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Abstract

We investigate avoidance in (2+2)-free partially ordered sets, posets that do not
contain any induced subposet isomorphic to the union of two disjoint chains of length
two. In particular, we are interested in enumerating the number of partially ordered
sets of size n avoiding both 2+2 and some other poset α. For any α of size 3, the results
are already well-known. However, out of the 15 such α of size 4, only 2 were previously
known. Through the course of this paper, we explicitly enumerate 7 other such α of
size 4. Also, we consider the avoidance of three posets simultaneously, 2+2 along with
some pair (α, β); it turns out that this enumeration is often clean, and has sometimes
surprising results. Furthermore, we turn to the question of Wilf-equivalences in (2+2)-
free posets. We show such an equivalence between the Y-shaped and chain posets of
size 4 via a direct bijection, and in fact, we extend this to show a Wilf-equivalence
between the general chain poset and a general Y-shaped poset of the same size. In this
paper, while our focus is on enumeration, we also seek to develop an understanding of
the structures of the posets in the subclasses we are studying.

1 Introduction

Partially ordered sets, or posets, are a collection of objects that appear in many areas of
mathematics. Essentially, a poset consists of a set of elements along with a binary relation
such that, for some pairs of elements in the set, one of the elements dominates the other.
The notion of a partial order indicates the idea that not every pair of elements has to be
related. Therefore, for example, a poset could be used to model an ecological food web. The
study of posets has a history extending back to at least the 1930s (see [9]). Since then, the
study has blossomed into a rich field encompassing many areas of mathematics including
topology [10], complexity theory [7], and representation theory [5], among many others (see
[17] for an exposition).

One of the fundamental combinatorial questions is to determine the number of posets of
a certain size that avoid another forbidden poset. Avoidance in this context is a fairly rich
study. For example, Stanley [13] enumerated N -free (series-parallel) posets. Furthermore,
Lewis and Zhang [8] enumerated graded (3+1)-free posets, while Guay-Paquet, Morales, and
Rowland [6] recently solved the general case for (3+1)-free posets.

Here, we investigate (2+2)-avoiding or (2+2)-free posets, posets that do not contain
an induced subposet isomorphic to the union of two disjoint chains of length two. These
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posets are related to a number of other combinatorial structures. Particularly striking is
the result that (2+2)-free posets are precisely interval orders (shown in [4]), which have
applications in mathematics, computer science, and engineering, particularly in the task
distributions of complex manufacturing processes (see [16]). They have also been shown to
be in bijection with ascent sequences and are related to pattern avoiding permutations [2].
These applications motivate the study of (2+2)-free partially ordered sets.

In this paper, we study avoidance within (2+2)-free posets; in particular, we seek to
enumerate the number of posets of size n avoiding both 2+2 and some other poset α. For
any size 3 poset α, the result has already been enumerated and is well known. However,
this is not the case for size 4 posets α. When α = 3 + 1 (the disjoint union of a chain of
length 3 and a single element), the resulting sequence is known to be the Catalan sequence
(see [11], [14]). Similarly, when α = N (the size 4 poset in the shape of an N), the sequence
is Catalan as well (see [15], [14]). Yet, these 2 are the only size 4 posets α that have been
enumerated out of the 15 such α (discluding 2+2 of course). Through the course of this
paper, we enumerate 7 other such α (see Figure 1). In particular, in Section 3, we enumerate
α = 4 and α = Y . In Section 4, we consider α = ./ and α = ♦, and in Section 5, we look at
α =

√
. Additionally, in a few instances in this paper, we enumerate the number of posets

avoiding 2+2 and two other posets α and β, with α, β chosen from the posets below. It turns
out that in many cases, these enumerations have surprisingly clean results.
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•
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Resolved in Section 3

•
•
•
•
•
••
•

︸ ︷︷ ︸
Resolved in Section 4

•
• •
• •

•
•
•︸ ︷︷ ︸

Resolved in Section 5

Figure 1: The size 4 posets α that have now been resolved

We also address the question of Wilf-equivalences in (2+2)-free posets. Two posets α
and β are said to be Wilf-equivalent in (2 + 2)-free posets if for all n, the number of posets
of size n that avoid (2 + 2, α) is equivalent to those that avoid (2 + 2, β). Since we only
look at (2+2)-free posets, all Wilf-equivalences in the paper are assumed to be in (2+2)-free
posets. The size 3 posets, ∨,∧, 2 + 1, 3, are known to be Wilf-equivalent. However for posets
of size greater than 3, the only known pair is 3 + 1 and N . In Section 3, we shall show a
Wilf-equivalence via a direct bijection. In Section 6, we pose conjectures and a number of
open problems.

Note 1.1. For the sake of space, some proofs are omitted. We give the ideas behind proofs
or partial proofs whenever feasible.

2 Definitions and Notation

A partially ordered set, or poset, is a set P along with a binary relation ≤ over P that satisfies
three properties:

• Reflexivity : i ≤ i for all i ∈ P
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• Antisymmetry : If i ≤ j and j ≤ i, then i = j for i, j ∈ P

• Transitivity : If i ≤ j and j ≤ k, then i ≤ k for i, j, k ∈ P .

Note 2.1. Since the case of comparing an element to itself is fairly trivial, we shall now
assume that we are always comparing two distinct elements. Define x < y if x ≤ y but x 6= y.

For i, j ∈ P , if i < j or j < i then i and j are said to be comparable. Otherwise, they are
incomparable. We say that y covers x if x < y and there exists no z such that x < z < y.
Notationally, we write x l y. Using this, we define a chain of length a as some a elements
such that x1 l x2 l · · ·l xa.

