Schmidt Games and a Family of Anormal Numbers

Saarik Kalia and Michael Zanger-Tishler

Second Annual MIT PRIMES Conference

May 19, 2012

Schmidt Games

Two players, Alice and Bob, play a Schmidt game on a given set S, as follows:

Schmidt Games

Two players, Alice and Bob, play a Schmidt game on a given set S, as follows:

- Alice has a constant $0<\alpha<1$, and Bob has a constant $0<\beta<1$.

Schmidt Games

Two players, Alice and Bob, play a Schmidt game on a given set S, as follows:

- Alice has a constant $0<\alpha<1$, and Bob has a constant $0<\beta<1$.
- Bob begins by choosing an interval $B_{1} \subset \mathbb{R}$.

Schmidt Games

Two players, Alice and Bob, play a Schmidt game on a given set S, as follows:

- Alice has a constant $0<\alpha<1$, and Bob has a constant $0<\beta<1$.
- Bob begins by choosing an interval $B_{1} \subset \mathbb{R}$.
- Alice then chooses an interval $A_{1} \subset B_{1}$, such that $\left|A_{1}\right|=\alpha\left|B_{1}\right|$.

Schmidt Games

Two players, Alice and Bob, play a Schmidt game on a given set S, as follows:

- Alice has a constant $0<\alpha<1$, and Bob has a constant $0<\beta<1$.
- Bob begins by choosing an interval $B_{1} \subset \mathbb{R}$.
- Alice then chooses an interval $A_{1} \subset B_{1}$, such that $\left|A_{1}\right|=\alpha\left|B_{1}\right|$.
- Bob then chooses an interval $B_{2} \subset A_{1}$, such that $\left|B_{2}\right|=\beta\left|A_{1}\right|$.

Schmidt Games

Two players, Alice and Bob, play a Schmidt game on a given set S, as follows:

- Alice has a constant $0<\alpha<1$, and Bob has a constant $0<\beta<1$.
- Bob begins by choosing an interval $B_{1} \subset \mathbb{R}$.
- Alice then chooses an interval $A_{1} \subset B_{1}$, such that $\left|A_{1}\right|=\alpha\left|B_{1}\right|$.
- Bob then chooses an interval $B_{2} \subset A_{1}$, such that $\left|B_{2}\right|=\beta\left|A_{1}\right|$.

Schmidt Games

- This process repeats infinitely. If the point of convergence $\bigcap_{k=0}^{\infty} B_{k}=\bigcap_{k=0}^{\infty} A_{k}$ is in S, Alice wins.

Schmidt Games

- This process repeats infinitely. If the point of convergence $\bigcap_{k=0}^{\infty} B_{k}=\bigcap_{k=0}^{\infty} A_{k}$ is in S, Alice wins.
- A set S is called (α, β)-winning, if for the given (α, β) and S, Alice can ensure victory, regardless of how Bob plays.

Schmidt Games

- This process repeats infinitely. If the point of convergence $\bigcap_{k=0}^{\infty} B_{k}=\bigcap_{k=0}^{\infty} A_{k}$ is in S, Alice wins.
- A set S is called (α, β)-winning, if for the given (α, β) and S, Alice can ensure victory, regardless of how Bob plays.
- For our purposes, if S is not (α, β)-winning, it is (α, β)-losing.

Schmidt Diagrams and Trivial Zones

We will explore the values of (α, β) for which a given set is winning. We therefore define the Schmidt Diagram of $S, D(S)$, as the set of all (α, β) for which S is winning.

Schmidt Diagrams and Trivial Zones

We will explore the values of (α, β) for which a given set is winning. We therefore define the Schmidt Diagram of $S, D(S)$, as the set of all (α, β) for which S is winning.

We can identify two "trivial zones" which are either winning or losing for every set by examing Alice or Bob's ability to center all of their intervals around a common point.

Schmidt Diagrams and Trivial Zones

We will explore the values of (α, β) for which a given set is winning. We therefore define the Schmidt Diagram of $S, D(S)$, as the set of all (α, β) for which S is winning.

We can identify two "trivial zones" which are either winning or losing for every set by examing Alice or Bob's ability to center all of their intervals around a common point.

Suppose that $S=\mathbb{R} \backslash\{x\}$. If $1-2 \alpha+\alpha \beta<0$, Bob can ensure victory as follows:

Schmidt Diagrams and Trivial Zones

We will explore the values of (α, β) for which a given set is winning. We therefore define the Schmidt Diagram of $S, D(S)$, as the set of all (α, β) for which S is winning.

