Equivalence Classes of Permutations Created by Replacement Sets

William Kuszmaul and Ziling Zhou

MIT PRIMES

May 19, 2012

$\{123,231\}$: A simple example

$\{123,231\}$
2134

2341

$\{123,231\}$: A simple example

$\{123,231\}$

2134

$\underline{2341}$

$\{123,231\}$: A simple example

$\{123,231\}$
2134
\downarrow
$\underline{2341}$
\downarrow
$\underline{3421}$

How do we make equivalence classes?

If c adjacent letters in a permutation in S_{n} have the same order as a pattern in the replacement set, then they can be rearranged to have the order of any other pattern in the replacement set.

Definition
 An equivalence class is the set of permutations reachable from some given permutation.

- Example: Consider $\{12,21\}$. There is only one class. In $S_{3}, 123 \equiv 132 \equiv 312 \equiv 321 \equiv 231 \equiv 213$.

NON-TRIVIAL EXAMPLE FOR $n=4$

Consider $\{123,132,231\}$.

1234	2134	3241	4231	3214	4213	4321	4312
2314	2143	3124	4123				
1324	2341	3142	4132				
1342	3421						
1243	2431						
3412							
1432							
2413							
1423							

Miscellaneous notation

- A hit in a permutation is a sub-word which has the same order as a pattern in the replacement set.
- An avoider is permutation which contains no hits.
- A trivial class is an equivalence class containing only one permutation.
- The parity of a permutation is its signum/sign/oddness.

The Three problems

1. Rotations: replacement sets containing a permutation and its rotations;
Example: $\{2134,1342,3421,4213\}$
2. Single Set: replacement sets containing permutations of length 3;
Example: $\{123,231,321\}$
3. Double Set: two non-intersecting replacement sets containing permutations of length 3 . Example: $\{123,132\}\{213,312\}$

The Three problems

1. Rotations: replacement sets containing a permutation and its rotations;
Example: $\{2134,1342,3421,4213\}$
2. Single Set: replacement sets containing permutations of length 3;
Example: $\{123,231,321\}$
3. Double Set: two non-intersecting replacement sets containing permutations of length 3 .
Example: $\{123,132\}\{213,312\}$

How many classes are there?

Theorem

In S_{n}, there are always either 1 or 2 nontrivial classes created.
Examples for odd c :

- $\{123,231,312\}$ creates two non-trivial classes.
- $\{21345,13452,34521,45213,52134\}$ creates two non-trivial classes.

How many classes are there?

Theorem

In S_{n}, there are always either 1 or 2 nontrivial classes created.
Examples for even c :

- $\{1234,2341,3412,4123\}$ creates one non-trivial class.
- $\{145236,452361,523614,236145,361452,614523\}$ creates two non-trivial classes.

What if We rotate the identity?

Example: When $c=5$, the replacement set is

$$
\{12345,23451,34512,45123,51234\}
$$

We consider only the non-trivial classes.
Only for odd c, there are two classes.

- For even n, they are the same size.
- For odd n, they differ in size.

CASE OF ODD c, EVEN n.

Definition

The rot of a permutation $x \in S_{n}$ is $(234 \ldots n 1) \circ x$.
For example, $\operatorname{rot}(31524)=42135$.

- rot preserves hits;
- Since n is even, rot changes parity;
- rot creates a bijection between odd non-avoiders and even non-avoiders.

CASE OF ODD c, ODD n : A MAIN RESULT

- Two classes: even non-avoiders and odd non-avoiders;
- Their sizes are multiples of n because of rot.

Theorem

The case $c>n / 2$: The sizes of the two classes differ by $n C_{(n-c-2) / 2}$, and the odd class is always larger.
$C_{m}=\frac{1}{m+1}\binom{2 m}{m}$ is the m th Catalan number.

CASE OF ODD c, ODD n : OBSERVATION

Definition
 A hit-ended permutation has a hit only in the very beginning and very end.

- Example: $n=9, c=3,815476392$ is hit-ended.
(number of odd hit-ended permutations)
- (number of even hit-ended permutations)
$=$
(number of even non-avoiding permutations)
- (number of odd non-avoiding permutations)

CASE OF ODD c, ODD $n, c>n / 2:$ RESHAPING THE PROBLEM

- Because $c>n / 2$, the two hits overlap.
- This allows a bijection between hit-ended permutations starting with a given letter and lattice paths inside an $(n-c-1) \times(n-c-1)$ square that stay above or on the diagonal.

Solving the lattice problem: LOOKing at area

Solving the lattice problem: A partial BIJECTION

Solving the lattice problem: A partial BIJECTION

Solving the lattice problem: A partial BIJECTION

Solving the lattice problem: The deciding PATHS

Solving the lattice problem: What's the ENUMERATION?

There are $C_{(n-c-2) / 2}$ lattice paths, so the sizes of the two classes differ by $n C_{(n-c-2) / 2}$, and the odd class is always larger.

The Three problems

1. Rotations: replacement sets containing a permutation and its rotations; \checkmark
Example: $\{2134,1342,3421,4213\}$
2. Single Set: replacement sets containing permutations of length 3;
Example: $\{123,231,321\}$
3. Double Set: two non-intersecting replacement sets containing permutations of length 3 .
Example: $\{123,132\}\{213,312\}$

PAST WORK ON SINGLE REPLACEMENT SETS

- $\{123,132,213\}$, the Chinese relation
- Number of classes in $S_{n}=$ number of involutions in S_{n} (shown by Linton, Propp, Roby, and West).
- The number of classes was solved for some other cases by Pierrot, Rossin, and West.
- The number of permutations in the class containing the identity is known for all cases.

Single replacement set: Results

We prove formulas for the unsolved cases where the replacement set is of size >2.

