Efficient Calculation of Determinants of Symbolic Matrices with Many Variables

Ziv Scully

Iliit itill

Second Annual MIT PRIMES Conference May 20, 2012

Vectors and Volumes

Determinants

2×2 matrices:

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

Determinants

2×2 matrices:

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

Determinants

2×2 matrices:

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

Determinants

2×2 matrices:

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

3×3 matrices:

$$
\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=a e i+b f g+c d h-a f h-b d i-c e g
$$

Determinants

2×2 matrices:

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

3×3 matrices:

$$
\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=a e i+b f g+c d h-a f h-b d i-c e g
$$

Determinants

2×2 matrices:

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

3×3 matrices:

$$
\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=a e i+b f g+c d h-a f h-b d i-c e g
$$

Determinants

2×2 matrices:

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

3×3 matrices:

$$
\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=a e i+b f g+c d h-a f h-b d i-c e g
$$

Determinants

2×2 matrices:

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

3×3 matrices:

$$
\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=a e i+b f g+c d h-a f h-b d i-c e g
$$

Determinants

2×2 matrices:

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

3×3 matrices:

$$
\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=a e i+b f g+c d h-a f h-b d i-c e g
$$

Determinants

2×2 matrices:

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

3×3 matrices:

$$
\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=a e i+b f g+c d h-a f h-b d i-c e g
$$

Determinants

2×2 matrices:

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

3×3 matrices:

$$
\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=a e i+b f g+c d h-a f h-b d i-c e g
$$

$n \times n$ matrices:

$$
\operatorname{det}(A)=\sum_{\sigma \in S_{n}}\left[\operatorname{sgn}(\sigma) \prod_{i=1}^{n} A_{i, \sigma(i)}\right]
$$

Motivation

- Linear systems.

Motivation

- Linear systems.
- Calculus.

Motivation

- Linear systems.
- Calculus.
- Control theory.

Motivation

- Linear systems.
- Calculus.
- Control theory.
- Engineering models.

Motivation

- Linear systems.
- Calculus.
- Control theory.
- Engineering models.
- Code generation.

Motivation

- Linear systems.
- Calculus.
- Control theory.
- Engineering models.
- Code generation.

We are interested in matrices with polynomial entries.

Minor Expansion

Naive calculation requires $\Theta(n!n)$ polynomial multiplications.

Minor Expansion

Naive calculation requires $\Theta(n!n)$ polynomial multiplications.
$\operatorname{det}\left(\begin{array}{cccc}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right)=\begin{gathered}a(f k p-f l o-g j p+g l n+h j o-h k n) \\ -b(e k p-e l o-g i p+g l m+h i o-h k m) \\ +c(e j p-e l n-f i p+f l m+h i n-h j m) \\ \\ -d(e j o-e k n-f i o+f k m+g i n-g j m)\end{gathered}$

Minor Expansion

Naive calculation requires $\Theta(n!n)$ polynomial multiplications.
$\operatorname{det}\left(\begin{array}{cccc}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right)=\begin{gathered}a(f k p-f l o-g j p+g l n+h j o-h k n) \\ -b(e k p-e l o-g i p+g l m+h i o-h k m) \\ +c(e j p-e l n-f i p+f l m+h i n-h j m) \\ \\ -d(e j o-e k n-f i o+f k m+g i n-g j m)\end{gathered}$

Minor Expansion

Naive calculation requires $\Theta(n!n)$ polynomial multiplications.
$\operatorname{det}\left(\begin{array}{cccc}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right)=\begin{gathered}a(f k p-f l o-g j p+g l n+h j o-h k n) \\ -b(e k p-e l o-g i p+g l m+h i o-h k m) \\ +c(e j p-e l n-f i p+f l m+h i n-h j m) \\ \\ -d(e j o-e k n-f i o+f k m+g i n-g j m)\end{gathered}$

Minor Expansion

Naive calculation requires $\Theta(n!n)$ polynomial multiplications.
$\operatorname{det}\left(\begin{array}{cccc}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right)=\begin{gathered}a(f k p-f l o-g j p+g l n+h j o-h k n) \\ -b(e k p-e l o-g i p+g l m+h i o-h k m) \\ +c(e j p-e l n-f i p+f l m+h i n-h j m) \\ \\ -d(e j o-e k n-f i o+f k m+g i n-g j m)\end{gathered}$

