Modular representations of Cherednik algebras

Sheela Devadas and Steven Sam

Second Annual MIT PRIMES Conference, May 19, 2012

Representations of Cherednik Algebras

- The Cherednik algebra $H_{\hbar, c}(G, \mathfrak{h})$ is a \mathbb{Z}-graded algebra
- We study the Cherednik algebra in positive characteristic
- The representations of the algebra we study are constructed from Verma modules $M_{c}(\tau)$ where τ is a representation of the group G
- $M_{c}(\tau)$ is equivalent to $\operatorname{Sym}\left(\mathfrak{h}^{*}\right) \otimes \tau$
- We construct a submodule $J_{c}(\tau)$ as the kernel of a bilinear form β_{c} which can be calculated with a computer: the lowest-weight representations of the Cherednik algebra are then $M_{c}(\tau) / J_{c}(\tau)=L_{c}(\tau)$
- The Hilbert series of L_{c} is $\sum_{i=0}^{\infty}\left(\operatorname{dim}\left(L_{c}\right)_{i}\right) t^{i}$.
- The main goal of the project is to be able to compute Hilbert series for all $L_{c}(\tau)$. We also study the free resolutions of some $L_{c}(\tau)$, allowing us to approximate certain modules with better-behaved ones

More Previous Results

- Latour, Katrina Evtimova, Emanuel Stoica, Martina Balagovic and Harrison Chen studied the Cherednik algebra for other groups
- Unlike them, we work with groups that are examples in char. 0 reduced $\bmod p$ and higher rank
- We work with groups $G(m, r, n)$, which are n by n permutation matrices with entries that are $m^{\text {th }}$ roots of unity such that the product of the entries is an $\frac{m}{r}$ th root of unity
- With Carl Lian, we were able to find Hilbert series for the groups $G(1,1, n)$ or S_{n} when $\hbar=1$ for some special values of the parameter c for trivial τ : in general, we use generic c
- In the case when $G=S_{n}, p$ divides n, τ is trivial, we were able to find Hilbert series for $L_{c}(\tau)$ and generators for $J_{c}(\tau)$ for $\hbar=0$ and for $\hbar=1, p=2$
- For $G(m, m, 2)$ and $\hbar=1$, we were able to find Hilbert series for $L_{c}(\tau)$ and generators for $J_{c}(\tau)$ for some τ

$$
\hbar=0, G(m, m, n) \text { and } G(m, 1, n)
$$

- The ideal J_{c} has behavior related to subspace arrangements in the case $G=G(m, 1, n)$, which includes the case $G=S_{n}$ ($m=1$)
- Let X_{i} be the set of all $\left(x_{1}, \ldots, x_{n}\right)$ such that some $n-i$ of the coordinates are equal.
- Let $I_{i}^{(m)}$ be the ideal of X_{i} in degree m
- For $n \equiv i(\bmod p)$ with $0 \leq i \leq p-1$ and $\hbar=0$, the data suggests that J_{c} is generated by symmetric functions and $I_{i}^{(m)}$. L_{c} seems to be a complete intersection in X_{i}.
- For $G(m, m, n)$ we see coordinate subspaces and the related ideals in the behavior of J_{c}
- We conjecture that when $n \equiv 0 \bmod p$, the regular sequence is $x_{1}^{m}+\cdots x_{n}^{m}, x_{1}^{2 m}+\cdots x_{n}^{2 m}, \ldots, x_{1}^{(i-1) m}+\cdots x_{n}^{(i-1) m}$
- The exception is when $n \equiv 0 \bmod p$, where J_{c} is generated by the squarefree monomials of degree p and the differences of the $m^{t h}$ powers of the x_{i}

