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INTRODUCTION

I Development of comprehensive electronic medical record
databases has made large phenome wide association studies
possible

I Prior work has tried to link phenomes with molecular
information, such as SNPs

I Feasibility of these studies on the Mimic II database has been
shown through association studies with other variables, such as
required fluid levels

I Our project strives to link phenomes defined by ICD9 codes with
lab values of patients in the ICU.
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MIMIC II

I Database with 30,000 ICU patients between 2001 and 2007.
I Comprehensive data: Lab tests, International Classification of

Diseases (ICD9) discharge codes, medication orders, etc.
I 5675 distinct ICD9 codes (33.5 % of all possible)
I Mean of 8.7 ICD9 codes assigned to each admission.
I Allows for large scale phenome based analysis
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WHITE BLOOD CELL COUNT (WBC) USE CASE

I Mimic stores all measured lab events of patients (748 total)
I Use case focuses on WBC, commonly measured

lab event present in most patients.

I Method:
I Single WBC lab result chosen for each patient by taking peak value

during ICU stay
I Patient subsets chosen by creating lower bounds from a hundred

equally spaced cutoffs between counts of 0 and 100,000/µL
(IE ≥ 20,000/µL, ≥ 80,000/µL, etc)

I Exact binomial test was performed on each subset for occurence of
each ICD9 code with ≥ 100 disctinct cases when compared to the
full database.

I Results filtered using Bonferroni Correction

(p value less than
0.05

number of ICD9 codes
)
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SIGNIFICANT ICD9 CODES

ICD9 Code Description P value
204.10 Chronic lymphoid leukemia (CLL) 4.3 × 10−33

205.00 Acute myeloid leukemia (AML) 4.0 × 10−29

995.92 Severe sepsis 5.3 × 10−20

286.6 Disseminated intravascular coagulation (DIC) 3.7 × 10−16

785.52 Septic shock 7.3 × 10−16

205.10 Chronic myeloid leukemia (CML) 7.7 × 10−16

008.45 Intestinal infection due to Clostridium difficile 1.7 × 10−15

038.3 Septicemia due to anaerobes 6.0 × 10−11

038.9 Unspecified septicemia 7.2 × 10−11

238.70 Neoplasm of uncertain behavior of other lymphatic 3.4 × 10−10

and hematopoietic tissues

MIT Primes Conference - Peijin Zhang 6 of 21



PHENOME MAP



Introduction Hypothesis Generation Methods Results Conclusion

Clostridium difficile

I Bacterial infection, usually brought on through the use of
antibiotics

I Symptoms range from mild diarrhea to extreme dehydration,
inflammation of the colon, kidney failure, etc

I Infection can be tested for through growing microbiology
cultures, but take up to 24 hours to get results. Lab tests results
could come back within 5 hours.

I 723 total patients with ICD9 code for C. diff in MimicII database
I Phenome map shows C. diff to be a highly probable occurence in

patients with WBC in the range between 15,000/µL and
45,000/µL
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EARLY AND LATE C. diff

Clostridium Difficile can occur in two different ways in the ICU:

I Early C. diff : Clostridium Difficile infection is found in the patient
before admission to the ICU.

I Defined as:
I Any patients who had a positive microbiology test within 72 hours

of admission
I Patients given treatment within 48 hours of admission. ICD9 code

required if treatment was Metrodiazole but no code required if
Vancomycin

I Late C. diff (Hospital Acquired): Patient acquires C. diff infection
during ICU stay

I Positive microbiology test more than 72 hours after admission
I Order for Vancomycin more than 48 hours after admission
I Order for Metrodiazole more than 48 hours after admission along

with positive ICD9 code
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WHAT ARE BAYESIAN NETWORKS?

I A Bayesian Network is a graphical model for determining
probabilistic relationships among a set of variables. Represented
by a directed acyclic graph

I Utilizes machine learning and bayesian probabilities to identify
relationships among independent and dependent variables

I Each node is represented by a probability function which
determines the probability of a variable given the values of its
parents
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METHODS

I Bayesian networks generated using WEKA
I Java based program created by University of Waikato for machine

learning

I Patient lab data extracted through taking maximum, minimum,
and median lab values throughout duration of hospital stay

I Equal number of negative control patients taken from MimicII
I Data discretized into three equal frequency bins to convert

numeric lab data into nominal ranges
I Bayesian network generated through two parent K2 search

algorithm and evaluated by 10 fold cross validation
I Attribute selection performed on datasets to reduce the amount of

data required for accurate identification
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EARLY C. diff - ALL LABS
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EARLY C. diff
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LATE C. diff - ALL LAB DATA UP TO TREATMENT
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BAYES NET RESULTS

I Results show that our classifiers are able to maintain relatively good
levels of accuracy even using minimal amounts of lab tests (≤ 15)

I Accuracies are not perfect in the Bayes nets but are significant enough to
provide new information in clinical applications

I Causes:
I Database has a large percentage of NA, meaning most patients

don’t get every single lab test taken for them
I Some errors in database: Impossible values which lead to

development of outliers that introduce noise to the data. Much of
the lab data has extremely high skew.

I a
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CONCLUSION

I Phenome Wide Analysis using WBC allowed us to identify C. diff
as a commonly occuring diagnosis in a specific range

I Further refining of phenotypic definitions allowed us to identify
existance of community acquired and hospital acquired
Clostridium difficile

I Bayes net classifiers generated were able to accurately identify
Clostridium Difficile cases using minimal lab tests
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FUTURE WORK

I Expand method into identifying and finding associations within
other phenomes

I Identification of waveforms in lab records
I Inclusion of additional data available in MimicII cohort
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