We can identify two "trivial zones" which are either winning or losing for every set by examing Alice or Bob's ability to center all of their intervals around a common point.

Suppose that $S=\mathbb{R} \backslash\{x\}$. If $1-2 \alpha+\alpha \beta<0$, Bob can ensure victory as follows:

- Bob centers B_{1} around x. Let $d=\left|B_{1}\right|$.

Schmidt Diagrams and Trivial Zones

We will explore the values of (α, β) for which a given set is winning. We therefore define the Schmidt Diagram of $S, D(S)$, as the set of all (α, β) for which S is winning.

We can identify two "trivial zones" which are either winning or losing for every set by examing Alice or Bob's ability to center all of their intervals around a common point.

Suppose that $S=\mathbb{R} \backslash\{x\}$. If $1-2 \alpha+\alpha \beta<0$, Bob can ensure victory as follows:

- Bob centers B_{1} around x. Let $d=\left|B_{1}\right|$.
- The farthest right Alice's leftmost endpoint can be is at $x+\frac{d}{2}-d \alpha$.

Schmidt Diagrams and Trivial Zones

We will explore the values of (α, β) for which a given set is winning. We therefore define the Schmidt Diagram of $S, D(S)$, as the set of all (α, β) for which S is winning.

We can identify two "trivial zones" which are either winning or losing for every set by examing Alice or Bob's ability to center all of their intervals around a common point.

Suppose that $S=\mathbb{R} \backslash\{x\}$. If $1-2 \alpha+\alpha \beta<0$, Bob can ensure victory as follows:

- Bob centers B_{1} around x. Let $d=\left|B_{1}\right|$.
- The farthest right Alice's leftmost endpoint can be is at $x+\frac{d}{2}-d \alpha$.
- The farthest left Bob's center can then be is $x+\frac{d}{2}-d \alpha+\frac{d \alpha \beta}{2}$. Bob obviously can then maintain the same center.

Trivial Zones

Using similar logic, we can reach the following conclusions about $D(S)$:

Trivial Zones

Using similar logic, we can reach the following conclusions about $D(S)$:

- S is dense $\Longleftrightarrow D(S) \neq \emptyset \Longrightarrow$ the region $\left\{(\alpha, \beta): \beta \geq \frac{1}{2-\alpha}\right\}$ is winning.

Trivial Zones

Using similar logic, we can reach the following conclusions about $D(S)$:

- S is dense $\Longleftrightarrow D(S) \neq \emptyset \Longrightarrow$ the region $\left\{(\alpha, \beta): \beta \geq \frac{1}{2-\alpha}\right\}$ is winning.
- S is a countable dense set $\Longrightarrow D(S)=\left\{(\alpha, \beta): \beta \geq \frac{1}{2-\alpha}\right\}$

Trivial Zones

Using similar logic, we can reach the following conclusions about $D(S)$:

- S is dense $\Longleftrightarrow D(S) \neq \emptyset \Longrightarrow$ the region $\left\{(\alpha, \beta): \beta \geq \frac{1}{2-\alpha}\right\}$ is winning.
- S is a countable dense set $\Longrightarrow D(S)=\left\{(\alpha, \beta): \beta \geq \frac{1}{2-\alpha}\right\}$
- S is co-countable $\Longrightarrow D(S)^{C}=\left\{(\alpha, \beta): \beta \leq 2-\frac{1}{\alpha}\right\}$

Trivial Zones

Using similar logic, we can reach the following conclusions about $D(S)$:

- S is dense $\Longleftrightarrow D(S) \neq \emptyset \Longrightarrow$ the region $\left\{(\alpha, \beta): \beta \geq \frac{1}{2-\alpha}\right\}$ is winning.
- S is a countable dense set $\Longrightarrow D(S)=\left\{(\alpha, \beta): \beta \geq \frac{1}{2-\alpha}\right\}$
- S is co-countable $\Longrightarrow D(S)^{C}=\left\{(\alpha, \beta): \beta \leq 2-\frac{1}{\alpha}\right\}$
- $S \neq \mathbb{R} \Longleftrightarrow D(S)^{C} \neq \emptyset \Longrightarrow$ the region $\left\{(\alpha, \beta): \beta \leq 2-\frac{1}{\alpha}\right\}$ is losing.

