Beyond Alternating Permutations: Pattern Avoidance in Young Diagrams and Tableaux

Nihal Gowravaram and Ravi Jagadeesan MIT PRIMES

Mentor: Joel Lewis

May 19, 2012

Alternating Permutations

Pattern Avoidance
in Alternating
Permutations

Alternation

Patterns
Previous Results
Main Theorem
Pattern Avoidance of Young Diagrams

■ We will treat a permutation $w \in S_{n}$ as a sequence $w_{1}, w_{2}, \cdots, w_{n}$ containing every positive integer $k \leq n$ exactly once.

Alternating Permutations

Pattern Avoidance
in Alternating Permutations

Alternation

Patterns
Previous Results
Main Theorem
Pattern Avoidance of Young Diagrams

■ We will treat a permutation $w \in S_{n}$ as a sequence $w_{1}, w_{2}, \cdots, w_{n}$ containing every positive integer $k \leq n$ exactly once.

- A permutation w is called alternating if

$$
w_{1}<w_{2}>w_{3}<w_{4}>\cdots
$$

Alternating Permutations

Pattern Avoidance
in Alternating Permutations

Alternation

Patterns
Previous Results
Main Theorem
Pattern Avoidance of Young Diagrams

■ We will treat a permutation $w \in S_{n}$ as a sequence $w_{1}, w_{2}, \cdots, w_{n}$ containing every positive integer $k \leq n$ exactly once.

- A permutation w is called alternating if

$$
w_{1}<w_{2}>w_{3}<w_{4}>\cdots
$$

For example, 352614 is alternating.

Alternating Permutations

Pattern Avoidance in Alternating Permutations

Alternation

Patterns
Previous Results
Main Theorem
Pattern Avoidance of Young Diagrams

■ We will treat a permutation $w \in S_{n}$ as a sequence $w_{1}, w_{2}, \cdots, w_{n}$ containing every positive integer $k \leq n$ exactly once.

- A permutation w is called alternating if

$$
w_{1}<w_{2}>w_{3}<w_{4}>\cdots
$$

For example, 352614 is alternating. Graphically, this is

Pattern Containment in Permutations

Pattern Avoidance in Alternating Permutations

Alternation

Patterns

Previous Results
Main Theorem
Pattern Avoidance of Young Diagrams

- A permutation w is said to contain a permutation q if there is a subsequence of w order-isomorphic to q. If w does not contain q, then w avoids q.

Pattern Containment in Permutations

Pattern Avoidance in Alternating Permutations

Alternation

Patterns

Previous Results
Main Theorem
Pattern Avoidance of Young Diagrams

- A permutation w is said to contain a permutation q if there is a subsequence of w order-isomorphic to q. If w does not contain q, then w avoids q.
For example, 325641 contains 231.

Pattern Containment in Permutations

Pattern Avoidance in Alternating Permutations

- A permutation w is said to contain a permutation q if there is a subsequence of w order-isomorphic to q. If w does not contain q, then w avoids q.
For example, 325641 contains 231.
- Given a permutation q and a positive integer n, let $S_{n}(q)$ $\left(A_{n}(q)\right)$ denote the set of all (alternating) permutations of length n that avoid q.

Pattern Containment in Permutations

Pattern Avoidance in Alternating Permutations

Alternation

Patterns

Previous Results
Main Theorem
Pattern Avoidance of Young Diagrams

- A permutation w is said to contain a permutation q if there is a subsequence of w order-isomorphic to q. If w does not contain q, then w avoids q.
For example, 325641 contains 231.
- Given a permutation q and a positive integer n, let $S_{n}(q)$ $\left(A_{n}(q)\right)$ denote the set of all (alternating) permutations of length n that avoid q.
If $\left|S_{n}(p)\right|=\left|S_{n}(q)\right|$ for all n, we say that p and q are Wilf-equivalent.