A Hasse Diagram is a way to pictorially or geometrically represent the cover relations in
a partially ordered set. For example the poset (P ({x, y, z}) ,⊆) is modeled in Figure 2.

{}

{x} {y} {z}

{x, y} {x, z} {y, z}

{x, y, z}

Figure 2: Left is the Hasse Diagram for the poset
(P ({x, y, z}) ,⊆), where P is the powerset function, or set
of all subsets of {x, y, z}. Note that {y} and {x, z} are in-
comparable and {}, {x}, {x, z}, and {x, y, z} form a chain
of length 4 (in green).

Note 2.2. From here onwards, for ease of notation, we will always use P to refer to the
entire poset. So, P includes both the set and the order relations among the elements in the
set.

A poset P contains a poset S if there exists some subposet W of P that is isomorphic
to S. If P does not contain S, then P is said to avoid S. Define k to be the poset chain of
length k. So, a poset is said to be (2+2)-free if it does not contain an induced subposet that
is isomorphic to the poset 2+2, the union of two disjoint 2-element chains (see Figure 3).

•

•

•

• •

Figure 3: The poset to the left contains no subposet isomorphic
to 2+2, and so, is (2+2)-free. However, the poset contains a
subposet isomorphic to 3+1 (in red), and so contains 3+1.

Define Pn(α) as the set of posets of size n that avoid the poset α. Now, define the dual
of a poset P , P ′ to refer to the poset obtained by swapping all order-relations (i.e. if x < y
in P , then y < x in P ′). In other words, geometrically, the Hasse Diagram of P ′ is obtained
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by the inversion or flipping of the Hasse Diagram of the poset P . It is clear that for all n,
|Pn(α)| = |Pn(α′)|, for if a poset P avoids α then its dual P ′ avoids α′. Similarly, since 2+2
is its own dual, |Pn(2 + 2, α)| = |Pn(2 + 2, α′)| (where Pn(2 + 2, α) refers to the posets that
avoid both 2 + 2 and α).

Define the down-set of an element x ∈ P as D(x) = {z ∈ P : z < x}. Similarly,
define the up-set of x as U(x) = {z ∈ P : x < z}. Now, we shall introduce an important
notion regarding (2+2)-free posets. It is well known that a poset is (2+2)-free if and only
if its down-sets may be linearly ordered by inclusion, i.e. for any i, j ∈ P , D(i) ⊆ D(j) or
D(j) ⊆ D(i) (see, for example, [1]). Because of the importance of this result, we now show
the proof.

Lemma 2.1. A poset is (2 + 2)-free if and only if its down-sets are linearly ordered by
inclusion.

Proof. Assume, for the sake of contradiction, that there is a (2 + 2)-free poset P such that
the down-sets cannot be linearly ordered by inclusion. Pick elements x, y ∈ P such that
there exist a ∈ D(x) \D(y) and b ∈ D(y) \D(x). Note that x and y must be incomparable;
otherwise if x < y, D(x) ⊂ D(y), and vice-versa in the other case. However, then a, b, x, y
form a subposet isomorphic to 2+2, a contradiction since P is defined to avoid 2+2. Now,
we show the other direction. Again, for the sake of contradiction, assume there exists some
elements a, b, x, y in P forming a subposet isomorphic to 2+2 such that a < x and b < y.
However, we then have a contradiction as both D(x) \ D(y) and D(y) \ D(x) are non-
empty. �

3 2+2,Y(k) and 2+2, k

While our main goal is enumeration, in this section we shall first show a bijection that will
help us understand the structures of (2 + 2, Y (k))-free and (2 + 2, k)-free posets. We will
then use this understanding of these structures to aid us in enumeration of |Pn(2 + 2, Y )|
and |Pn(2+2, 4)|. Lastly, we consider the simultaneous avoidance of 3 different posets: 2+2,
Y , and the chain poset k.

Now, we define a function Y (n), n ≥ 3 as follows.

• Y (3) = ∨ (the poset {a, b, c} where a < b and a < c).

• Y (k) is the result of adding a minimal element to Y (k − 1).

So, the procedure is equivalent to extending the tail on a Y-shaped poset (see Figure 4).

•
•
••

•
•
•
••

•
•
•
•
••

Figure 4: Y, Y (5), and Y (6). Note we use Y to refer to Y (4).
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3.1 Bijection between Pn(2+2, Y (k)) and Pn(2+2, k)

We shall show that there exists a bijection between Pn(2+2, Y (k)) and Pn(2+2, k).
Now, we fix k. Define the set A(P ) for any poset P as follows: A(P ) = {x ∈ P :

D(x) contains k − 2}. We now investigate the structure of the set A(P ) of a poset P in
Pn(2+2, Y (k)) and Pn(2+2, k) separately.

Lemma 3.1. For any poset P in Pn(2 + 2, Y (k)), A(P ) is a chain in P .

Proof. Assume, for the sake of contradiction, A(P ) is not a chain. Rather, assume there
exist x1, x2 ∈ A(P ) such that x1 and x2 are incomparable. Then, by the definition of A(P ),
the down-sets of x1 and x2 must each contain some chain of length at least k − 2, namely
C1 and C2 respectively. However, since P avoids 2+2, by Lemma 2.1, C1 ⊆ C2 or C2 ⊆ C1

(or both). Without loss of generality, let C1 ⊆ C2. Then x1, x2, and C1 form a subposet
isomorphic to Y (k), a contradiction. Thus, x1 and x2 must be comparable and so, it follows
that A(P ) must be a chain. �

Lemma 3.2. For any poset P in Pn(2 + 2, k), A(P ) is a series of incomparable elements in
P .