Minor Expansion

Naive calculation requires $\Theta(n!n)$ polynomial multiplications.
$\operatorname{det}\left(\begin{array}{cccc}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right)=\begin{gathered}a(f k p-f l o-g j p+g l n+h j o-h k n) \\ -b(e k p-e l o-g i p+g l m+h i o-h k m) \\ +c(e j p-e l n-f i p+f l m+h i n-h j m) \\ \\ -d(e j o-e k n-f i o+f k m+g i n-g j m)\end{gathered}$

Minor Expansion

Naive calculation requires $\Theta(n!n)$ polynomial multiplications.
$\operatorname{det}\left(\begin{array}{cccc}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right)=\begin{gathered}a(f k p-f l o-g j p+g l n+h j o-h k n) \\ -b(e k p-e l o-g i p+g l m+h i o-h k m) \\ +c(e j p-e l n-f i p+f l m+h i n-h j m) \\ \\ -d(e j o-e k n-f i o+f k m+g i n-g j m)\end{gathered}$

Minor Expansion

Naive calculation requires $\Theta(n!n)$ polynomial multiplications.
$\operatorname{det}\left(\begin{array}{cccc}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right)=\begin{gathered}a(f(k p-l o)-g(j p-l n)+h(j o-k n)) \\ -b(e(k p-l o)-g(i p-l m)+h(i o-k m)) \\ +c(e(j p-l n)-f(i p-l m)+h(i n-j m)) \\ \\ -d(e(j o-k n)-f(i o-k m)+g(i n-j m))\end{gathered}$

Minor Expansion

Naive calculation requires $\Theta(n!n)$ polynomial multiplications.
$\operatorname{det}\left(\begin{array}{cccc}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right)=\begin{gathered}a(f(k p-l o)-g(j p-l n)+h(j o-k n)) \\ -b(e(k p-l o)-g(i p-l m)+h(i o-k m)) \\ +c(e(j p-l n)-f(i p-l m)+h(i n-j m)) \\ \\ -d(e(j o-k n)-f(i o-k m)+g(i n-j m))\end{gathered}$

Minor Expansion

Naive calculation requires $\Theta(n!n)$ polynomial multiplications.
$\operatorname{det}\left(\begin{array}{cccc}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right)=\begin{gathered}a(f(k p-l o)-g(j p-l n)+h(j o-k n)) \\ -b(e(k p-l o)-g(i p-l m)+h(i o-k m)) \\ +c(e(j p-l n)-f(i p-l m)+h(i n-j m)) \\ \\ -d(e(j o-k n)-f(i o-k m)+g(i n-j m))\end{gathered}$

Minor Expansion

Naive calculation requires $\Theta(n!n)$ polynomial multiplications.
$\operatorname{det}\left(\begin{array}{cccc}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right)=\begin{gathered}a(f(k p-l o)-g(j p-l n)+h(j o-k n)) \\ -b(e(k p-l o)-g(i p-l m)+h(i o-k m)) \\ +c(e(j p-l n)-f(i p-l m)+h(i n-j m)) \\ \\ -d(e(j o-k n)-f(i o-k m)+g(i n-j m))\end{gathered}$

Minor Expansion

Naive calculation requires $\Theta(n!n)$ polynomial multiplications.
$\operatorname{det}\left(\begin{array}{cccc}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right)=\begin{gathered}a(f(k p-l o)-g(j p-l n)+h(j o-k n)) \\ -b(e(k p-l o)-g(i p-l m)+h(i o-k m)) \\ +c(e(j p-l n)-f(i p-l m)+h(i n-j m)) \\ \\ -d(e(j o-k n)-f(i o-k m)+g(i n-j m))\end{gathered}$

Minor Expansion

Naive calculation requires $\Theta(n!n)$ polynomial multiplications.
$\operatorname{det}\left(\begin{array}{cccc}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right)=\begin{gathered}a(f(k p-l o)-g(j p-l n)+h(j o-k n)) \\ -b(e(k p-l o)-g(i p-l m)+h(i o-k m)) \\ +c(e(j p-l n)-f(i p-l m)+h(i n-j m)) \\ \\ -d(e(j o-k n)-f(i o-k m)+g(i n-j m))\end{gathered}$

