Modified Farey Sequences

Dhroova Aiylam

MIT PRIMES

May 19, 2012

$$
\begin{gathered}
\frac{a}{b}, \frac{c}{d} \rightarrow \frac{a+c}{b+d} \\
\frac{0}{1} \frac{1}{1} \\
\frac{0}{1} \frac{1}{2} \frac{1}{1} \\
\frac{0}{1} \frac{1}{3} \frac{1}{2} \frac{2}{3} \frac{1}{1} \\
\frac{0}{1} \frac{1}{4} \frac{1}{3} \frac{2}{5} \frac{1}{2} \frac{3}{5} \frac{2}{3} \frac{3}{4} \frac{1}{1}
\end{gathered}
$$

Let $\frac{a}{b}$, $\frac{c}{d}$ be two consecutive fractions, with their mediant equal to $\frac{a+c}{b+d}$. Some useful properties:

■ The mediant never needs to be reduced
$\square b c-a d$ equals 1

- The first half of the list of numerators equals the previous
- Denominators are increased by the numerator

Theorem

(Well Known) Every rational number between 0 and 1 appears somewhere.

Ford Circles

- Begin with 2 circles, radius $\frac{1}{2}$, placed at $(0,0)$ and $(1,0)$
- Between any two tangent circles, insert a circle tangent to the two and the axis
- x-coordinates are given by the Farey Sequence
- Curvatures equal twice denominator squared

■ Visual representation of irreducibility
■ Odd denominators are red
■ Even denominators are even

$$
\begin{gathered}
\frac{a}{b}, \frac{c}{d} \rightarrow \frac{2 a+c}{2 b+d}, \frac{a+2 c}{b+2 d} \\
\frac{0}{1} \frac{1}{1} \\
\frac{0}{1} \frac{1}{3} \frac{2}{3} \frac{1}{1} \\
\frac{0}{1} \frac{1}{5} \frac{2}{7} \frac{1}{3} \frac{4}{9} \frac{5}{9} \frac{2}{3} \frac{5}{7} \frac{4}{5} \frac{1}{1}
\end{gathered}
$$

Here we insert weighted mediants.

In general, insert $k-1$ fractions; weights sum to k. The case above is $k=3$, and the original is $k=2$. We pose the following questions:

■ For which k do all rational numbers appear?
■ Can we categorize which rationals appear based on k ?
■ How do the properties of the original sequence generalize?

For consecutive fractions $\frac{a}{b}$ and $\frac{c}{d}$:

Lemma

$b c-a d$ is a power of 3.

Lemma

b and d are odd

Lemma

$\operatorname{gcd}(2 a+c, 2 b+d)=\operatorname{gcd}(a+2 c, b+2 d) \in\{1,3\}$.

Lemma

The one with smaller denominator is the closest rational approximation with smaller, odd denominator to the other.

A couple of theorems $k=3$

$N(r, i)$ is numerator of $i^{\text {th }}$ fraction in row $r . D(r, i)$ defined similarly. For any consecutive rows n and $n+1$:

Theorem

$N(n, i)=N(n+1, i)$

Theorem

$2 N(n, i)+D(n, i)=D(n+1, i)$

$$
\begin{aligned}
& \frac{0}{1} \frac{1}{1} \\
& \frac{0}{1} \frac{1}{3} \frac{2}{3} \frac{1}{1} \\
& \frac{0}{1} \frac{1}{5} \frac{2}{7} \frac{1}{3} \frac{4}{9} \frac{5}{9} \frac{2}{3} \frac{5}{7} \frac{4}{5} \frac{1}{1} \\
& \frac{0}{1} \frac{1}{7} \frac{2}{11} \frac{1}{5} \frac{4}{17} \frac{5}{19} \frac{2}{7} \frac{5}{17} \frac{4}{13} \frac{1}{3} \frac{2}{5} \frac{3}{7} \frac{4}{9} \frac{13}{27} \frac{14}{27} \frac{5}{9} \frac{4}{7} \frac{3}{5} \frac{2}{3} \frac{9}{13} \frac{12}{17} \frac{5}{7} \frac{14}{19} \frac{13}{17} \frac{4}{5} \frac{9}{11} \frac{6}{7} \frac{1}{1}
\end{aligned}
$$

$$
\begin{gathered}
\frac{0}{1} \frac{1}{1} \\
\frac{0}{1} \frac{1}{3} \frac{2}{3} \frac{1}{1} \\
0 \frac{1}{1} \frac{1}{5} \frac{2}{7} \frac{1}{3} \frac{4}{9} \frac{5}{9} \frac{2}{3} \frac{5}{7} \frac{4}{5} \frac{1}{1} \\
\frac{0}{1} \frac{1}{7} \frac{2}{11} \frac{1}{5} \frac{4}{17} \frac{5}{19} \frac{2}{7} \frac{5}{17} \frac{4}{13} \frac{1}{3} \frac{2}{5} \frac{3}{7} \frac{4}{9} \frac{13}{27} \frac{14}{27} \frac{5}{9} \frac{4}{7} \frac{3}{5} \frac{2}{3} \frac{9}{13} \frac{12}{17} \frac{5}{7} \frac{14}{19} \frac{13}{17} \frac{4}{5} \frac{9}{11} \frac{6}{7} \frac{1}{1}
\end{gathered}
$$

Determinant

$b c-a d$ is called the determinant of $\frac{a}{b}, \frac{c}{d}$

$$
\begin{aligned}
& \frac{0}{1} \frac{1}{1} \\
& 1 \\
& \frac{0}{1} \frac{1}{3} \frac{2}{3} \frac{1}{1} \\
& 131 \\
& \begin{array}{lllllllllll}
0 & \frac{1}{1} & \frac{2}{5} & \frac{1}{7} & \frac{4}{3} & \frac{5}{9} & \frac{2}{9} & \frac{5}{3} & \frac{4}{7} & \frac{1}{5} & \frac{1}{1}
\end{array} \\
& 131393131
\end{aligned}
$$

Notice the interesting fractal-like behavior.

The following is a visual representation of the power of three in the determinant in a row:

The recursive rule found for this sequence is quite involved, and was hence omitteed.

For prime k :

- Determinant is a power of k
\square The list of determinants in row n is the set $\left\{1, k, \ldots, k^{n}\right\}$
In general:
■ Determinant divides k^{n}
■ GCD divides determinant
For k odd, every divisor of k^{n} appears among the list of determinants in row n.

The General Case

- Most interesting for prime k

■ Stronger conclusions, non-trivial reduction
■ Not all numbers appear

Theorem

For odd prime k, only those numbers with denominators that are $1 \bmod k-1$ can appear.

For odd prime k, all rational numbers with denominators $1 \bmod k-1$ appear For even k, all rational numbers appear somewhere

- Proving any unproven conjectures
- Completely finishing up the case $k=3$
- Inventing a continued fraction variant
- Generalizing results to prime, and then all k

■ Finding, for all k, exactly which fractions appear

- MIT PRIMES
- Tanya Khovanova (for providing mentorship and guidance)

■ Jim Propp (for suggesting the project)