Proof. Assume, for the sake of contradiction, there exist two elements x1, x2 ∈ A(P ) such
that x1 < x2 (i.e. x1 and x2 are comparable). By the definition of A(P ), the down-set
of x1 must contain some chain of length at least k − 2, namely C1. However, then x2, x1,
and C1 form a chain of length k, a contradiction since P is defined to avoid k. Thus, by
contradiction, x1 and x2 must be incomparable and so, it follows that A(P ) must be a series
of incomparable elements. �

We have now determined the structure of A(P ) in both Pn(2 + 2, Y (k)) and Pn(2 + 2, k).
Define A′(P ) = P \A(P ). The following Lemma captures the rationale behind our definition
of A(P ) and also highlights the relative unimportance of A′(P ), thus its invariance in the
bijection we shall soon show.

Lemma 3.3. For any poset P , A′(P ) avoids k and Y (k).

Proof. Note that both the posets k and Y (k) contain chains of length k − 1. Assume, for
the sake of contradiction, A′(P ) contains one of k or Y (k), and consequently contains some
chain of size k − 1, {c1 l c2 l · · · l ck−1}. So, the down-set of ck−1 contains a chain of
size k − 2. However, by the definition of A(P ), then ck−1 ∈ A(P ). Consequently, this is a
contradiction, since ck−1 ∈ A′(P ), and so, A′(P ) must avoid both k and Y (k). �

Now, we are ready to show the bijection.

Theorem 3.4. There exists a bijection between Pn(2 + 2, Y (k)) and Pn(2 + 2, k).

Proof. Let P be a poset in Pn(2+2, Y (k)). So, from Lemma 3.1, A(P ) = {a1la2l · · ·la`},
a chain of some length `. Then, D(a1) ⊂ D(a2) ⊂ · · · ⊂ D(a`). Now, we show an injection
from Pn(2 + 2, Y (k)) onto Pn(2 + 2, k). Keeping A′(P ) (and its order relations with A(P ))
as it is, we remove all the order relations within A(P ) itself, turning P into a new poset
P ′. Thus, we turn the chain A(P ) in Pn(2 + 2, Y (k)) into a series of incomparable elements.
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Note that since each poset P has its own unique set of order relations between A(P ) and
A′(P ) and since we are maintaining these relations, the map is injective. As explained in
the discussion in Lemma 3.3, since A′(P ) does not contain a chain of length k − 1, P ′ must
avoid k. Thus, P ′ ∈ Pn(2 + 2, k).

Now we shall show the other direction. Let P be a poset in Pn(2 + 2, k). From Lemma
3.2, A(P ) is a series of some ` incomparable elements. Similar to the other direction, here we
transform the incomparable elements into a chain. Now, it remains to be shown that there
is only one unique way to do this. Since the poset P is (2+2)-free, from Lemma 2.1 there
must exist an arrangement of indices such that D(a1) ⊂ D(a2) ⊂ · · · ⊂ D(a`). So, there
must be only one way to transform these elements into a chain, namely {a1 l a2 l · · ·l a`}.
Thus, we have established a bijection between Pn(2 + 2, Y (k)) and Pn(2 + 2, k), completing
the proof of the theorem. (See Figure 5 for a graphical depiction of the bijection). �

•

•

•

••

•

• •

•

•

• •

Figure 5: To the left is a representation of the bijection
in the case k = 3, Pn(2+2,∨) and Pn(2+2, 3). Note that
the order relations between A(P ) and A′(P ) are the same
in both. The colored elements correspond to each other;
it is easy to see how the chain is easily changed into a
series of incomparable elements and vice-versa.

As a corollary to the theorem above, it follows that |Pn(2 + 2, Y (k))| = |Pn(2 + 2, k)|.
Thus, Y (k) and k are Wilf-equivalent in (2+2)-free posets.

3.2 Enumeration of |Pn(2 + 2, Y ) |
Now, we seek to enumerate |Pn(2 + 2, Y )| (and consequently |Pn(2 + 2, 4)| by Theorem 3.4),
where Y is the poset Y (4).

Theorem 3.5. The set of (2 + 2, Y )-free posets of size n containing a 2 is in bijection with
the set of triples (a, x, p), a ∈ N, where x = (x0, ..., xa) is a composition of b with a+ 1 parts
such that xa > 0, and p = (∅ 6= P1 ⊆ P2 ⊆ · · · ⊆ Pc ⊆ {0x0 , ..., axa}) is a flag of the multiset
{0x0 , ..., axa} such that a ∈ Pc, with a+ b+ c = n and b, c ≥ 1.

Proof Idea. Let P be a (2+2, Y )-free poset. Decompose P into the following sets of elements.

