Degrees of Regularity of Colorings of the Integers

Alan Zhou

MIT PRIMES
May 19, 2012

Background

Original problem: For a given homogeneous equation, how many colors can be used to color the nonzero integers, or the appropriate ring, so that all such colorings give a monochromatic solution?

Background

Original problem: For a given homogeneous equation, how many colors can be used to color the nonzero integers, or the appropriate ring, so that all such colorings give a monochromatic solution?

- (Schur, 1916) Schur's theorem

Background

Original problem: For a given homogeneous equation, how many colors can be used to color the nonzero integers, or the appropriate ring, so that all such colorings give a monochromatic solution?

- (Schur, 1916) Schur's theorem
- (van der Waerden, 1927) van der Waerden's theorem

Background

Original problem: For a given homogeneous equation, how many colors can be used to color the nonzero integers, or the appropriate ring, so that all such colorings give a monochromatic solution?

- (Schur, 1916) Schur's theorem
- (van der Waerden, 1927) van der Waerden's theorem
- (Rado, 1933) Rado's theorem

Definitions

We consider the general equation

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{k} x_{k}=n
$$

Definitions

We consider the general equation

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{k} x_{k}=n
$$

The equation is regular under a coloring if there is a solution $x_{1}, x_{2}, \ldots, x_{n}$ in which $x_{1}, x_{2}, \ldots, x_{n}$ all have the same color. Such a solution is said to be monochromatic.

Definitions

We consider the general equation

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{k} x_{k}=n
$$

The equation is regular under a coloring if there is a solution $x_{1}, x_{2}, \ldots, x_{n}$ in which $x_{1}, x_{2}, \ldots, x_{n}$ all have the same color. Such a solution is said to be monochromatic.
For example,

$$
x+y=2 z
$$

is regular under every coloring.

Definitions and Examples

The equation is m-regular if for all colorings c with m colors, the equation is regular under c.

Definitions and Examples

The equation is m-regular if for all colorings c with m colors, the equation is regular under c.

- Thus, every equation is 1-regular.

Definitions and Examples

The equation is m-regular if for all colorings c with m colors, the equation is regular under c.

- Thus, every equation is 1-regular.
- Intuitively, the smaller the value of m, the more likely it is for an equation to be m-regular.

Definitions and Examples

The equation is m-regular if for all colorings c with m colors, the equation is regular under c.

- Thus, every equation is 1-regular.
- Intuitively, the smaller the value of m, the more likely it is for an equation to be m-regular.
The equation is regular if it is m-regular for all m.

Definitions and Examples

The equation is m-regular if for all colorings c with m colors, the equation is regular under c.

- Thus, every equation is 1-regular.
- Intuitively, the smaller the value of m, the more likely it is for an equation to be m-regular.
The equation is regular if it is m-regular for all m. Examples:
- $x+y=z$ is regular: $12345 / 5$

Definitions and Examples

The equation is m-regular if for all colorings c with m colors, the equation is regular under c.

- Thus, every equation is 1-regular.
- Intuitively, the smaller the value of m, the more likely it is for an equation to be m-regular.

The equation is regular if it is m-regular for all m. Examples:

- $x+y=z$ is regular: $12345 / 5$
- $x+2 y=4 z$ is 2-regular, but not 3-regular. $123456789 \ldots$

More Examples

- The equation $x_{1}+x_{2}+x_{3}=4 x_{4}$ is 3-regular but not 4-regular. $12345678910 \ldots$

More Examples

- The equation $x_{1}+x_{2}+x_{3}=4 x_{4}$ is 3-regular but not 4-regular. $12345678910 \ldots$

In fact, there are infinitely many colorings with no monochromatic solutions.

More Examples

- The equation $x_{1}+x_{2}+x_{3}=4 x_{4}$ is 3-regular but not 4-regular. $12345678910 \ldots$

In fact, there are infinitely many colorings with no monochromatic solutions.

- The equation $x_{1}+2 x_{2}+3 x_{3}-5 x_{4}=0$ is completely regular.

Goals

- Determine degrees of regularity for various other equations

Goals

- Determine degrees of regularity for various other equations
- Characterize equations that are regular under certain colorings

Universality Lemma

Lemma
If an equation is regular under the periodic coloring with period p and p distinct colors, it is regular under all colorings of period p.

Universality Lemma

Lemma

If an equation is regular under the periodic coloring with period p and p distinct colors, it is regular under all colorings of period p.

- This behavior is expected: replace does not change regularity, especially reducing the number of colors.

Homogeneous Equations

Lemma

All homogeneous linear equations are regular under any periodic coloring of any period p.