Pattern Containment in Permutations

Pattern Avoidance in Alternating Permutations

Alternation

Patterns

Previous Results
Main Theorem
Pattern Avoidance of Young Diagrams

Beyond Alternating Permutations

- A permutation w is said to contain a permutation q if there is a subsequence of w order-isomorphic to q. If w does not contain q, then w avoids q.
For example, 325641 contains 231.
- Given a permutation q and a positive integer n, let $S_{n}(q)$ $\left(A_{n}(q)\right)$ denote the set of all (alternating) permutations of length n that avoid q.
■ If $\left|S_{n}(p)\right|=\left|S_{n}(q)\right|$ for all n, we say that p and q are Wilf-equivalent.
■ If $\left|A_{n}(p)\right|=\left|A_{n}(q)\right|$ for all n, we say that p and q are equivalent for alternating permutations.

Previous Results

Pattern Avoidance
in Alternating Permutations

Alternation
Patterns

Previous Results

Main Theorem
Pattern Avoidance of Young Diagrams

- (Mansour, Deutsch, Reifegerste) If q is a pattern of length 3, then $\left|A_{n}(q)\right|$ is a Catalan number (i.e. of the form $\left.C_{k}=\frac{(2 k)!}{k!(k+1)!}\right)$. The indices depend on the choice of q and on the parity of n.

Previous Results

Pattern Avoidance in Alternating Permutations Alternation
Patterns

Previous Results

Main Theorem
Pattern Avoidance of Young Diagrams

Beyond Alternating Permutations
(Mansour, Deutsch, Reifegerste) If q is a pattern of length 3, then $\left|A_{n}(q)\right|$ is a Catalan number (i.e. of the form $\left.C_{k}=\frac{(2 k)!}{k!(k+1)!}\right)$.
(Lewis) For patterns of length 4,

$$
\begin{gathered}
\left|A_{2 n}(1234)\right|=\left|A_{2 n}(2143)\right|=\frac{2(3 n)!}{n!(n+1)!(n+2)!}, \\
\left|A_{2 n+1}(1234)\right|=\frac{16(3 n)!}{(n-1)!(n+1)!(n+3)!}, \\
\left|A_{2 n+1}(2143)\right|=\frac{2(3 n+3)!}{n!(n+1)!(n+2)!(2 n+1)(2 n+2)(2 n+3)} .
\end{gathered}
$$

The Main Theorem and Its Motivation

Pattern Avoidance
in Alternating Permutations
Alternation
Patterns
Previous Results
Main Theorem
Pattern Avoidance of Young Diagrams

Theorem (Backelin-West-Xin). For all $t \geq k$ and all permutations q of $\{k+1, k+2, k+3, \cdots, t\}$, the patterns $123 \cdots k q$ and $k(k-1)(k-2) \cdots 1 q$ are Wilf-Equivalent.

The Main Theorem and Its Motivation

Pattern Avoidance
in Alternating Permutations
Alternation
Patterns
Previous Results

Pattern Avoidance of Young Diagrams

Theorem (Backelin-West-Xin). For all $t \geq k$ and all permutations q of $\{k+1, k+2, k+3, \cdots, t\}$, the patterns $123 \cdots k q$ and $k(k-1)(k-2) \cdots 1 q$ are Wilf-Equivalent.

Main Results:

For all q, the following sets of patterns are equivalent for alternating permutations.

- $12 q$ and $21 q$

The Main Theorem and Its Motivation

Pattern Avoidance
in Alternating Permutations
Alternation
Patterns
Previous Results

Pattern Avoidance of Young Diagrams

Beyond Alternating Permutations

Theorem (Backelin-West-Xin). For all $t \geq k$ and all permutations q of $\{k+1, k+2, k+3, \cdots, t\}$, the patterns $123 \cdots k q$ and $k(k-1)(k-2) \cdots 1 q$ are Wilf-Equivalent.

Main Results:

For all q, the following sets of patterns are equivalent for alternating permutations.

- $12 q$ and $21 q$

■ $123 q, 213 q$ and $321 q$

The Main Theorem and Its Motivation

Pattern Avoidance
in Alternating Permutations

Patterns
Previous Results of Young Diagrams

Theorem (Backelin-West-Xin). For all $t \geq k$ and all permutations q of $\{k+1, k+2, k+3, \cdots, t\}$, the patterns $123 \cdots k q$ and $k(k-1)(k-2) \cdots 1 q$ are Wilf-Equivalent.