• A = {x ∈ P : D(x) contains 2}

• B = {x ∈ P \ A : U(x) ⊆ A}

• C = P \ (A ∪B)

Let a, b, c be the number of elements of A,B,C respectively. From Lemma 3.1, A forms a
chain. Now, the first idea is to observe that x corresponds to the order relations between the
sets A and B, as we delegate the up-set of each of the elements through the composition of b.
The other important idea is to realize that p corresponds to order relations between B and
C, as the property that ∅ 6= P1 ⊆ P2 ⊆ · · · ⊆ Pc ⊆ {0x0 , ..., axa} follows from Lemma 2.1.
(Figure 6 provides a more clear example of the bijection). �
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• • •

• • • • •

•

•

•

Figure 6: To the left is an example of a (2+
2, Y )-free poset. The sets A,B,C are rep-
resented by the elements in blue, green, and
magenta respectively. Here x = (1, 2, 0, 2),
as represented by the red lines showing the
order relations between A and B. The re-
maining lines show the order relationships
between the elements in B and C (and A
and C), p = (∅ 6= P1 = {1} ⊆ P2 =
{1, 3} ⊆ P3 = {0, 1, 3} ⊆ {01, 12, 32}).

Now, we are ready to begin the enumeration.

Corollary 3.6. The number of (2 + 2, Y )-free (and so, (2 + 2, 4)-free) posets of size n is

1 +
∑

a+b+c=n
b,c≥1

[(
b+ (a+ 1)(c+ 1)− 1

b

)
−
(
b+ a(c+ 1)

b

)
−
(
b+ (a+ 1)c− 1

b

)
+

(
b+ ac

b

)]
.

Proof. From Theorem 3.2, the number of (2+2, Y )-free posets of size n containing a 2-chain
is ∑

a+b+c=n
b,c≥1

∑
x0+...+xa=b

xa>0

#{∅ 6= P1 ⊆ · · · ⊆ Pc ⊆ {0x0 , ..., axa} : a ∈ Pc}.

For a fixed composition x = (x0, ..., xa) of b, the number of such chains p is[(
xa + c

c

)
− 1

] a−1∏
i=0

(
xi + c

c

)
−
[(
xa + c− 1

c− 1

)
− 1

] a−1∏
i=0

(
xi + c− 1

c− 1

)
.

By the combinatorial identity,∑
x0+···+xr=n

(
x0 +m

m

)
· · ·
(
xr +m

m

)
=

(
n+ (m+ 1)(r + 1)− 1

n

)
,
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we have ∑
x0+...+xa=b

xa>0

a∏
i=1

(
xi + c

c

)
=

(
b+ (a+ 1)(c+ 1)− 1

b

)
−
(
b+ a(c+ 1)− 1

b

)
,

∑
x0+...+xa=b

xa>0

a−1∏
i=1

(
xi + c

c

)
=

b∑
xa=1

(
b− xa + a(c+ 1)− 1

b− xa

)

=

(
b+ a(c+ 1)− 1

b− 1

)
.

So

∑
x0+...+xa=b

xa>0

[(
xa + c

c

)
− 1

] a−1∏
i=1

(
xi + c

c

)
=

(
b+ (a+ 1)(c+ 1)− 1

b

)
−
(
b+ a(c+ 1)

b

)
.

We get the first two terms of the summand in the desired expression in the theorem statement.
Replacing c by c− 1, we get the remaining two terms of the summand. The extra 1 is from
the poset consisting of n incomparable elements (since the theorem only considered posets
with a 2-chain). �

Up to this point, we have considered the simultaneous avoidance of only two posets at
a time. Now, we look at another intriguing question, investigating the avoidance of three
partially ordered sets at once. In particular, we prove the following.

Corollary 3.7. The number of (2 + 2, Y, k)-free posets of size n is

1+
∑

a+b+c=n
b,c≥1,a≤(k−3)

[(
b+ (a+ 1)(c+ 1)− 1

b

)
−
(
b+ a(c+ 1)

b

)
−
(
b+ (a+ 1)c− 1

b

)
+

(
b+ ac

b

)]
.

Proof. Recall from Theorem 3.2 that all a elements form a chain. However, by the definition
of A from Theorem 3.2, this chain must also cover some 2-chain. Thus, the size of the largest
chain in the poset P is a+ 2. Now, since we are adding the restriction that P avoids k, then
we must have that a+ 2 < k ⇒ a < k − 2⇒ a ≤ k − 3. �

In the case of k = 4 in the corollary above, substitution yields a nice and somewhat
surprising result.

Corollary 3.8. The number of (2 + 2, Y, 4)-free posets of size n is F2n−1, where Fk refers to
the terms of the Fibonacci sequence with F1 = F2 = 1.

4 2+2, ./ and 2+2, ♦

Note 4.1. For ease of writing, we use the symbols ./ and ♦ to refer to their respective size
4 posets in Figure 7 below.
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•

•

•

•

•

••

•

Figure 7: We use ./ to denote the bowtie shaped poset to
the left and use ♦ to indicate the diamond shaped poset to
its right.

In this section, our focus is on enumeration. First, we seek to enumerate |Pn(2 + 2, ./)|
and |Pn(2 + 2,♦)|. Later, we investigate the simultaneous avoidance of 2 + 2, ./, and ♦.

4.1 Enumeration of |Pn(2 + 2, ./)|
To enumerate, we first must develop an understanding of the structure of (2 + 2, ./)-free
posets. The crux of the structure of these partially ordered sets is captured by the following
theorem.

Theorem 4.1. Let P be a (2 + 2, ./)-free poset. Then there is a chain subposet T of P such
that, for every element x ∈ P \ T , each up-set U(x) and down-set D(x) of x is contained in
T .