Dihedral groups $G(m, m, 2), \hbar=0$

- Dihedral groups are the groups $G(m, m, 2)$, they can also be considered the group of symmetries of a regular m-gon
- Representations of the dihedral group take the form ρ_{i} for $0 \leq i<\frac{m}{2}$: these representations are equivalent to the standard 2-dimensional one, except roots of unity act by their $i^{\text {th }}$ power (except for $i=0$, which is the trivial representation)
- There are 1 or 3 additional representations based on tensoring the trivial representation by a character (for example, the sign representation), depending on the parity of m
- These are indexed by negative integers
- We use these representations as τ

Dihedral groups results

- For $i \leq 0, \rho_{i}$ has one basis vector e_{1}; for $i>0, \rho_{i}$ has two basis vectors e_{1}, e_{2}
- Let x_{1} and x_{2} be basis vectors of \mathfrak{h}^{*}
- The results in this case appear to be independent of characteristic
- If $i \leq 0$, then $x_{1} * x_{2} \otimes e_{1},\left(x_{1}^{m}+x_{2}^{m}\right) \otimes e_{1}$ generate J_{c}
- If $i=1$, then $x_{1} \otimes e_{1}, x_{1}^{3} \otimes e_{2}, x_{2}^{3} \otimes e_{1}, x_{2} \otimes e_{2}$ generate J_{c}
- If $1<i<\frac{m}{2}$, then $x_{1} \otimes e_{1}, x_{1} \otimes e_{2}, x_{2} \otimes e_{1}, x_{2} \otimes e_{2}$ generate J_{c} unless m is even and $i=\frac{m}{2}-1$
- If $i=\frac{m}{2}-1$ and m is even, then
$x_{1} \otimes e_{1}, x_{1}^{3} \otimes e_{2}, x_{2}^{3} \otimes e_{1}, x_{2} \otimes e_{2}$ generate J_{c}
- $m=4$ is a special case since $1=\frac{m}{2}-1$

Dihedral group free resolutions

- Free resolutions can be calculated for $L_{c}\left(\rho_{i}\right)$ in most cases (let $A=\operatorname{Sym}\left(\mathfrak{h}^{*}\right)$)
- If $i \leq 0$, then the free resolution is:

$$
\begin{array}{r}
0 \leftarrow L_{c}\left(\rho_{i}\right) \leftarrow \rho_{i} \otimes A \leftarrow \rho_{i} \otimes A(-2) \oplus \rho_{i} \otimes A(-m) \\
\leftarrow \rho_{i} \otimes A(-m-2) \leftarrow 0
\end{array}
$$

- If $i=1$ the free resolution is:

$$
\begin{aligned}
& 0 \leftarrow L_{c}\left(\rho_{1}\right) \leftarrow \rho_{1} \otimes A \leftarrow \rho_{2} \otimes A(-1) \oplus \rho_{2} \otimes A(-3) \\
& \leftarrow \rho_{1} \otimes A(-4) \leftarrow 0
\end{aligned}
$$

Dihedral group free resolutions

- If $1<i<\frac{m}{2}$ (unless m is even and $i=\frac{m}{2}-1$) the free resolution is:

$$
\begin{aligned}
0 \leftarrow L_{c}\left(\rho_{i}\right) \leftarrow & \rho_{i} \otimes A \leftarrow \rho_{i} \otimes \mathfrak{h}^{*} \otimes A(-1) \\
& \leftarrow \rho_{i} \otimes \wedge^{2} \mathfrak{h}^{*} \otimes A(-2) \leftarrow 0
\end{aligned}
$$

- If $i=\frac{m}{2}-1$, and m is even and greater than 8 , the free resolution is:

$$
\begin{aligned}
0 \leftarrow L_{c}\left(\rho_{i}\right) \leftarrow \rho_{i} \otimes A \leftarrow\left(\rho_{-2} \oplus \rho_{-1}\right) \otimes & A(-1) \oplus \rho_{\frac{m}{2}-4} \otimes A(-3) \\
& \leftarrow \rho_{\frac{m}{2}-3} \otimes A(-4) \leftarrow 0
\end{aligned}
$$