Main Results:

For all q, the following sets of patterns are equivalent for alternating permutations.

- $12 q$ and $21 q$

■ $123 q, 213 q$ and $321 q$
■ (Conjecture) For all $k, 123 \cdots k q$ and $k(k-1)(k-2) \cdots 1 q$

Pattern Avoidance
in Alternating
Permutations

Basic Definitions
Ascents/Descents
Alternation
Permutations
Matrix Extension
Main Theorem
Beyond Alternating Permutations

Pattern Avoidance of Young Diagrams

Basic Definitions

Pattern Avoidance
in Alternating Permutations

Pattern Avoidance of Young Diagrams Basic Definitions
Ascents/Descents
Alternation
Permutations
Matrix Extension Main Theorem

Beyond Alternating Permutations

- A Young diagram with n rows/columns is a set Y of squares of an $n \times n$ board such that if a square $S \in Y$, then any square above and to the left of S is also in Y.

Basic Definitions

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams Basic Definitions
Ascents/Descents
Alternation
Permutations
Matrix Extension Main Theorem

- A Young diagram with n rows/columns is a set Y of squares of an $n \times n$ board such that if a square $S \in Y$, then any square above and to the left of S is also in Y.
- A transversal T of Y is a set of squares of Y that contains exactly one member per row and per column of Y.

Basic Definitions

Pattern Avoidance in Alternating Permutations

- A Young diagram with n rows/columns is a set Y of squares of an $n \times n$ board such that if a square $S \in Y$, then any square above and to the left of S is also in Y.
- A transversal T of Y is a set of squares of Y that contains exactly one member per row and per column of Y.
- T is said to contain a $k \times k$ permutation matrix $M=\left(m_{i, j}\right)$ if there are k rows $r_{1}<r_{2}<\cdots<r_{k}$ and k columns $c_{1}<c_{2}<\cdots<c_{k}$ of Y such that $\left(r_{k}, c_{k}\right) \in Y$ and $\left(r_{i}, c_{j}\right) \in T$ if and only if the entry of $m_{i, j}=1$.

Basic Definitions

Pattern Avoidance in Alternating Permutations

- A Young diagram with n rows/columns is a set Y of squares of an $n \times n$ board such that if a square $S \in Y$, then any square above and to the left of S is also in Y.
- A transversal T of Y is a set of squares of Y that contains exactly one member per row and per column of Y.
- T is said to contain a $k \times k$ permutation matrix $M=\left(m_{i, j}\right)$ if there are k rows $r_{1}<r_{2}<\cdots<r_{k}$ and k columns $c_{1}<c_{2}<\cdots<c_{k}$ of Y such that $\left(r_{k}, c_{k}\right) \in Y$ and $\left(r_{i}, c_{j}\right) \in T$ if and only if the entry of $m_{i, j}=1$.

Basic Definitions

Pattern Avoidance in Alternating Permutations

- A Young diagram with n rows/columns is a set Y of squares of an $n \times n$ board such that if a square $S \in Y$, then any square above and to the left of S is also in Y.
- A transversal T of Y is a set of squares of Y that contains exactly one member per row and per column of Y.
- T is said to contain a $k \times k$ permutation matrix $M=\left(m_{i, j}\right)$ if there are k rows $r_{1}<r_{2}<\cdots<r_{k}$ and k columns $c_{1}<c_{2}<\cdots<c_{k}$ of Y such that $\left(r_{k}, c_{k}\right) \in Y$ and $\left(r_{i}, c_{j}\right) \in T$ if and only if the entry of $m_{i, j}=1$.

Basic Definitions

Pattern Avoidance in Alternating Permutations

- A Young diagram with n rows/columns is a set Y of squares of an $n \times n$ board such that if a square $S \in Y$, then any square above and to the left of S is also in Y.
- A transversal T of Y is a set of squares of Y that contains exactly one member per row and per column of Y.
- T is said to contain a $k \times k$ permutation matrix $M=\left(m_{i, j}\right)$ if there are k rows $r_{1}<r_{2}<\cdots<r_{k}$ and k columns $c_{1}<c_{2}<\cdots<c_{k}$ of Y such that $\left(r_{k}, c_{k}\right) \in Y$ and $\left(r_{i}, c_{j}\right) \in T$ if and only if the entry of $m_{i, j}=1$.

contains $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

All 4 red squares are in the Young diagram.