Proof Idea. For the sake of space, we omit the complete proof. However, here we shall
present the main ideas behind the proof. Fix a chain subposet T of P . An element x ∈ P \T
is said to be separate if either U(x) or D(x) is not contained in T . Define a function T (P ) to
return the longest chain T1 that minimizes the number of separate elements. If T1 contains
no separate elements, then we are done. However, there remains the case when T1 contains
some positive number of separate elements. So, it remains to be shown that this case is
impossible and we proceed with proof by contradiction, showing that we may alter the chain
T1 to reduce the number of separate elements. The remainder of the proof is simply extensive
casework that results in contradiction within each case (see Figure 8 for an example). �

•

• •

••

•

•

• •

••

•
Figure 8: The figure to the far left shows an exam-
ple of choosing a chain (in red) resulting in exactly
2 separate elements (in green). However, note (in
the other figure), that we may choose another chain
with 0 separate elements. So, the example on the
far left is not valid as it does not minimize the num-
ber of separate elements and therefore, is not the
result of T (P ).

Thus, we have established the existence of such a chain T . It may also be easily verified
that if a poset contains multiple chains T1, T2 satisfying the property, then these chains must
be structurally/geometrically identical, i.e. T1 = T2 with respect to the rest of the poset.
We are now ready to calculate |Pn(2 + 2, ./)|.
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Theorem 4.2. The number of (2 + 2, ./)-free posets of size n is given by

|Pn(2 + 2, ./)| = 2n−1 +
n∑

m=2

m−1∑
k=1

[(
n− 1 + k(m− k)

n−m

)
−
(
n− 1 + (k − 1)(m− k)

n−m

)]
.

Proof. Theorem 4.1 shows the existence of a chain T that encompasses U(x) and D(x) for
every x ∈ P \ T . Let T = {x1 l · · ·l x`} and T \ P = {w1, · · · , wm}, such that `+m = n.
As a direct result of the theorem, it follows that any w1, w2 ∈ P \ T are incomparable. So,
D(w1) ∩ U(w2) = ∅, and similarly, it holds that (D(w1) ∪D(w2) ∪ · · · ∪D(wm)) ∩ (U(w1) ∪
U(w2) ∪ · · · ∪ U(wm)) = ∅. Thus, there must exist some xk in T such that for all wi,
D(wi) ⊆ {x1, · · · , xk} and U(wi) ⊆ {xk+1, · · · , x`}. Let there be s elements in P \ T whose
down-set is {x1, · · · , xk} (see Figure 9). Now, we proceed by casework based on the value of
s.

Case a, s = 0. In this case, P must avoid ∨ as well. As has already been enumerated
|Pn(2 + 2,∨)| = 2n−1, and so, there are 2n−1 such posets in this case.

Case b, s > 0. From this, it also follows that ` > k > 0. Now, for each of the s elements,
we must construct its up-set. Since T is a chain of maximal length in P , the up-set for each
of these elements cannot include xk+1, and so, there are `− k choices for the up-set of each
of the s elements. So, the number of unique ways to assign the up-sets to the s elements is(
s+ `− k − 1

`− k − 1

)
=

(
s+ `− k − 1

s

)
. Now, we construct the up-set and down-set for each of

the remaining m−s elements. There are a total of (`−k+1)k up-set, down-set combination
possibilities for each of these elements. So, the number of distinct ways to assign these

combinations to the m− s elements is

(
m− s+ (`− k + 1)k − 1

m− s

)
.

Thus, combining these cases,

|Pn(2 + 2, ./)| = 2n−1 +
∑

`,m,k,s:
`+m=n,`>k>0,m>s>0

(
s+ `− k − 1

s

)(
m− s+ (`− k + 1)k − 1

m− s

)
,

which by further algebra may be simplified to

2n−1 +
n∑

m=2

m−1∑
k=1

[(
n− 1 + k(m− k)

n−m

)
−
(
n− 1 + (k − 1)(m− k)

n−m

)]
.

�

•
•
•
•
•
•
•

• •
• • • Figure 9: The diagram shows an example of such a poset with size

n = 12. There are ` = 7 elements in the chain. The element xk is the
4th element in the chain (i.e. the uppermost element in red). There
are 5 elements outside of the chain, indicating m = 5 and there are
s = 2 elements whose down-set includes xk.

10



4.2 Enumeration of |Pn(2 + 2,♦)|
As in the previous section, we first seek an understanding of the structure of (2 + 2,♦)-free
posets to aid us in enumeration.

Let P be a (2 + 2,♦)-free poset. Define M to be the set of maximal (empty up-set)
elements. Choose the element m of M with the largest down-set. Note that the D(m) =
P \M . Let the subposet W of P refer to {m}∪D(m). It is easy to see that W avoids ∨, and
so W consists of a chain C of some length r, c1 l c2 l · · ·l cr, along with some s elements
that are each covered by some element in the chain. In particular, we utilize the composition
of s, x = (x1, ..., xr−1) where every xi denotes the number of the s elements that are covered
by ci+1. Define each Xi to be the set of the xi nodes covered by ci+1.

Now, we consider the remaining t elements in P \W . Since P avoids ♦, these t elements
cannot be covered by any element in W . The following lemma follows directly from the fact
that P is (2 + 2)-free.

Lemma 4.3. For every element a in P \W , all b ∈ W \ C that are covered by a must be
contained in the same set Xi.

Now, using Lemma 4.3 consider the composition of t, y = (y1, ..., yr−1, yr) where yr refers
to the number of free elements (empty up-set and down-set). Every other yi refers to the
number of elements that cover some element in Xi or, if the element does not cover anything
outside of the chain C, that cover ci. Define each Yi to be the set of the yi nodes. We proceed
by the following lemma.