Minor Expansion

Naive calculation requires $\Theta(n!n)$ polynomial multiplications.
$\operatorname{det}\left(\begin{array}{cccc}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right)=\begin{gathered}a(f(k p-l o)-g(j p-l n)+h(j o-k n)) \\ -b(e(k p-l o)-g(i p-l m)+h(i o-k m)) \\ +c(e(j p-l n)-f(i p-l m)+h(i n-j m)) \\ \\ -d(e(j o-k n)-f(i o-k m)+g(i n-j m))\end{gathered}$

Minor Expansion

Naive calculation requires $\Theta(n!n)$ polynomial multiplications.
$\operatorname{det}\left(\begin{array}{cccc}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right)=\begin{gathered}a(f(k p-l o)-g(j p-l n)+h(j o-k n)) \\ -b(e(k p-l o)-g(i p-l m)+h(i o-k m)) \\ +c(e(j p-l n)-f(i p-l m)+h(i n-j m)) \\ \\ -d(e(j o-k n)-f(i o-k m)+g(i n-j m))\end{gathered}$
Minor expansion requires $\sum_{i=2}^{n} i\binom{n}{i} \in \Theta\left(2^{n} n\right)$ polynomial multiplications.

Gaussian Elimination

$$
\operatorname{det}\left(\begin{array}{cccc}
a & b & c & d \\
0 & f & g & h \\
0 & 0 & k & l \\
0 & 0 & 0 & p
\end{array}\right)=a f k p
$$

Gaussian Elimination

$$
\operatorname{det}\left(\begin{array}{cccc}
a & b & c & d \\
0 & f & g & h \\
0 & 0 & k & l \\
0 & 0 & 0 & p
\end{array}\right)=a f k p
$$

Gaussian Elimination

$$
\operatorname{det}\left(\begin{array}{cccc}
a & b & c & \ldots \\
e & f & g & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)=
$$

Gaussian Elimination

$$
\operatorname{det}\left(\begin{array}{cccc}
a & b & c & \ldots \\
e & f & g & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)=\operatorname{det}\left(\begin{array}{cccc}
a & b & c & \ldots \\
e-\frac{e}{a} a & f-\frac{e}{a} b & g-\frac{e}{a} c & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Gaussian Elimination

$$
\operatorname{det}\left(\begin{array}{cccc}
a & b & c & \ldots \\
e & f & g & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)=\operatorname{det}\left(\begin{array}{cccc}
a & b & c & \ldots \\
0 & f-\frac{e}{a} b & g-\frac{e}{a} c & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Gaussian Elimination

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cccc}
a & b & c & \ldots \\
e & f & g & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)=\operatorname{det}\left(\begin{array}{cccc}
a & b & c & \ldots \\
0 & f-\frac{e}{a} b & g-\frac{e}{a} c & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) \\
A^{(1)}=A, \\
A_{i, j}^{(k+1)}=A_{i, j}^{(k)}-\frac{A_{i, k}^{(k)}}{A_{k, k}^{(k)}} A_{k, j}^{(k)}
\end{aligned}
$$

Gaussian Elimination

$$
\begin{gathered}
\operatorname{det}\left(\begin{array}{cccc}
a & b & c & \ldots \\
e & f & g & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)=\operatorname{det}\left(\begin{array}{cccc}
a & b & c & \cdots \\
0 & f-\frac{e}{a} b & g-\frac{e}{a} c & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) \\
A^{(1)}=A, \\
A^{(1)}=A, \quad A_{0,0}^{(0)}=1, \\
A_{i, j}^{(k+1)}=A_{i, j}^{(k)}-\frac{A_{i, k}^{(k)}}{A_{k, k}^{(k)}} A_{k, j}^{(k)}
\end{gathered} A_{i, j}^{(k+1)}=\frac{A_{i, j}^{(k)} A_{k, k}^{(k)}-A_{i, k}^{(k)} A_{k, j}^{(k)}}{A_{k-1, k-1}^{(k-1)}} .
$$

