Enumeration of Graded Poset Structures on Graphs

Aaron J Klein

Brookline High School
Second Annual MIT PRIMES Conference May 19, 2012

Definitions

A graph is a collection of vertices and the edges connecting them.

Definitions

A graph is a collection of vertices and the edges connecting them.

A bipartite graph is a graph whose vertices can be partitioned into two sets such that no edge connects two vertices from the same set.

Rankings

A ranking of a graph G is an assignment to every vertex $v \in G$ of an integer rank $h(v)$ such that if there is an edge $e \in G$ connecting vertices v_{1} and v_{2}, then $\left|h\left(v_{1}\right)-h\left(v_{2}\right)\right|=1$. Two rankings are considered equivalent if they differ by a constant.

Rankings

A ranking of a graph G is an assignment to every vertex $v \in G$ of an integer rank $h(v)$ such that if there is an edge $e \in G$ connecting vertices v_{1} and v_{2}, then $\left|h\left(v_{1}\right)-h\left(v_{2}\right)\right|=1$. Two rankings are considered equivalent if they differ by a constant.

Rankings

A ranking of a graph G is an assignment to every vertex $v \in G$ of an integer rank $h(v)$ such that if there is an edge $e \in G$ connecting vertices v_{1} and v_{2}, then $\left|h\left(v_{1}\right)-h\left(v_{2}\right)\right|=1$. Two rankings are considered equivalent if they differ by a constant.

Rankings

A ranking of a graph G is an assignment to every vertex $v \in G$ of an integer rank $h(v)$ such that if there is an edge $e \in G$ connecting vertices v_{1} and v_{2}, then $\left|h\left(v_{1}\right)-h\left(v_{2}\right)\right|=1$. Two rankings are considered equivalent if they differ by a constant.

Rankings

A ranking of a graph G is an assignment to every vertex $v \in G$ of an integer rank $h(v)$ such that if there is an edge $e \in G$ connecting vertices v_{1} and v_{2}, then $\left|h\left(v_{1}\right)-h\left(v_{2}\right)\right|=1$. Two rankings are considered equivalent if they differ by a constant.

2 We denote the number of distinct rankings of a graph G by $\mathcal{R}(G)$.

Rankings

A ranking of a graph G is an assignment to every vertex $v \in G$ of an integer rank $h(v)$ such that if there is an edge $e \in G$ connecting vertices v_{1} and v_{2}, then $\left|h\left(v_{1}\right)-h\left(v_{2}\right)\right|=1$. Two rankings are considered equivalent if they differ by a constant.

2 We denote the number of distinct rankings of a graph G by $\mathcal{R}(G)$.

A graph has at least one ranking $(\mathcal{R}(G)>0)$ if and only if it is a bipartite graph.

Examples

Examples

Examples

Examples

Cycle

$$
\mathcal{R}\left(\mathcal{C}_{n}\right)=\binom{n}{n / 2}
$$

Complete Bipartite

$\mathcal{R}\left(K_{m, n}\right)=2^{m}+2^{n}-2$

Examples, contd.

4-Cycle

Generating Functions

Theorem
For every graph G, there is a generating function

$$
\mathfrak{R}(G)=\prod_{e \in G}\left(\prod_{c \in C Y C(G)} y_{c}^{d_{e}(c)}+\prod_{c \in C Y C(G)} y_{c}^{-d_{e}(c)}\right)
$$

whose constant term is equal to $\mathcal{R}(G)$.

Generating Functions

Theorem
For every graph G, there is a generating function

$$
\mathfrak{R}(G)=\prod_{e \in G}\left(\prod_{c \in C Y C(G)} y_{c}^{d_{e}(c)}+\prod_{c \in C Y C(G)} y_{c}^{-d_{e}(c)}\right)
$$

whose constant term is equal to $\mathcal{R}(G)$.
Example
For a 4-cycle, we have

$$
\mathfrak{R}\left(\mathcal{C}_{4}\right)=\prod_{e \in \mathcal{C}_{4}}\left(y+y^{-1}\right)=\left(y+y^{-1}\right)^{4}
$$

so $\mathcal{R}\left(\mathcal{C}_{4}\right)=6$, as we saw in the previous slide.

Generating Functions

Theorem
For every graph G, there is a generating function

$$
\mathfrak{R}(G)=\prod_{e \in G}\left(\prod_{c \in C Y C(G)} y_{c}^{d_{e}(c)}+\prod_{c \in C Y C(G)} y_{c}^{-d_{e}(c)}\right)
$$

whose constant term is equal to $\mathcal{R}(G)$.
Example
For a 4-cycle, we have

$$
\mathfrak{R}\left(\mathcal{C}_{4}\right)=\prod_{e \in \mathcal{C}_{4}}\left(y+y^{-1}\right)=\left(y+y^{-1}\right)^{4}
$$

so $\mathcal{R}\left(\mathcal{C}_{4}\right)=6$, as we saw in the previous slide.
榢 The generating function is not easy to evaluate for general G.