Basic Definitions

Pattern Avoidance in Alternating Permutations

- A Young diagram with n rows/columns is a set Y of squares of an $n \times n$ board such that if a square $S \in Y$, then any square above and to the left of S is also in Y.
- A transversal T of Y is a set of squares of Y that contains exactly one member per row and per column of Y.
- T is said to contain a $k \times k$ permutation matrix $M=\left(m_{i, j}\right)$ if there are k rows $r_{1}<r_{2}<\cdots<r_{k}$ and k columns $c_{1}<c_{2}<\cdots<c_{k}$ of Y such that $\left(r_{k}, c_{k}\right) \in Y$ and $\left(r_{i}, c_{j}\right) \in T$ if and only if the entry of $m_{i, j}=1$.

is not a copy of $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Basic Definitions

Pattern Avoidance in Alternating Permutations

- A Young diagram with n rows/columns is a set Y of squares of an $n \times n$ board such that if a square $S \in Y$, then any square above and to the left of S is also in Y.
- A transversal T of Y is a set of squares of Y that contains exactly one member per row and per column of Y.
- T is said to contain a $k \times k$ permutation matrix $M=\left(m_{i, j}\right)$ if there are k rows $r_{1}<r_{2}<\cdots<r_{k}$ and k columns $c_{1}<c_{2}<\cdots<c_{k}$ of Y such that $\left(r_{k}, c_{k}\right) \in Y$ and $\left(r_{i}, c_{j}\right) \in T$ if and only if the entry of $m_{i, j}=1$.

is not a copy of $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

The square X is not in the Young diagram.

Basic Definitions

Pattern Avoidance in Alternating Permutations

- A Young diagram with n rows/columns is a set Y of squares of an $n \times n$ board such that if a square $S \in Y$, then any square above and to the left of S is also in Y.
- A transversal T of Y is a set of squares of Y that contains exactly one member per row and per column of Y.
- T is said to contain a $k \times k$ permutation matrix $M=\left(m_{i, j}\right)$ if there are k rows $r_{1}<r_{2}<\cdots<r_{k}$ and k columns $c_{1}<c_{2}<\cdots<c_{k}$ of Y such that $\left(r_{k}, c_{k}\right) \in Y$ and $\left(r_{i}, c_{j}\right) \in T$ if and only if the entry of $m_{i, j}=1$.
Otherwise, we say that T avoids M.

Basic Definitions

Pattern Avoidance in Alternating Permutations

- A Young diagram with n rows/columns is a set Y of squares of an $n \times n$ board such that if a square $S \in Y$, then any square above and to the left of S is also in Y.
- A transversal T of Y is a set of squares of Y that contains exactly one member per row and per column of Y.
- T is said to contain a $k \times k$ permutation matrix $M=\left(m_{i, j}\right)$ if there are k rows $r_{1}<r_{2}<\cdots<r_{k}$ and k columns $c_{1}<c_{2}<\cdots<c_{k}$ of Y such that $\left(r_{k}, c_{k}\right) \in Y$ and $\left(r_{i}, c_{j}\right) \in T$ if and only if the entry of $m_{i, j}=1$.
Otherwise, we say that T avoids M.
■ If permutation matrices M and M^{\prime} are such that, for all Young diagrams Y, the number of transversals of Y avoiding M is the same as the number avoiding M^{\prime}, we say that M and M^{\prime} are shape-Wilf equivalent.

Ascents and Descents in Young Diagrams

Pattern Avoidance in Alternating Permutations

■ Given a transversal $T=\left\{\left(i, b_{i}\right)\right\}$ of a Young diagram, we say that i is an ascent of T (descent) when it is an ascent (descent) of $b_{1} b_{2} \cdots$.