Gaussian Elimination

$$
\begin{gathered}
\operatorname{det}\left(\begin{array}{cccc}
a & b & c & \ldots \\
e & f & g & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
a & b & c \\
0 & f-\frac{e}{a} b & g-\frac{e}{a} c \\
\cdots \\
\vdots & \vdots & \vdots \\
A^{(1)}=A, \\
A_{i, j}^{(k+1)}=A_{i, j}^{(k)}-\frac{A_{i, k}^{(k)}}{A_{k, k}^{(k)}} A_{k, j}^{(k)} & A_{i, j}^{(k+1)}=\frac{A_{i, j}^{(k)} A_{k, k}^{(k)}-A_{i, k}^{(k)} A_{k, j}^{(k)}}{A_{k-1, k-1}^{(k-1)}}
\end{array}\right.
\end{gathered}
$$

Fraction-free Gaussian elimination requires $\sum_{i=1}^{n} \Theta\left(i^{2}\right) \in \Theta\left(n^{3}\right)$ polynomial
multiplications and divisions.

Comparison

Preservation of "simple" polynomials (e.g., those with few terms):

Comparison

Preservation of "simple" polynomials (e.g., those with few terms):

- Minor expansion: Entries are preserved.

Comparison

Preservation of "simple" polynomials (e.g., those with few terms):

- Minor expansion: Entries are preserved.
- Gaussian elimination: Entries made more complicated each step.

Comparison

Preservation of "simple" polynomials (e.g., those with few terms):

- Minor expansion: Entries are preserved.
- Gaussian elimination: Entries made more complicated each step.

Consider an $n \times n$ matrix with entries of the form $\sum_{i=1}^{s} a_{i} x_{i}$:

Comparison

Preservation of "simple" polynomials (e.g., those with few terms):

- Minor expansion: Entries are preserved.
- Gaussian elimination: Entries made more complicated each step.

Consider an $n \times n$ matrix with entries of the form $\sum_{i=1}^{s} a_{i} x_{i}$:
cost ratio $=\frac{\operatorname{cost} \text { of ME }}{\operatorname{cost} \text { of FFGE }}$

Row Permutation

Let p, q and r be polynomials with a, b and c terms, respectively, with no variables in common.

Row Permutation

Let p, q and r be polynomials with a, b and c terms, respectively, with no variables in common.

- $(p q) r$ requires $a b+a b c$ integer multiplications.

Row Permutation

Let p, q and r be polynomials with a, b and c terms, respectively, with no variables in common.

- ($p q$) r requires $a b+a b c$ integer multiplications.
- $(p r) q$ requires $a c+a b c$ integer multiplications.

Row Permutation

Let p, q and r be polynomials with a, b and c terms, respectively, with no variables in common.

- ($p q$) r requires $a b+a b c$ integer multiplications.
- $(p r) q$ requires $a c+a b c$ integer multiplications.
- $(q r) p$ requires $b c+a b c$ integer multiplications.

Row Permutation

Let p, q and r be polynomials with a, b and c terms, respectively, with no variables in common.

- ($p q$) r requires $a b+a b c$ integer multiplications.
- $(p r) q$ requires $a c+a b c$ integer multiplications.
- $(q r) p$ requires $b c+a b c$ integer multiplications.

We want to defer multiplying by polynomials with many terms.

Row Permutation

Let p, q and r be polynomials with a, b and c terms, respectively, with no variables in common.

- ($p q$) r requires $a b+a b c$ integer multiplications.
- $(p r) q$ requires $a c+a b c$ integer multiplications.
- $(q r) p$ requires $b c+a b c$ integer multiplications.

We want to defer multiplying by polynomials with many terms.

- Absolute value of determinant is invariant under row swaps.

Experiment Setup

Random polynomial matrices:

Experiment Setup

Random polynomial matrices:

- 9×9.

Experiment Setup

Random polynomial matrices:

- 9×9.
- 5 variables.

Experiment Setup

Random polynomial matrices:

- 9×9.
- 5 variables.
- For various values of p : an entry is 0 with probability p and has between one and four terms otherwise. (Any number is equally likely.)

Experiment Setup

Random polynomial matrices:

- 9×9.
- 5 variables.
- For various values of p : an entry is 0 with probability p and has between one and four terms otherwise. (Any number is equally likely.)
- Each term is constant or linear in each variable.

Experiment Setup

Random polynomial matrices:

- 9×9.
- 5 variables.
- For various values of p : an entry is 0 with probability p and has between one and four terms otherwise. (Any number is equally likely.)
- Each term is constant or linear in each variable.