Squarely Generated Graphs

A squarely generated graph is a graph whose cycle space is a vector space that can be generated by only 4-cycles.

Squarely Generated Graphs

A squarely generated graph is a graph whose cycle space is a vector space that can be generated by only 4-cycles.

Squarely Generated Graphs

A squarely generated graph is a graph whose cycle space is a vector space that can be generated by only 4 -cycles.

Squarely Generated Graphs

A squarely generated graph is a graph whose cycle space is a vector space that can be generated by only 4 -cycles.

Squarely Generated Graphs

A squarely generated graph is a graph whose cycle space is a vector space that can be generated by only 4-cycles.

Squarely Generated Graphs

A squarely generated graph is a graph whose cycle space is a vector space that can be generated by only 4 -cycles.

Squarely Generated Graphs

A squarely generated graph is a graph whose cycle space is a vector space that can be generated by only 4 -cycles.

Squarely Generated Graphs

A squarely generated graph is a graph whose cycle space is a vector space that can be generated by only 4 -cycles.

Squarely Generated Graphs

A squarely generated graph is a graph whose cycle space is a vector space that can be generated by only 4-cycles.

Squarely Generated Graphs

A squarely generated graph is a graph whose cycle space is a vector space that can be generated by only 4 -cycles.

Colorings

For $k \geq 1$, a proper k-coloring of a graph G is an assignment to every vertex $v \in G$ of a color $1 \leq c(v) \leq k$ such that no two vertices with the same color are connected by an edge.

Colorings

For $k \geq 1$, a proper k-coloring of a graph G is an assignment to every vertex $v \in G$ of a color $1 \leq c(v) \leq k$ such that no two vertices with the same color are connected by an edge.

Colorings

For $k \geq 1$, a proper k-coloring of a graph G is an assignment to every vertex $v \in G$ of a color $1 \leq c(v) \leq k$ such that no two vertices with the same color are connected by an edge.

Colorings

For $k \geq 1$, a proper k-coloring of a graph G is an assignment to every vertex $v \in G$ of a color $1 \leq c(v) \leq k$ such that no two vertices with the same color are connected by an edge.

Colorings

For $k \geq 1$, a proper k-coloring of a graph G is an assignment to every vertex $v \in G$ of a color $1 \leq c(v) \leq k$ such that no two vertices with the same color are connected by an edge.

Colorings

For $k \geq 1$, a proper k-coloring of a graph G is an assignment to every vertex $v \in G$ of a color $1 \leq c(v) \leq k$ such that no two vertices with the same color are connected by an edge.

For any graph G, the chromatic polynomial $\chi_{G}(x)$ is a polynomial such that for any given $k, \chi_{G}(k)$ is the number of proper k-colorings of G.

Colorings

For $k \geq 1$, a proper k-coloring of a graph G is an assignment to every vertex $v \in G$ of a color $1 \leq c(v) \leq k$ such that no two vertices with the same color are connected by an edge.

For any graph G, the chromatic polynomial $\chi_{G}(x)$ is a polynomial such that for any given $k, \chi_{G}(k)$ is the number of proper k-colorings of G.

Example

For the cycle $\mathcal{C}_{2 n}$, the chromatic polynomial is
$\chi_{\mathcal{C}_{2 n}}(x)=(x-1)^{2 n}+x-1$

Rank-Color Duality

Theorem
If G is a squarely generated graph, then there is a direct correspondence between its rankings and colorings such that $\mathcal{R}(G)=\frac{1}{3} \chi_{G}(3)$.

Rank-Color Duality

Theorem

If G is a squarely generated graph, then there is a direct correspondence between its rankings and colorings such that $\mathcal{R}(G)=\frac{1}{3} \chi_{G}(3)$.
$C^{\prime}{ }^{\prime}{ }_{D}^{\prime}, A$
$\stackrel{C}{C} \times \stackrel{A}{\mathrm{~B}} \times$

Rank-Color Duality

Theorem

If G is a squarely generated graph, then there is a direct correspondence between its rankings and colorings such that $\mathcal{R}(G)=\frac{1}{3} \chi_{G}(3)$.
$C^{\prime}{ }^{\prime}{ }_{D}^{\prime}, A$

Rank-Color Duality

Theorem

If G is a squarely generated graph, then there is a direct correspondence between its rankings and colorings such that $\mathcal{R}(G)=\frac{1}{3} \chi_{G}(3)$.