Lemma 4.4. Consider an element e in Yi that covers some element in Xi. Then e must
cover either ci−1 or ci.

Proof. Let e cover some a ∈ Xi. So, a l e. Since a l ci+1, it follows that ci+1 and e must
be incomparable. Thus, e must cover either ci−1 or ci, or else {ci−1, ci, a, e} would form a
subposet isomorphic to 2+2. �

From the lemma above, we may see that there exist two distinct types of elements in Yi.
For the ease of writing throughout the remainder of this subsection, we shall refer to them
as type 1 and type 2 crossings (see Figure 10). Type 1 crossings refer to those elements that
cover ci and may possibly cover elements in yi. Type 2 crossings, on the other hand, refer
to those elements that cover ci−1 and therefore must cover some element in yi.

•

•

•

•

•

• •

• •

Figure 10: An example of type 1 (left) and type 2 crossings
(right).

From our recognition of these two types of crossings, we are ready to begin the enumer-
ation.

11



Theorem 4.5. The number of (2 + 2,♦)-free posets of size n is

1 +
∑

r+s+t=n
n≥2

∑
x1+...+xr−1=s

∑
y1+...+yr=t

(
x1 + y1
y1

) r−1∏
i=2

[
yi

(
xi + yi − 1

yi

)
+

(
xi + yi
yi

)]
.

It is equal to the coefficient of xn−2 of the expression

1− 2x

(1− x)(1− 5x+ 6x2 − x3)
.

Proof. All that remains to be done is to assign the order relations of each yi onto W . In
the case of y1, there are only type 1 crossings, and so this is equivalent to constructing a

multiset of size y1 from {0, 1, 2, . . . , x1}. This simplifies to

(
x1 + y1
y1

)
such ways to assign

these relations. However, for all the other case, we must take type 2 crossings into account.
In the case when there are only type 1 crossings, the number of ways to assign the relations

is

(
xi + yi
yi

)
, for reasons similar to the case of y1 above. For type 2 crossings, we first choose

the number of such crossings, for a total of yi choices. Then, there are

(
xi + yi − 1

yi

)
ways

to assign the order relations, as it is equivalent to constructing a multiset of size yi from

{1, 2, . . . , xi}. Thus there are yi

(
xi + yi − 1

yi

)
+

(
xi + yi
yi

)
combinations in the general case.

Now, we continue by showing the simplification.

∑
x1+...+xr−1=s

∑
y1+...+yr=t

(
x1 + y1
y1

) r−1∏
i=2

[
yi

(
xi + yi − 1

yi

)
+

(
xi + yi
yi

)]

=
∑

x1+...+xr=s+t

∑
y1,...,yr−1:0≤yi≤xi

(
x1
y1

) r−1∏
i=2

[
yi

(
xi − 1

yi

)
+

(
xi
yi

)]

=
∑

x1+...+xr=s+t

[
x1∑

y1=0

(
x1
y1

)] r−1∏
i=2

{
xi∑

yi=0

[
yi

(
xi − 1

yi

)
+

(
xi
yi

)]}

=
∑

x1+...+xr=s+t

2x1

r−1∏
i=2

{
xi∑

yi=0

[
yi

(
xi − 1

yi

)
+

(
xi
yi

)]}
.

Note that
n∑

m=0

m

(
n− 1

m

)
=

{
0 if n = 0,

(n− 1)2n−2 otherwise

is the coefficient of the term xn of x2

(1−2x)2 . Let the notation [xk]Q(x), where Q(x) is a power

12



series, refer to the coefficient of the xk term in Q(x). So

n∑
m=0

[
m

(
n− 1

m

)
+

(
n

m

)]
= [xn]

(
x2

(1− 2x)2
+

1

1− 2x

)
= [xn]

(
1− x
1− 2x

)2

.

Thus

∑
x1+...+xr=s+t

2x1

r−1∏
i=2

{
xi∑

yi=0

[
yi

(
xi − 1

yi

)
+

(
xi
yi

)]}

=
∑

x1+...+xr=s+t

[xx1 ]
1

1− 2x
· [xxr ]

1

1− x

r−1∏
i=2

[xxi ]

(
1− x
1− 2x

)2

= [xs+t]
1

1− 2x
· 1

1− x
·
(

1− x
1− 2x

)2r−4

.

So

|Pn(2 + 2,♦)| = 1 +
∑
r+s=n
r≥2

[xs]
1

1− 2x
· 1

1− x
·
(

1− x
1− 2x

)2r−4

= 1 +
n−2∑
r=0

[xn−2]
1

(1− 2x)(1− x)
(xy)r

= 1 + [xn−2]
1− (xy)n−1

(1− x)(1− 2x)(1− xy)

= 1 + [xn−2]
1

(1− x)(1− 2x)(1− xy)

= 1 + [xn−2]
(1− 2x)

(1− x)(1− 5x+ 6x2 − x3)

where y =
(

1−x
1−2x

)2
. �

4.3 Enumeration of |Pn(2 + 2, ./,♦)|
We utilize the structure of the (2 + 2, ./)-free poset we analyzed in Theorem 4.2. However,
since the poset now also avoids ♦, for w ∈ P \ T (where T once again refers to the chain),
if D(w) 6= ∅ ∈ T then U(w) = ∅ and similarly if U(w) 6= ∅ ∈ T then D(w) = ∅. A graphical
representation of this type of poset is shown in Figure 11 below.

In this case, then, the xk term from Theorem 4.2 literally divides the poset into two
halves. We use this fact in establishing the following bijection.