Sort rows r in ascending order based on these scores:

Experiment Setup

Random polynomial matrices:

- 9×9.
- 5 variables.
- For various values of p : an entry is 0 with probability p and has between one and four terms otherwise. (Any number is equally likely.)
- Each term is constant or linear in each variable.

Sort rows r in ascending order based on these scores:

- Control, no sorting.

Experiment Setup

Random polynomial matrices:

- 9×9.
- 5 variables.
- For various values of p : an entry is 0 with probability p and has between one and four terms otherwise. (Any number is equally likely.)
- Each term is constant or linear in each variable.

Sort rows r in ascending order based on these scores:

- Control, no sorting.
- Number of nonzero entries in a row, $\sum_{i=1}^{n}\left(r_{i} \neq 0\right)$.

Experiment Setup

Random polynomial matrices:

- 9×9.
- 5 variables.
- For various values of p : an entry is 0 with probability p and has between one and four terms otherwise. (Any number is equally likely.)
- Each term is constant or linear in each variable.

Sort rows r in ascending order based on these scores:

- Control, no sorting.
- Number of nonzero entries in a row, $\sum_{i=1}^{n}\left(r_{i} \neq 0\right)$.
- Total number of terms in a row, $\sum_{i=1}^{n}$ nterms $\left(r_{i}\right)$.

Experiment Setup

Random polynomial matrices:

- 9×9.
- 5 variables.
- For various values of p : an entry is 0 with probability p and has between one and four terms otherwise. (Any number is equally likely.)
- Each term is constant or linear in each variable.

Sort rows r in ascending order based on these scores:

- Control, no sorting.
- Number of nonzero entries in a row, $\sum_{i=1}^{n}\left(r_{i} \neq 0\right)$.
- Total number of terms in a row, $\sum_{i=1}^{n}$ nterms $\left(r_{i}\right)$.
- Product of one more than number of terms for each entry of a row, $\prod_{i=1}^{n}\left(\operatorname{nterms}\left(r_{i}\right)+1\right)$.

Data

Data

Further Questions

Define "complexity" of matrix entries:

Further Questions

Define "complexity" of matrix entries:

- Number of terms.

Further Questions

Define "complexity" of matrix entries:

- Number of terms.
- Variables present.

Further Questions

Define "complexity" of matrix entries:

- Number of terms.
- Variables present.
- Context of a row.

Further Questions

Define "complexity" of matrix entries:

- Number of terms.
- Variables present.
- Context of a row.

Investigate specific types of matrices:

Further Questions

Define "complexity" of matrix entries:

- Number of terms.
- Variables present.
- Context of a row.

Investigate specific types of matrices:

- Bézout matrices.

Further Questions

Define "complexity" of matrix entries:

- Number of terms.
- Variables present.
- Context of a row.

Investigate specific types of matrices:

- Bézout matrices.

Do more experiments!

Further Questions

Define "complexity" of matrix entries:

- Number of terms.
- Variables present.
- Context of a row.

Investigate specific types of matrices:

- Bézout matrices.

Do more experiments!

- Vary other criteria.

Further Questions

Define "complexity" of matrix entries:

- Number of terms.
- Variables present.
- Context of a row.

Investigate specific types of matrices:

- Bézout matrices.

Do more experiments!

- Vary other criteria.
- Different algorithms and variations.

Further Questions

Define "complexity" of matrix entries:

- Number of terms.
- Variables present.
- Context of a row.

Investigate specific types of matrices:

- Bézout matrices.

Do more experiments!

- Vary other criteria.
- Different algorithms and variations.
- Crossover points between algorithms.

Further Questions

Define "complexity" of matrix entries:

- Number of terms.
- Variables present.
- Context of a row.

Investigate specific types of matrices:

- Bézout matrices.

Do more experiments!

- Vary other criteria.
- Different algorithms and variations.
- Crossover points between algorithms.
- Machine learning.

Acknowledgments

- Dr. Tanya Khovanova, MIT, for mentoring me.
- Dr. Stefan Wehmeier, MathWorks, for suggesting the project and introducing me to the field.
- Dr. Ben Hinkle, MathWorks, for arranging software license and an international conference call.
- MIT PRIMES, for giving me this unique research opportunity.
- The MathWorks, Inc., for providing software and supporting the research.