Transition matrix

The following transition matrix, for the case $G(5,5,2)$, expresses the characters of the $L_{c}(\tau)$ as alternating sums of the characters of the Verma modules $M_{c}(\tau)$, using the variable t to represent grading shifts:

$$
\left(\begin{array}{cccc}
\left(1-t^{2}\right)\left(1-t^{5}\right) & 0 & 0 & 0 \\
0 & \left(1-t^{2}\right)\left(1-t^{5}\right) & 0 & 0 \\
0 & 0 & 1+t^{4} & -t \\
0 & 0 & -t-t^{3} & 1-t+t^{2}
\end{array}\right)
$$

The columns of this matrix represent $L_{c}(\tau)$ for the four representations of $G(5,5,2)$, while the rows represent $M_{c}(\tau)$ for the same four representations (in the order $\rho_{-1}, \rho_{0}, \rho_{1}, \rho_{2}$)

Transition matrix

The inverse matrix shows the characters of the $M_{c}(\tau)$ in terms of the characters of the $L_{c}(\tau)$, with the fractional coefficient representing that the $L_{c}(\tau)$ are being infinitely summed. The baby Verma modules $M_{c}^{\prime}(\tau)$ are equivalent to $M_{c}(\tau)$ quotiented by the invariants, which have degrees 2 and 5 for $G(5,5,2)$, so when we remove the fractional coefficient, the transitional matrix relates the baby Verma modules to the $L_{c}(\tau)$.
(Here the columns refer to the $M_{c}(\tau)$ and the rows to the $L_{c}(\tau)$, with the same indexing of representations.)

$$
\frac{1}{\left(1-t^{2}\right)\left(1-t^{5}\right)}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1+t^{3} & t+t^{2}+t^{3}+t^{4} \\
0 & 0 & t+t^{2} & 1+t+t^{4}+t^{5}
\end{array}\right)
$$

$G(m, m, 3)$ conjectures

- Let x, y, z be basis vectors of \mathfrak{h}^{*}
- $G(m, m, 3)$ has one two-dimensional representation γ_{0} : it is equivalent to the standard three-dimensional representation with roots of unity acting trivially, quotiented by the sum of the variables, and it has two basis vectors e_{1} and e_{2}
- The following results are true when $p>2$
- In this case we conjecture that J_{c} is generated by $\left(x^{m}+y^{m}+z^{m}\right) \otimes e_{1},\left(x^{m}+y^{m}+z^{m}\right) \otimes e_{2}, x y z \otimes e_{1}, x y z \otimes$ $e_{2},-x^{m} \otimes e_{1}+z^{m} \otimes e_{2}, y^{m} \otimes e_{1}+-x^{m} \otimes e_{2}$
- $G(m, m, 3)$ has $m-1$ three-dimensional representations γ_{i} for $1 \leq i \leq m-1$ equivalent to the standard three-dimensional representation, with roots of unity acting by their $i^{\text {th }}$ power (three basis vectors e_{1}, e_{2}, e_{3})
- In this case (unless $i=1, p=2$, or $m=2$) we conjecture that J_{c} is generated by

$$
\begin{aligned}
& x \otimes e_{1}, y \otimes e_{2}, z \otimes e_{3}, y z \otimes e_{1}, x z \otimes e_{2}, x y \otimes e_{3}, y^{m-i} \otimes e_{1}+ \\
& x^{m-i} \otimes e_{2}, z^{m-i} \otimes e_{1}+x^{m-i} \otimes e_{3}, z^{m-i} \otimes e_{2}+y^{m-i} \otimes e_{3}
\end{aligned}
$$

Further research

- We plan to find the expressions of the $M_{c}^{\prime}(\tau)$ in terms of the $L_{c}(\tau)$ for the remaining cases for the dihedral group and the groups $G(m, m, 3)$ as well
- We also plan to find free resolutions for small cases of $G(m, r, n)$ and use K-theory in a similar way

Thanks!

Thanks to PRIMES for providing this opportunity, Pavel Etingof for suggesting this problem, and our mentor Steven Sam.