This is useful because chromatic polynomials are much more well-studied than rankings.

Grid Graphs

A grid graph is a graph $\mathcal{L}_{m, n}$ whose vertices are all (i, j) for $1 \leq i \leq m$ and $1 \leq j \leq n$ with edges connecting (i, j) to $(i, j+1)$ and $(i+1, j)$.

Grid Graphs

A grid graph is a graph $\mathcal{L}_{m, n}$ whose vertices are all (i, j) for $1 \leq i \leq m$ and $1 \leq j \leq n$ with edges connecting (i, j) to $(i, j+1)$ and $(i+1, j)$.

$\mathcal{L}_{3,4}$

Grid Graphs

A grid graph is a graph $\mathcal{L}_{m, n}$ whose vertices are all (i, j) for $1 \leq i \leq m$ and $1 \leq j \leq n$ with edges connecting (i, j) to $(i, j+1)$ and $(i+1, j)$.

$\mathcal{L}_{3,4}$

- $\mathcal{R}\left(\mathcal{L}_{2, n}\right)=2 \cdot 3^{n-1}$

Grid Graphs

A grid graph is a graph $\mathcal{L}_{m, n}$ whose vertices are all (i, j) for $1 \leq i \leq m$ and $1 \leq j \leq n$ with edges connecting (i, j) to $(i, j+1)$ and $(i+1, j)$.

$\mathcal{L}_{3,4}$

- $\mathcal{R}\left(\mathcal{L}_{2, n}\right)=2 \cdot 3^{n-1}$
- $\mathcal{R}\left(\mathcal{L}_{3, n}\right)=\frac{17+3 \sqrt{17}}{34}\left(\frac{5+\sqrt{17}}{2}\right)^{n}+\frac{17-3 \sqrt{17}}{34}\left(\frac{5-\sqrt{17}}{2}\right)^{n}$

Grid Graphs

A grid graph is a graph $\mathcal{L}_{m, n}$ whose vertices are all (i, j) for $1 \leq i \leq m$ and $1 \leq j \leq n$ with edges connecting (i, j) to $(i, j+1)$ and $(i+1, j)$.

$\mathcal{L}_{3,4}$

- $\mathcal{R}\left(\mathcal{L}_{2, n}\right)=2 \cdot 3^{n-1}$
- $\mathcal{R}\left(\mathcal{L}_{3, n}\right)=\frac{17+3 \sqrt{17}}{34}\left(\frac{5+\sqrt{17}}{2}\right)^{n}+\frac{17-3 \sqrt{17}}{34}\left(\frac{5-\sqrt{17}}{2}\right)^{n}$
- For general m and n, there is no known closed-form formula for $\mathcal{R}\left(\mathcal{L}_{m, n}\right)$. However, for any particular m and $n, \mathcal{R}\left(\mathcal{L}_{m, n}\right)$ can be calculated using the transform matrix method.

Future Work

- Use physics ideas (e.g. Potts Model) as help in finding formulae for squarely generated and especially grid graphs.

Future Work

- Use physics ideas (e.g. Potts Model) as help in finding formulae for squarely generated and especially grid graphs.
- Try to further understand the generating function for general G.

Future Work

- Use physics ideas (e.g. Potts Model) as help in finding formulae for squarely generated and especially grid graphs.
- Try to further understand the generating function for general G.
- Find families of graphs for which the generating function is easily evaluable, such as $G \times \mathcal{E}$, where \mathcal{E} is a single edge.

Future Work

- Use physics ideas (e.g. Potts Model) as help in finding formulae for squarely generated and especially grid graphs.
- Try to further understand the generating function for general G.
- Find families of graphs for which the generating function is easily evaluable, such as $G \times \mathcal{E}$, where \mathcal{E} is a single edge.

Future Work

- Use physics ideas (e.g. Potts Model) as help in finding formulae for squarely generated and especially grid graphs.
- Try to further understand the generating function for general G.
- Find families of graphs for which the generating function is easily evaluable, such as $G \times \mathcal{E}$, where \mathcal{E} is a single edge.

I would like to thank

I would like to thank

- The MIT PRIMES program

I would like to thank

- The MIT PRIMES program
- My mentor Yan Zhang

I would like to thank

- The MIT PRIMES program
- My mentor Yan Zhang
- Professor Richard Stanley

I would like to thank

- The MIT PRIMES program
- My mentor Yan Zhang
- Professor Richard Stanley
- Tanya Khovanova, Alan Zhou, and Steven Sam