Trivial Zones

Using similar logic, we can reach the following conclusions about $D(S)$:

- S is dense $\Longleftrightarrow D(S) \neq \emptyset \Longrightarrow$ the region $\left\{(\alpha, \beta): \beta \geq \frac{1}{2-\alpha}\right\}$ is winning.
- S is a countable dense set $\Longrightarrow D(S)=\left\{(\alpha, \beta): \beta \geq \frac{1}{2-\alpha}\right\}$
- S is co-countable $\Longrightarrow D(S)^{C}=\left\{(\alpha, \beta): \beta \leq 2-\frac{1}{\alpha}\right\}$
- $S \neq \mathbb{R} \Longleftrightarrow D(S)^{C} \neq \emptyset \Longrightarrow$ the region $\left\{(\alpha, \beta): \beta \leq 2-\frac{1}{\alpha}\right\}$ is losing.

Lemmas

Here are a few lemmas for Schmidt Games:

Lemmas

Here are a few lemmas for Schmidt Games:

- If S is (α, β)-winning, it is also $\left(\alpha^{\prime}, \beta^{\prime}\right)$-winning for $\alpha \beta=\alpha^{\prime} \beta^{\prime}, \alpha>\alpha^{\prime}$.

Lemmas

Here are a few lemmas for Schmidt Games:

- If S is (α, β)-winning, it is also $\left(\alpha^{\prime}, \beta^{\prime}\right)$-winning for $\alpha \beta=\alpha^{\prime} \beta^{\prime}, \alpha>\alpha^{\prime}$.
- If S is (α, β)-winning, it is also $\left(\alpha(\alpha \beta)^{n}, \beta\right)$-winning for $n \in \mathbb{W}$.

Lemmas

Here are a few lemmas for Schmidt Games:

- If S is (α, β)-winning, it is also $\left(\alpha^{\prime}, \beta^{\prime}\right)$-winning for $\alpha \beta=\alpha^{\prime} \beta^{\prime}, \alpha>\alpha^{\prime}$.
- If S is (α, β)-winning, it is also $\left(\alpha(\alpha \beta)^{n}, \beta\right)$-winning for $n \in \mathbb{W}$.
- If $S_{1} \subset S_{2}$, then $D\left(S_{1}\right) \subseteq D\left(S_{2}\right)$.

Lemmas

Here are a few lemmas for Schmidt Games:

- If S is (α, β)-winning, it is also $\left(\alpha^{\prime}, \beta^{\prime}\right)$-winning for $\alpha \beta=\alpha^{\prime} \beta^{\prime}, \alpha>\alpha^{\prime}$.
- If S is (α, β)-winning, it is also $\left(\alpha(\alpha \beta)^{n}, \beta\right)$-winning for $n \in \mathbb{W}$.
- If $S_{1} \subset S_{2}$, then $D\left(S_{1}\right) \subseteq D\left(S_{2}\right)$.
- $D\left(S_{1} \cap S_{2}\right) \subseteq D\left(S_{1}\right) \cap D\left(S_{2}\right)$ and $D\left(S_{1} \cup S_{2}\right) \supseteq D\left(S_{1}\right) \cup D\left(S_{2}\right)$

Lemmas

Here are a few lemmas for Schmidt Games:

- If S is (α, β)-winning, it is also $\left(\alpha^{\prime}, \beta^{\prime}\right)$-winning for $\alpha \beta=\alpha^{\prime} \beta^{\prime}, \alpha>\alpha^{\prime}$.
- If S is (α, β)-winning, it is also $\left(\alpha(\alpha \beta)^{n}, \beta\right)$-winning for $n \in \mathbb{W}$.
- If $S_{1} \subset S_{2}$, then $D\left(S_{1}\right) \subseteq D\left(S_{2}\right)$.
- $D\left(S_{1} \cap S_{2}\right) \subseteq D\left(S_{1}\right) \cap D\left(S_{2}\right)$ and $D\left(S_{1} \cup S_{2}\right) \supseteq D\left(S_{1}\right) \cup D\left(S_{2}\right)$
- $D\left(S^{C}\right) \subseteq \sigma\left(D(S)^{C}\right)$, where S^{C} represents the complement of S and $\sigma(x, y)=(y, x)$.