Theorem 4.6. There exists a bijection between (2 + 2, ./,♦)-free posets containing a 2 and
sequences {0, 1, ∗}n−1 with exactly one ∗.

Proof. The proof is geometric in nature. Begin with a 2-chain. Start at the upper element.
Read the sequence from left to right. For every 0, we add on to the chain. For every 1,

13



•
•
•
•
•
•
•

• •
• • •

Figure 11: Note the key difference between this figure and the previous
one. Each of the elements in blue (the ones not in the chain) can have
either its down-set or its up-set but not both contained in the chain.
Thus, at least one of its up-set or down-set must be empty.

we create a branch from the chain; in this case since we are looking at the upper part of
the poset, the new element’s up-set is in the chain. We continue this until we reach the
∗, signaling that we have completed constructing the top half of the poset. Now, we begin
constructing the bottom half of the poset, beginning with the lower element of the initial
2-chain. We wish to treat this element as the xk term in Theorem 4.2. So, as we continue
reading the sequence after the ∗, the 0’s we encounter before the first 1 will be free elements.
As soon as we reach the first 1, we continue similar to our construction of the top half; we
add to the chain with every 0 and create a branch with every 1 (however, these element’s
down-sets are in the chain). Clearly, this process can be reversed, and so, we have established
the desired bijection. Figure 12 provides an example of the bijection. �

•

•

•

•

•

•

• •

•

•

•

•

• •
• • Figure 12: An example of the bijection above. The sequence

corresponding to this poset is (0, 1, 0, 0, 1, 1, ∗, 0, 0, 1, 1, 0, 0, 1, 0).
The elements in red correspond to the initial 2-chain and the
elements in blue correspond to the 1’s in the sequence. Note
that the top half of the poset corresponds to 010011 while the
bottom half corresponds to 00110010 (the two initial 0’s are free
elements).

From Theorem 4.6 (and including the poset not containing a 2-chain), it follows that

Corollary 4.7. The number of (2 + 2, ./,♦)-free posets of size n is (n− 1)2n−2 + 1.

5 2+2,
√

Note 5.1. For ease of writing, we use the symbol
√

to refer to the size 4 poset in Figure 13.
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•

• •

•

Figure 13: We use
√

to denote the checkmark shaped poset to the left.

In this section, we shall enumerate the number of (2+2,
√

)-free posets. We accomplish
this by both investigating the structure of these posets and also by establishing a bijection
to a certain class of combinatorial objects.

Define an element x in poset P to have level ` if the length of the largest chain in its
down-set is `. Similarly, define the function `(x) to be the associated level of the element
x ∈ P . Note that if D(x) = ∅, `(x) = 0.

Now, define M(P ) = {x ∈ P : `(x) > 0}. In other words, M(P ) is the set of all elements
in P with a non-empty down-set. We proceed with the following lemma.

Lemma 5.1. Let P be a (2 + 2,
√

)-free poset. If a, b ∈ M(P ) such that `(a) = `(b), then
U(a) = U(b).

Proof. Let `(a) = `(b) = v. First we show that a and b both cover some c with `(c) = v− 1.
Since v ≥ 1 (from the definition of M(P )), both a and b each cover at least one other
element. However, since the poset is (2 + 2)-free (from Lemma 2.1), D(a) ∩D(b) 6= ∅. So,
there indeed exists some c that is covered by both a and b. Now we shall turn to looking
at the up-sets. For the sake of contradiction, assume U(a) contains some element k /∈ U(b).
But then {c, a, b, k} forms a poset isomorphic to

√
, a contradiction as the poset P is defined

to avoid
√

. Thus, U(b) must contain k, and so it follows that U(a) = U(b), completing the
proof of the lemma. �

From Lemma 5.1, the next lemma follows directly.

Lemma 5.2. Let P be a (2 + 2,
√

)-free poset. If a and b are two elements in M(P ), such
that `(a) < `(b). Then a < b.

Now, we have a sufficient understanding of structure to enumerate |Pn(2 + 2,
√

)|.

Theorem 5.3. The number of (2 + 2,
√

)-free posets of size n is
3n−1 + 1

2
.

Proof. From Lemma 5.2, the order relations between elements in M(P ) are purely dictated
by the levels of the elements in the poset. So, we simply need to assign the elements in
M(P ) to particular levels. Let |M(P )| = m. Since M(P ) may have anywhere between
1 and m distinct levels, the total number of ways to assign the m elements in M(P ) is
m∑
`=1

(
m− 1

`− 1

)
= 2m−1. We now proceed by casework on m.

When m = 0, M(P ) = ∅, and so, P is just a series of free elements; there is only 1 such
poset in this case.

When m > 0, we must now take the elements with level 0 in P into account. Let
M ′(P ) = P \M(P ). Define m(xi) = {xj ∈ M ′(P ) : xj ∈ D(xi)}. Utilizing Lemma 5.2 and
from Lemma 2.1, it follows that there exists some assignment of the indices such thatm(x1) ⊆
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m(x2) ⊆ · · · ⊆ m(xm), and so 1 ≤ |m(x1)| ≤ |m(x2)| ≤ · · · ≤ |m(xm)| ≤ n−m. Thus, this
simplifies the computation to constructing an m-element mutliset on (1, 2, . . . , n−m).