Homogeneous Equations

Lemma

All homogeneous linear equations are regular under any periodic coloring of any period p.

Idea: Find a solution, and since the equation is homogeneous, multiply everything by p.

Shifting Under Periodic Coloring

Shift non-homogeneous equation: $y_{i}=x_{i}+\gamma$.

$$
a_{1} y_{1}+a_{2} y_{2}+\cdots+a_{k} y_{k}=n+S \gamma
$$

where S is the sum of the coefficients: $S=a_{1}+a_{2}+\cdots+a_{k}$.

Shifting Under Periodic Coloring

Shift non-homogeneous equation: $y_{i}=x_{i}+\gamma$.

$$
a_{1} y_{1}+a_{2} y_{2}+\cdots+a_{k} y_{k}=n+S \gamma
$$

where S is the sum of the coefficients: $S=a_{1}+a_{2}+\cdots+a_{k}$.
Lemma
With respect to periodic colorings this equation is equivalent to the main equation.

General Equation

Theorem
The main equation is regular under the coloring of period p with p distinct colors if and only if there exists γ such that $n \equiv S \gamma(\bmod p)$.

General Equation

Theorem

The main equation is regular under the coloring of period p with p distinct colors if and only if there exists γ such that $n \equiv S \gamma(\bmod p)$.

Corollary

The main equation is regular if and only if S divides n.

Discussion

For any periodic coloring of period p, the main equation has a monochromatic solution if and only if there is one in $\mathbb{Z} / p \mathbb{Z}$.

Discussion

For any periodic coloring of period p, the main equation has a monochromatic solution if and only if there is one in $\mathbb{Z} / p \mathbb{Z}$.

- This suggests an analogous result for other algebraic structures colored by equivalence class.

Discussion

For any periodic coloring of period p, the main equation has a monochromatic solution if and only if there is one in $\mathbb{Z} / p \mathbb{Z}$.

- This suggests an analogous result for other algebraic structures colored by equivalence class.
- This also presents an inexact criterion for regularity under a periodic coloring with less than p colors.

Discussion

For any periodic coloring of period p, the main equation has a monochromatic solution if and only if there is one in $\mathbb{Z} / p \mathbb{Z}$.

- This suggests an analogous result for other algebraic structures colored by equivalence class.
- This also presents an inexact criterion for regularity under a periodic coloring with less than p colors.

Conjecture

The main equation is regular under any binary periodic coloring of period $p>2$.

Degree of Regularity

We now consider the degree of regularity of the general equation.

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{k} x_{k}=n
$$

Degree of Regularity

We now consider the degree of regularity of the general equation.

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{k} x_{k}=n
$$

Lemma
If k divides S and does not divide n, then the equation is not k-regular.

Degree of Regularity

We now consider the degree of regularity of the general equation.

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{k} x_{k}=n
$$

Lemma
If k divides S and does not divide n, then the equation is not k-regular.
This gives a measure of how far from regular the equation is.

DOR cont.

It turns out that this is often not strong at all.

DOR cont.

It turns out that this is often not strong at all.
Lemma
When $a_{1}, a_{2}, a_{3}, \ldots$ have the same sign, the equation is not 2-regular when S does not divide n.

DOR cont.

It turns out that this is often not strong at all.
Lemma
When $a_{1}, a_{2}, a_{3}, \ldots$ have the same sign, the equation is not 2 -regular when S does not divide n.

Conjecture
The coloring used in the proof of the previous lemma is the only one that breaks regularity for a binary coloring.

Future Research

- Work with other types of colorings, e.g. equidistributed colorings, example colorings shown earlier.

Future Research

- Work with other types of colorings, e.g. equidistributed colorings, example colorings shown earlier.
- Find degrees of regularity for specific equations, e.g. $a x+b y=z$ for various $a, b, x^{2}+y^{2}=z^{2}$.

Future Research

- Work with other types of colorings, e.g. equidistributed colorings, example colorings shown earlier.
- Find degrees of regularity for specific equations, e.g. $a x+b y=z$ for various $a, b, x^{2}+y^{2}=z^{2}$.
- Find some structure on colorings and/or equations.

Future Research

- Work with other types of colorings, e.g. equidistributed colorings, example colorings shown earlier.
- Find degrees of regularity for specific equations, e.g. $a x+b y=z$ for various $a, b, x^{2}+y^{2}=z^{2}$.
- Find some structure on colorings and/or equations. A basic example of this was the shifting property for periodic colorings.

Acknowledgements

- Tanya Khovanova
- Jacob Fox
- MIT PRIMES