Replacement set	number of classes in S_{n}
$\{123,132,321\}$	$(n-1)!!+(n-2)!!+n-2$
$\{123,132,312\}$	$f(n \geq 5)=f(n-1)+(n-2) \cdot f(n-2)$
$\{213,231,132\}$	$2^{n-2}+2 n-4$
$\{123,132,231\}$	2^{n-1}
$\{123,132,213,231\}$	n
$\{123,132,231,321\}$	2 for $n>3$
$\{213,132,231,312\}$	3

$\{123,132,231\}:$ PreLiminary

- A V-permutation is one that starts decreasing to 1 and then increases until the end.
For example,

- In S_{n} there are 2^{n-1} V-permutations.

$\{123,132,231\}$: Reaching a V-PERMUTATION

- For $x \in S_{n}$ not starting with n, through repeated $132 \rightarrow 123$ and $231 \rightarrow 123$ we can place n as the final letter.
- So, n can always be moved to the start or end of a permutation.
- Inductively, every permutation is reachable from a V-permutation.
- There are at most 2^{n-1} classes.

$\{123,132,231\}:$ What are the invariants?

Definition

A letter is odd-tailed if it's a left-to-right minimum and there are an even number of letters between it and the first left-to-right minimum to its right.

Examples: 2 in 2134, 2 in 2341, 2 and 3 in 3214

Lemma

The set of odd-tailed letters in a permutation is invariant under the transformations.

$\{123,132,231\}:$ What's THE ENUMERATION?

- In a V-permutation, each letter to the left of 1 is odd-tailed.
- No V-permutations are reachable from each other.
- There are 2^{n-1} classes.

The Three problems

1. Rotations: replacement sets containing a permutation and its rotations; \checkmark
Example: $\{2134,1342,3421,4213\}$
2. Single Set: replacement sets containing permutations of length 3 ; \checkmark
Example: $\{123,231,321\}$
3. Double Set: two non-intersecting replacement sets containing permutations of length 3 . Example: $\{123,132\}\{213,312\}$

PAST WORK ON DOUBLE REPLACEMENT SETS

As a restriction, each set is of size 2.

- Donald Knuth: $\{213,231\}\{132,312\}$ (plactic relation).
- Number of classes in $S_{n}=$ number of involutions in S_{n} $=f(n \geq 3)=f(n-1)+(n-1) \cdot f(n-2)$.
- Jean-Christophe Novelli and Anne Schilling: $\{213,132\}\{231,312\}$ (forgotten relation).
- Number of classes in $S_{n}=n^{2}-3 n+4$.

Double replacement sets: Results

- We prove formulas for 9 of the 15 unsolved cases.

Replacement set	number of classes in S_{n}
$\{312,321\}\{123,132\}$	2^{n-1}
$\{123,132\}\{213,231\}$	2^{n-1}
$\{123,231\}\{132,321\}$	2^{n-1}
$\{132,312\}\{321,213\}$	$\left(n^{2}+n\right) / 2-2$
$\{123,231\}\{213,132\}$	$n^{2}-3 n+4$
$\{123,132\}\{231,312\}$	$3 \cdot 2^{n-3}+n-2$ for $n>5$
$\{123,132\}\{213,321\}$	number of bushy-tailed permutations
$\{123,321\}\{213,231\}$	3 for $n>5$
$\{123,132\}\{213,312\}$	$f(n \geq 3)=f(n-1)+(n-1) \cdot f(n-2)$

$\{123,132\}\{231,312\}$: A SLIGHTLY HARDER CASE

- Every permutation is reachable from a V-permutation;
- Are there 2^{n-1} classes?

$\{123,132\}\{231,312\}$: A SLIGHTLY HARDER CASE

- Every permutation is reachable from a V-permutation;
- Are there 2^{n-1} classes?
- No! Two V-permutations x, y are reachable from each other iff the following is true:

1. x and y have the same first letter.
2. The letters directly preceding 1 in both x and y have value greater than 3 .

$\{123,132\}\{231,312\}:$ ADDING UP THE CLASSES

- 2^{n-2} classes with V-permutations ... $21 \ldots$
- 2^{n-3} classes with V-permutations ...31...
- $n-3$ classes with V-permutations ... $k 1 \ldots$ where $k>3$
- 1 class with V-permutation $1 \ldots$

There are $3 \cdot 2^{n-3}+n-2$ classes in S_{n}.

Tips On studying replacement sets

- Write a C++ program;
- Can calculate for n up to 12 in general case;
- In case of rotations of identity, can calculate for cases up to $n=23$;
- Can run different calculations in just a couple of clicks.
- Examine the avoiding permutations separately.

Future Directions

- Solve the first problem for the remaining cases where $c<n / 2$;
- Solve the second problem for sets of size 2;
- Solve the third problem for unsolved cases;
- Further investigate relations between third problem and Plactic relation.

AcKnowledgements

1. We thank our mentors Darij Grinberg and Sergei Bernstein.
2. We thank Professor Stanley for providing the research problem.
3. We acknowledge the MIT PRIMES program for giving us the opportunity to conduct this research and present our findings.

REFERENCES

1. A. Pierrot, D. Rossin, J. West, Adjacent transformations in permutations.
2. S. Linton, J. Propp, T. Roby, J. West, Equivalence Relations of Permutations Generated by Constrained Transpositions.
3. S. Kitaev, Multi-avoidance of generalized patterns.
4. N.J.A. Sloane, The On-line Encyclopedia of Integer Sequences.
5. J. Cassaigne, M. Espie, D. Krob, J.-C. Novelli, F. Hivert, The Chinese Monoid.
6. D. Knuth, Permutations, Matrices and Generalized Young tableaux.
7. J.-C. Novelli, A. Schilling, The Forgotten Monoid.
