6(t+2)?,

then we have
| N [2N

CI(N) > 11_62\/%%

The bound is trivial for N < 24, and thus we have established the result for all
N. O

Remark 5.8. A simpler construction can establish that CI(N) = Q (2\/¥)

It follows that

Proof of Theorem[3.3. As in the previous proof, let ¢ be a positive integer, and for
LSk <t lot f(k) = | 4252 Let

¢
4t + 2
=442t+1 2(2k -1 -1
ny =4+ ++Z;( ){%_1 J
Let n be the smallest prime number that is at least ng(t). Let e(t) = O
Because

lim ng(t) = oo,
t—o00
the Prime Number Theorem implies that

Jim (14 (1)

n
=1l =1.

ti>r£o no(t)
It is clear that ny > 2, which implies that n = n; (mod 2). Let 2a+1=2t+1+n—
ng. Let A = (n) 4 n, and let - n be the partition of n with f(k) parts of size 2k—1
for 1 < k < t, two parts of size 2, and one part of size n — ng(t). By Lemma 5.5
we have ny < ng(t) +4 < 6(¢ + 1)2, which implies that n < 6(t + 1)%(1 + €()).
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We claim that
t
(5) M\ w) 0Bl = [T £(k).
k=1

Let S be the set of tuples (vg,v1,...,v,) such that f(k) — 1 < vop1 < 2f(k) — 2
forall 1 <k <t, v,y = 1, vo = n — r(v) where

t
r(v) =1+ (2f(k) =2 —w),
k=1

and v; = 0 for all other 7. It follows from Lemma that r(v) < % for all v,t,
which implies that S € M'(X, u). Notice that v,,_p, ) = 1, and g has 1 part of size
n — ng(t) and no parts of size 2n — 2ny(t). Equation Bl follows.

Let f be a Belyi function with monodromy of cycle type (A, 1, A) and monodromy
generators og, 01,04 over 0,1,00, respectively. By definition, the permutation

20-1)1 . o
0§ " is a double transposition. Because

n>ny=ng(t)+4>np(l)+4=09,

Proposition implies that the monodromy group G, which is generated by oy
and o1, contains A,. The fact that oy and oy are even implies that G = A,.
There are two conjugacy classes of n-cycles in A,, so that oy and o~ can be in
the same conjugacy class or in different conjugacy classes. Because o¢ and o4
are only defined up to conjugation in S, the case of both monodromy generators
being in one conjugacy class lies in the same rational Nielsen class as the case of
both monodromy generators being in the other rational Nielsen class. Furthermore,
the Sy, -conjugacy class of permutations of cycle type A forms a single A,-conjugacy
class. Thus, there are at most two possible rational Nielsen classes of Belyi functions
with monodromy of cycle type (A, i, A).

By the n-cycle Theorem, there are at least | M (X, u)| > [[h_, f(k) Belyi functions
with monodromy of cycle type (A, p, A). The previous paragraph and Lemma [5.7]
then yield that

CI'(6(t +1)*(1 + (1)) >

for all positive integers ¢.

We now let ¢ vary. Fix a constant k < 2\/? Let T be a positive integer such

that
2

3 (logs k)z

for all ¢ > T'; such a T exists because lim;_,o €(t) = 0. Let P = no(T)(1 + ¢(T)),
and let N > P. There exist an integer t > T such that

1+e€(t) <

no(t+1)(1+e(t+1)) < N < ng(t +2)(1 + et +2)).
Then, by Lemma [5.6] we have that N < 6(t + 2)2(1 + €(t + 2)). It follows that

t —N 2
TNty
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The fact that Cl’ is non-decreasing implies that

2N

logy CUN) > 2t —1> | o0
og; CT(N) 2 A 30+ et +2))

—5>VNlog, k — 5.

The theorem follows. O

6. CONCLUDING REMARKS AND OPEN PROBLEMS

6.1. Generalizing the square-root class. Let ¢ : ]P’}c — P} be a morphism of
curves satisfying ¢({0,1,00}) C {0,1,00}. Given a Belyi function f : X — P!, we
can form the generalized square-root class of f, defined by

Sart,(f) = {Belyi functions g : X’ = P! | ¢ xp1t = f}.

