Enumeration of Graded Poset Structures on Graphs

Aaron J Klein

Brookline High School

Second Annual MIT PRIMES Conference May 19, 2012

Definitions

A **graph** is a collection of vertices and the edges connecting them.

Definitions

A **graph** is a collection of vertices and the edges connecting them.

A **bipartite graph** is a graph whose vertices can be partitioned into two sets such that no edge connects two vertices from the same set.

We denote the number of distinct rankings of a graph G by $\mathcal{R}(G)$.

A **ranking** of a graph G is an assignment to every vertex $v \in G$ of an integer rank h(v) such that if there is an edge $e \in G$ connecting vertices v_1 and v_2 , then $|h(v_1) - h(v_2)| = 1$. Two rankings are considered equivalent if they differ by a constant.

We denote the number of distinct rankings of a graph G by $\mathcal{R}(G)$.

A graph has at least one ranking $(\mathcal{R}(G) > 0)$ if and only if it is a bipartite graph.

Examples, contd.

4-Cycle

Generating Functions

Theorem

For every graph G, there is a generating function

$$\mathfrak{R}(G) = \prod_{e \in G} \left(\prod_{c \in CYC(G)} y_c^{d_e(c)} + \prod_{c \in CYC(G)} y_c^{-d_e(c)} \right)$$

whose constant term is equal to $\mathcal{R}(G)$.

Generating Functions

Theorem

For every graph G, there is a generating function

$$\mathfrak{R}(G) = \prod_{e \in G} \left(\prod_{c \in CYC(G)} y_c^{d_e(c)} + \prod_{c \in CYC(G)} y_c^{-d_e(c)} \right)$$

whose constant term is equal to $\mathcal{R}(G)$.

Example

For a 4-cycle, we have

$$\mathfrak{R}(\mathcal{C}_4) = \prod_{e \in \mathcal{C}_4} \left(y + y^{-1} \right) = \left(y + y^{-1} \right)^4,$$

so $\mathcal{R}(\mathcal{C}_4) = 6$, as we saw in the previous slide.

Generating Functions

Theorem

For every graph G, there is a generating function

$$\mathfrak{R}(G) = \prod_{e \in G} \left(\prod_{c \in CYC(G)} y_c^{d_e(c)} + \prod_{c \in CYC(G)} y_c^{-d_e(c)} \right)$$

whose constant term is equal to $\mathcal{R}(G)$.

Example

For a 4-cycle, we have

$$\mathfrak{R}(\mathcal{C}_4) = \prod_{e \in \mathcal{C}_4} \left(y + y^{-1} \right) = \left(y + y^{-1} \right)^4,$$

so $\mathcal{R}(\mathcal{C}_4) = 6$, as we saw in the previous slide.

¹²⁷ The generating function is not easy to evaluate for general G.

For $k \ge 1$, a **proper** k-coloring of a graph G is an assignment to every vertex $v \in G$ of a color $1 \le c(v) \le k$ such that no two vertices with the same color are connected by an edge.

For any graph G, the **chromatic polynomial** $\chi_G(x)$ is a polynomial such that for any given k, $\chi_G(k)$ is the number of proper k-colorings of G.

For $k \ge 1$, a **proper** k-coloring of a graph G is an assignment to every vertex $v \in G$ of a color $1 \le c(v) \le k$ such that no two vertices with the same color are connected by an edge.

For any graph G, the **chromatic polynomial** $\chi_G(x)$ is a polynomial such that for any given k, $\chi_G(k)$ is the number of proper k-colorings of G.

Example

For the cycle \mathcal{C}_{2n} , the chromatic polynomial is $\chi_{\mathcal{C}_{2n}}(x)=(x-1)^{2n}+x-1$

Theorem

If G is a squarely generated graph, then there is a direct correspondence between its rankings and colorings such that $\mathcal{R}(G) = \frac{1}{3}\chi_G(3)$.

Theorem

If G is a squarely generated graph, then there is a direct correspondence between its rankings and colorings such that $\mathcal{R}(G) = \frac{1}{3}\chi_G(3).$

Theorem

If G is a squarely generated graph, then there is a direct correspondence between its rankings and colorings such that $\mathcal{R}(G) = \frac{1}{3}\chi_G(3)$.

Theorem

If G is a squarely generated graph, then there is a direct correspondence between its rankings and colorings such that $\mathcal{R}(G) = \frac{1}{3}\chi_G(3)$.

This is useful because chromatic polynomials are much more well-studied than rankings.

$$\blacktriangleright \mathcal{R}(\mathcal{L}_{2,n}) = 2 \cdot 3^{n-1}$$

$$\mathcal{R}(\mathcal{L}_{2,n}) = 2 \cdot 3^{n-1} \mathcal{R}(\mathcal{L}_{3,n}) = \frac{17 + 3\sqrt{17}}{34} \left(\frac{5 + \sqrt{17}}{2}\right)^n + \frac{17 - 3\sqrt{17}}{34} \left(\frac{5 - \sqrt{17}}{2}\right)^n$$

A grid graph is a graph $\mathcal{L}_{m,n}$ whose vertices are all (i,j) for $1 \leq i \leq m$ and $1 \leq j \leq n$ with edges connecting (i,j) to (i,j+1) and (i+1,j).

$$\mathcal{R}(\mathcal{L}_{2,n}) = 2 \cdot 3^{n-1} \mathcal{R}(\mathcal{L}_{3,n}) = \frac{17 + 3\sqrt{17}}{34} \left(\frac{5 + \sqrt{17}}{2}\right)^n + \frac{17 - 3\sqrt{17}}{34} \left(\frac{5 - \sqrt{17}}{2}\right)^n$$

For general m and n, there is no known closed-form formula for $\mathcal{R}(\mathcal{L}_{m,n})$. However, for any particular m and n, $\mathcal{R}(\mathcal{L}_{m,n})$ can be calculated using the transform matrix method.

Use physics ideas (e.g. Potts Model) as help in finding formulae for squarely generated and especially grid graphs.

- Use physics ideas (e.g. Potts Model) as help in finding formulae for squarely generated and especially grid graphs.
- Try to further understand the generating function for general G.

- Use physics ideas (e.g. Potts Model) as help in finding formulae for squarely generated and especially grid graphs.
- Try to further understand the generating function for general G.
- ► Find families of graphs for which the generating function is easily evaluable, such as G × E, where E is a single edge.

- Use physics ideas (e.g. Potts Model) as help in finding formulae for squarely generated and especially grid graphs.
- Try to further understand the generating function for general G.
- ► Find families of graphs for which the generating function is easily evaluable, such as G × E, where E is a single edge.

- Use physics ideas (e.g. Potts Model) as help in finding formulae for squarely generated and especially grid graphs.
- Try to further understand the generating function for general G.
- ► Find families of graphs for which the generating function is easily evaluable, such as G × E, where E is a single edge.

▶ The MIT PRIMES program

- The MIT PRIMES program
- My mentor Yan Zhang

- The MIT PRIMES program
- My mentor Yan Zhang
- Professor Richard Stanley

- The MIT PRIMES program
- My mentor Yan Zhang
- Professor Richard Stanley
- Tanya Khovanova, Alan Zhou, and Steven Sam