So, |Pn(2 + 2,
√

)| = 1 +
n−1∑
m=1

2m−1
((
n−m
m

))
= 1 +

n−1∑
m=1

2m−1
(
n− 1

m

)
, which simplifies

to
3n−1 + 1

2
after application of the Binomial Theorem. �

This result sparks a natural question; does there exist some relationship between (2 +
2,
√

)-free posets and a class of the ternary strings? We answer this question with the
following bijection.

•

• •

• •

• • •

Figure 14: The string 20120210 corresponds to the poset.
Note the initial 2 corresponds to the free element on level
0. Each subsequent 2 is covered by all the elements that
precede it on the particular level. For example, the second 2
is only covered by a single element on level 1 (only preceded
by the 1), while the third 2 is covered by two elements on
level 1 (preceded by the 1 and 0).

Theorem 5.4. There exists a bijection between (2 + 2,
√

)-free posets containing a 2 and the

ternary strings of the form

k 2′s︷ ︸︸ ︷
22 · · · 22 01

n-k-2 0, 1, 2′s︷ ︸︸ ︷
· · · · · · · · ·

Proof. The bijection here is very elementary and straight-forward, so we will only briefly
touch upon it (See Figure 14 above for further clarification in an example). The initial 2’s
refer to the free elements. The 01 refers to our starting 2-chain. After this point, every 0
refers to adding another element to the current level while every 1 refers to going to the
next higher level. The 2’s refer to the elements in T ′(P ) from Theorem 5.3. Note that
summing across all 0 ≤ k ≤ n− 2 (and including the poset not containing a 2-chain) yields
the expression in Theorem 5.3. �

6 Future Directions and Open Problems

Throughout this paper, we have enumerated |Pn(2 + 2, α)| for a number of posets α. Yet,
there is one observation that is particularly striking when we look at those α that we and
previous work have resolved; all these posets α avoid 1 + 1 + 1. In fact, upon this paper, the
enumeration of all size 4 posets α that avoid 1 + 1 + 1 has been resolved. So, the natural
question that arises for further research is

Open Problem 6.1. Can one enumerate the number of posets that avoid 2 + 2 and another
poset α, where α contains 1 + 1 + 1?

It appears that enumerating |Pn(2 + 2, α)| for α containing 1 + 1 + 1 is considerably more
difficult. A partial reason for this may be ascertained by looking at the size 3 posets. When
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α = ∨,∧, 3, or 2 + 1, the enumeration is very straightforward, however for α = 1 + 1 + 1, the
enumeration is more intractable and the explicit form is messier (see [12]).

Additionally, we also calculated |Pn(2 + 2, α, β)| for a few pairs of patterns α and β,
notably |Pn(2 + 2, Y, 4)| and |Pn(2 + 2, ./,♦)|. For these ones, the explicit form was fairly
nice, suggesting that enumeration for other pairs α, β may be possible.

Open Problem 6.2. Can one enumerate the number of posets that avoid 2 + 2 and the pair
of posets α and β?

This is likely straightforward, as the first step may be to choose α, β to be posets from
this paper, since we have already established an understanding of the structures of each of
these individually.

We also return to the question of Wilf-equivalences in (2 + 2)-free posets. In particular,
from empirical data, we conjecture that

Conjecture 6.3. 2 + 1 + 1 and ♦ are Wilf-equivalent in (2 + 2)-free posets.

From data (see Data Table), Y, 4 (shown in this paper) and 3+1, N appear to be the only
other non-trivial Wilf-equivalence pairs of size 4. In general, we have shown that Y (k), k are
a Wilf-equivalence pair; however, it appears that Wilf-equivalences in (2 + 2)-free posets are
rare.

Open Problem 6.4. Are there other non-trivial Wilf-equivalences in (2 + 2)-free posets?
Do there exist posets α, β such that |Pn(2 + 2, α)| = |Pn(2 + 2, β)| for all n?

Lastly, we consider ascent sequences. Define a function a(x) to return the ascent sequence
associated with a poset x, based on the bijection outlined in [2]. Let An(y) refer to the set
of posets of size n whose ascent sequences avoid the ascent sequence y. It has been shown
that Pn(2 + 2, N) = An(0101) where a(N) = 0101, and Pn(2 + 2,

√′) = An(0102) where
√′

is the dual of the poset
√

and a(
√′) = 0102 (see [3] and [15]).

Open Problem 6.5. For what posets α is it true that Pn(2 + 2, α) = An(a(α))?

7 Data Table

Below is a table of |Pn(2+2, α)| for varying posets α and sizes n. Note that we have data up
to size 7 because for some unsolved posets below, we have only generated data up to size 7.
The horizontal lines in the table show the Wilf-equivalences (./ and Y give different values
for size 8)
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1 2 3 4 5 6 7
3 1 2 4 8 16 32 64
2+1 1 2 4 8 16 32 64
∨ 1 2 4 8 16 32 64
∧ 1 2 4 8 16 32 64
1+1+1 1 2 4 9 21 50 120
∨ + 1 1 2 5 14 41 121 255
∧ + 1 1 2 5 14 41 121 255√

1 2 5 14 41 122 365

√

1 2 5 14 41 122 365

2+1+1 1 2 5 14 42 131 417
♦ 1 2 5 14 42 131 417
3+1 1 2 5 14 42 132 429
N 1 2 5 14 42 132 429
4 1 2 5 14 42 132 430
Y 1 2 5 14 42 132 430

Y 1 2 5 14 42 132 430

./ 1 2 5 14 42 132 430
↑ 1 2 5 14 43 140 471
↓ 1 2 5 14 43 140 471
1+1+1+1 1 2 5 14 45 158 586
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