It is clear that if ¢ is defined over a number field K, then the function Sqrt,(f) is
Gal (Q /K )-equivariant. We recover the ordinary square-root class for the choice of

;= (f+f1)2
1
in a similar fashion to the manner in which the cartographic group induces Wood’s

Belyi-extending map invariant [14].
However, if ¢ is of degree greater than 1, then Sqrt,(f) will be empty for most

Belyi functions f, and therefore we do not recover a very general invariant. In our
(f+1)°
oy

, so that the square-root class induces the generalized square-root class

case, where t = , the monodromy cycle types of f above 0 and oo must be
the same in order for Sqrt(f) to be nonempty. We give an example that suggests
that one may be able to reformulate the invariant in a manner that is applicable

more generally.

6.2. Example: Belyi functions with monodromy of cycle type (n,(2g +
1)11---1,n). We apply the Main Theorem to the case of Belyi functions with
monodromy of cycle type (n,(2g + 1)11---1,n). An explicit count of M (n, (29 +
1)11---) and an application of the n-cycle Theorem yield the following result.

Proposition 6.1. Let g be a positive integer and let n > 4g + 1 be an odd positive
integer. Then, there are at least {(% + 1)2J Gal(Q/Q)-orbits classes of Belyi maps
of type (n, (2g+ 1)11---1,n).

In the case of g = 1 and n = 5,7,9, we constructed the Belyi functions and
explicitly verified the following conjecture, which suggests that the square-root
cycle type class can be adapted to an invariant that describes the combinatorial
action of Gal(Q/Q) on the group of principal divisors.

Conjecture 6.2. Let n be an odd positive integer, X an algebraic curve, and
f: X — P! a Belyi function with monodromy of cycle type (n,311---1,n). Let P
and O be the locations of the ramifications of order n —1 on X, and let T be the
location of the ramification of order 2. Then, SqCt(f) = {(22---2111,322---2,n)}
if and only if

as divisors on X.
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APPENDIX A. PROOFs OF LEMMATA [5.5] [5.6] AND 5.7

Proof of Lemma[5.8 We have

and

t t
A4t +2
n<2A+1+) 2(2k—1)(2kt1—1> =2t+1+2) (4t +3 - 2k)
k=1 k=1

=2t 4+ 1+ (6t +6) =6t + 12t + 1 < 6(t + 1)*

t t
4t 42 s
n>2t+1+§ 2(2k—1)(2k_1—2)—6t +12t+1—§ 2(2k — 1)
k=1 k=1
=42 + 12t + 1.

Proof of Lemmal5i.6l We have

t
1
—t+ (4t +1)) .
2k — 1

7
kh
—
Nl
S~—
|
—_
S~—
IN

-
7N
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=&
||+
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Applying the bound
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which holds for all positive integers m, we have

ST(F(k) = 1) < —t+ (4t +1) (10g(2t ) t1- @) ,

k=1
Therefore, we have

23 (f(k) —1) < 6t +2+ (4t + 1) log(4t).
k=1

It follows that 2 22:1 (f(k)—1) <2t*+6t+1 < "OT(t) for t > 8, where the second
inequality is by Lemma We can easily verify the lemma for ¢ < 7, and the
lemma follows. O

Proof of Lemma[5.73 Fix t, and let M denote the left-hand side. We have

LAt +2 I, (4t + 3 —2k)
eI ) - P

Recall that

Returning to M, we have
(4t + 1)!! (4t + 2)12t+12¢ (4 + 2)120F1 (¢ + 1)121¢!

M> G D@ =0~ @ DI @2 112+ 2)1(20)2%
(4t + 2)!(t + 1)lt! ()

2t DIt +2)120)! 23

We now apply Stirling’s formula with error bounds, which is the well-known in-
equality

12 1+1 < m! < o
e m _—_— e m .
2Tm (%)m
It follows that )
m
gt - Gulvam
2m
In particular, we have
-1 my rm
— < log L <0.
6m 22m

Applying this bound to M, we have
M > 2%\/2eT5s > 22,
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