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The Farey Sequence
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Properties

Let a
b , c

d be two consecutive fractions, with their mediant equal to a+c
b+d .

Some useful properties:

The mediant never needs to be reduced
bc − ad equals 1
The first half of the list of numerators equals the previous
Denominators are increased by the numerator

Theorem

(Well Known) Every rational number between 0 and 1 appears
somewhere.
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Ford Circles

Begin with 2 circles, radius 1
2 , placed at (0,0) and (1,0)

Between any two tangent circles, insert a circle tangent to the two
and the axis
x-coordinates are given by the Farey Sequence
Curvatures equal twice denominator squared
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Visual representation of irreducibility
Odd denominators are red
Even denominators are even
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A Different Farey Sequence
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Here we insert weighted mediants.
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The General Farey Sequence

In general, insert k − 1 fractions; weights sum to k . The case above is
k = 3, and the original is k = 2. We pose the following questions:

For which k do all rational numbers appear?
Can we categorize which rationals appear based on k?
How do the properties of the original sequence generalize?
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Some lemmas for k = 3

For consecutive fractions a
b and c

d :

Lemma

bc − ad is a power of 3.

Lemma

b and d are odd
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Some more lemmas for k = 3

Lemma

gcd (2a + c,2b + d) = gcd (a + 2c,b + 2d) ∈ {1,3}.

Lemma

The one with smaller denominator is the closest rational approximation
with smaller, odd denominator to the other.
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A couple of theorems k = 3

N(r , i) is numerator of i th fraction in row r . D(r , i) defined similarly. For
any consecutive rows n and n + 1:

Theorem

N(n, i) = N(n + 1, i)

Theorem

2N(n, i) + D(n, i) = D(n + 1, i)
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Numerators
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and Denominators
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Determinant

bc − ad is called the determinant of a
b ,

c
d
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Notice the interesting fractal-like behavior.
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The Determinant for k = 3

The following is a visual representation of the power of three in the determinant in a
row:

The recursive rule found for this sequence is quite involved, and was hence omitteed.
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The Determinant in General

For prime k :

Determinant is a power of k

The list of determinants in row n is the set {1, k , . . . , kn}
In general:

Determinant divides kn

GCD divides determinant

For k odd, every divisor of kn appears among the list of determinants in row n.
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The General Case

Most interesting for prime k

Stronger conclusions, non-trivial reduction

Not all numbers appear

Theorem

For odd prime k, only those numbers with denominators that are 1 mod k − 1 can
appear.

For odd prime k , all rational numbers with denominators 1 mod k − 1 appear For
even k , all rational numbers appear somewhere
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Future Research

Proving any unproven conjectures

Completely finishing up the case k = 3

Inventing a continued fraction variant

Generalizing results to prime, and then all k

Finding, for all k , exactly which fractions appear
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