Lemmas

Here are a few lemmas for Schmidt Games:

- If S is (α, β)-winning, it is also $\left(\alpha^{\prime}, \beta^{\prime}\right)$-winning for $\alpha \beta=\alpha^{\prime} \beta^{\prime}, \alpha>\alpha^{\prime}$.
- If S is (α, β)-winning, it is also $\left(\alpha(\alpha \beta)^{n}, \beta\right)$-winning for $n \in \mathbb{W}$.
- If $S_{1} \subset S_{2}$, then $D\left(S_{1}\right) \subseteq D\left(S_{2}\right)$.
- $D\left(S_{1} \cap S_{2}\right) \subseteq D\left(S_{1}\right) \cap D\left(S_{2}\right)$ and $D\left(S_{1} \cup S_{2}\right) \supseteq D\left(S_{1}\right) \cup D\left(S_{2}\right)$
- $D\left(S^{C}\right) \subseteq \sigma\left(D(S)^{C}\right)$, where S^{C} represents the complement of S and $\sigma(x, y)=(y, x)$.
- If F is a locally finite set, $S \neq \mathbb{R}$, and $S \cup F \neq \mathbb{R}$, then $D(S \cup F)=D(S)=D(S \backslash F)$.

Lemmas

Here are a few lemmas for Schmidt Games:

- If S is (α, β)-winning, it is also $\left(\alpha^{\prime}, \beta^{\prime}\right)$-winning for $\alpha \beta=\alpha^{\prime} \beta^{\prime}, \alpha>\alpha^{\prime}$.
- If S is (α, β)-winning, it is also $\left(\alpha(\alpha \beta)^{n}, \beta\right)$-winning for $n \in \mathbb{W}$.
- If $S_{1} \subset S_{2}$, then $D\left(S_{1}\right) \subseteq D\left(S_{2}\right)$.
- $D\left(S_{1} \cap S_{2}\right) \subseteq D\left(S_{1}\right) \cap D\left(S_{2}\right)$ and $D\left(S_{1} \cup S_{2}\right) \supseteq D\left(S_{1}\right) \cup D\left(S_{2}\right)$
- $D\left(S^{C}\right) \subseteq \sigma\left(D(S)^{C}\right)$, where S^{C} represents the complement of S and $\sigma(x, y)=(y, x)$.
- If F is a locally finite set, $S \neq \mathbb{R}$, and $S \cup F \neq \mathbb{R}$, then $D(S \cup F)=D(S)=D(S \backslash F)$.
- If $S^{\prime}=k S+c$ is the set S scaled by a factor of k and shifted by c, then $D\left(S^{\prime}\right)=D(S)$.

Our Set

The set we will examine, denoted by $F_{b, w}$, is the set of numbers in whose base b expansion the digit w appears finitely many times.

Our Set

The set we will examine, denoted by $F_{b, w}$, is the set of numbers in whose base b expansion the digit w appears finitely many times.

For instance, the number $0.44444 \overline{0123}_{5}$ would be in $F_{5,4}$.

Our Set

The set we will examine, denoted by $F_{b, w}$, is the set of numbers in whose base b expansion the digit w appears finitely many times.

For instance, the number $0.44444 \overline{0123}_{5}$ would be in $F_{5,4}$.
If we define Z_{k} as the set of numbers which have a w as their $k^{\text {th }}$ decimal place in their base b expansion, then we can define this set as the set of numbers which are in only a finite number of Z_{k} 's.

Our Set

The set we will examine, denoted by $F_{b, w}$, is the set of numbers in whose base b expansion the digit w appears finitely many times.

For instance, the number $0.44444 \overline{0123}_{5}$ would be in $F_{5,4}$.
If we define Z_{k} as the set of numbers which have a w as their $k^{\text {th }}$ decimal place in their base b expansion, then we can define this set as the set of numbers which are in only a finite number of Z_{k} 's.

Winning and Losing Zones

If Alice can disjoint her intervals from all the Z_{k} 's beginning with a certain k, she can win. If the set of k for which Bob can contain his intervals in Z_{k} is unbounded, he can win. Therefore:

Winning and Losing Zones

If Alice can disjoint her intervals from all the Z_{k} 's beginning with a certain k, she can win. If the set of k for which Bob can contain his intervals in Z_{k} is unbounded, he can win. Therefore:

- The region $\left\{(\alpha, \beta): \alpha<\frac{1}{2}, \alpha \beta \geq \frac{1}{b}, \beta \geq \frac{1}{(b-1)(1-2 \alpha)}\right\}$ is winning.

Winning and Losing Zones

If Alice can disjoint her intervals from all the Z_{k} 's beginning with a certain k, she can win. If the set of k for which Bob can contain his intervals in Z_{k} is unbounded, he can win. Therefore:

- The region $\left\{(\alpha, \beta): \alpha<\frac{1}{2}, \alpha \beta \geq \frac{1}{b}, \beta \geq \frac{1}{(b-1)(1-2 \alpha)}\right\}$ is winning.
- The region $\left\{(\alpha, \beta): \beta<\frac{1}{b+1} \vee\left(\beta=\frac{1}{b+1}, \log _{b} \alpha \beta \in \mathbb{Q}\right)\right\}$ is losing.

Winning and Losing Zones

If Alice can disjoint her intervals from all the Z_{k} 's beginning with a certain k, she can win. If the set of k for which Bob can contain his intervals in Z_{k} is unbounded, he can win. Therefore:

- The region $\left\{(\alpha, \beta): \alpha<\frac{1}{2}, \alpha \beta \geq \frac{1}{b}, \beta \geq \frac{1}{(b-1)(1-2 \alpha)}\right\}$ is winning.
- The region $\left\{(\alpha, \beta): \beta<\frac{1}{b+1} \vee\left(\beta=\frac{1}{b+1}, \log _{b} \alpha \beta \in \mathbb{Q}\right)\right\}$ is losing.
- Where b is the base

Winning and Losing Zones

If Alice can disjoint her intervals from all the Z_{k} 's beginning with a certain k, she can win. If the set of k for which Bob can contain his intervals in Z_{k} is unbounded, he can win. Therefore:

- The region $\left\{(\alpha, \beta): \alpha<\frac{1}{2}, \alpha \beta \geq \frac{1}{b}, \beta \geq \frac{1}{(b-1)(1-2 \alpha)}\right\}$ is winning.
- The region $\left\{(\alpha, \beta): \beta<\frac{1}{b+1} \vee\left(\beta=\frac{1}{b+1}, \log _{b} \alpha \beta \in \mathbb{Q}\right)\right\}$ is losing.
- Where b is the base

Future Research

- We can extend the losing region to $\left\{(\alpha, \beta): \beta<\frac{1}{b} \vee\left(\beta=\frac{1}{b}, \log _{b} \alpha \beta \in \mathbb{Q}\right)\right\}$ for $F_{b, 0}$ and $F_{b, b-1}$. Can we apply this extension to all other digits?

Future Research

- We can extend the losing region to $\left\{(\alpha, \beta): \beta<\frac{1}{b} \vee\left(\beta=\frac{1}{b}, \log _{b} \alpha \beta \in \mathbb{Q}\right)\right\}$ for $F_{b, 0}$ and $F_{b, b-1}$. Can we apply this extension to all other digits?
- Can we show that the digit does not matter?

Future Research

- We can extend the losing region to $\left\{(\alpha, \beta): \beta<\frac{1}{b} \vee\left(\beta=\frac{1}{b}, \log _{b} \alpha \beta \in \mathbb{Q}\right)\right\}$ for $F_{b, 0}$ and $F_{b, b-1}$. Can we apply this extension to all other digits?
- Can we show that the digit does not matter?
- Can we find a complete Schmidt Diagram for $F_{b, w}$?

Future Research

- We can extend the losing region to $\left\{(\alpha, \beta): \beta<\frac{1}{b} \vee\left(\beta=\frac{1}{b}, \log _{b} \alpha \beta \in \mathbb{Q}\right)\right\}$ for $F_{b, 0}$ and $F_{b, b-1}$. Can we apply this extension to all other digits?
- Can we show that the digit does not matter?
- Can we find a complete Schmidt Diagram for $F_{b, w}$?
- Can we find a complete non-trivial Schmidt Diagram for any other set?

Acknowledgements

- Our mentor, Tue Ly, for assisting us in our research.

Acknowledgements

- Our mentor, Tue Ly, for assisting us in our research.
- Professor Dmitry Kleinbock for suggesting this project and providing feedback on our research so far.

Acknowledgements

- Our mentor, Tue Ly, for assisting us in our research.
- Professor Dmitry Kleinbock for suggesting this project and providing feedback on our research so far.
- Our parents for their continued support (and driving).

Acknowledgements

- Our mentor, Tue Ly, for assisting us in our research.
- Professor Dmitry Kleinbock for suggesting this project and providing feedback on our research so far.
- Our parents for their continued support (and driving).
- PRIMES for enabling us to work on this project.