Ascents and Descents in Young Diagrams

Pattern Avoidance in Alternating Permutations

Basic Definitions Ascents/Descents
Alternation
Permutations
Matrix Extension Main Theorem

Beyond Alternating Permutations

■ Given a transversal $T=\left\{\left(i, b_{i}\right)\right\}$ of a Young diagram, we say that i is an ascent of T (descent) when it is an ascent (descent) of $b_{1} b_{2} \cdots$.

- An $A D$-Young diagram is a triple $\mathcal{Y}=(Y, A, D)$ of a Young diagram Y with n rows, and disjoint sets $A, D \subseteq[n-1]$ such that if $i \in A \cup D$, then the i th and $(i+1)$ st rows of Y have the same length.

Ascents and Descents in Young Diagrams

Pattern Avoidance in Alternating Permutations

Basic Definitions Ascents/Descents
Alternation
Permutations
Matrix Extension Main Theorem

Beyond Alternating Permutations

■ Given a transversal $T=\left\{\left(i, b_{i}\right)\right\}$ of a Young diagram, we say that i is an ascent of T (descent) when it is an ascent (descent) of $b_{1} b_{2} \cdots$.

- An $A D$-Young diagram is a triple $\mathcal{Y}=(Y, A, D)$ of a Young diagram Y with n rows, and disjoint sets $A, D \subseteq[n-1]$ such that if $i \in A \cup D$, then the i th and $(i+1)$ st rows of Y have the same length.

$$
A=\{1\} \quad D=\{3\}
$$

Ascents and Descents in Young Diagrams

Pattern Avoidance in Alternating Permutations

Basic Definitions Ascents/Descents
Alternation
Permutations
Matrix Extension Main Theorem

Beyond Alternating Permutations

■ Given a transversal $T=\left\{\left(i, b_{i}\right)\right\}$ of a Young diagram, we say that i is an ascent of T (descent) when it is an ascent (descent) of $b_{1} b_{2} \cdots$.

- An $A D$-Young diagram is a triple $\mathcal{Y}=(Y, A, D)$ of a Young diagram Y with n rows, and disjoint sets $A, D \subseteq[n-1]$ such that if $i \in A \cup D$, then the i th and $(i+1)$ st rows of Y have the same length.
■ A valid transversal of \mathcal{Y} is a transversal T of Y such that if $i \in A(D)$, then i is an ascent (descent) of T.

$$
A=\{1\}
$$

$$
D=\{3\}
$$

Ascents and Descents in Young Diagrams

Pattern Avoidance in Alternating Permutations

Basic Definitions

Ascents/Descents

Alternation
Permutations
Matrix Extension Main Theorem

Beyond Alternating Permutations

■ Given a transversal $T=\left\{\left(i, b_{i}\right)\right\}$ of a Young diagram, we say that i is an ascent of T (descent) when it is an ascent (descent) of $b_{1} b_{2} \cdots$.

- An $A D$-Young diagram is a triple $\mathcal{Y}=(Y, A, D)$ of a Young diagram Y with n rows, and disjoint sets $A, D \subseteq[n-1]$ such that if $i \in A \cup D$, then the i th and $(i+1)$ st rows of Y have the same length.
■ A valid transversal of \mathcal{Y} is a transversal T of Y such that if $i \in A(D)$, then i is an ascent (descent) of T.

$$
A=\{1\}
$$

$$
D=\{3\}
$$

Ascents and Descents in Young Diagrams

Pattern Avoidance in Alternating Permutations

Basic Definitions Ascents/Descents
Alternation
Permutations
Matrix Extension Main Theorem

■ Given a transversal $T=\left\{\left(i, b_{i}\right)\right\}$ of a Young diagram, we say that i is an ascent of T (descent) when it is an ascent (descent) of $b_{1} b_{2} \cdots$.

- An $A D$-Young diagram is a triple $\mathcal{Y}=(Y, A, D)$ of a Young diagram Y with n rows, and disjoint sets $A, D \subseteq[n-1]$ such that if $i \in A \cup D$, then the i th and $(i+1)$ st rows of Y have the same length.
■ A valid transversal of \mathcal{Y} is a transversal T of Y such that if $i \in A(D)$, then i is an ascent (descent) of T. Pattern avoidance is exactly as in Young diagrams.

Ascents and Descents in Young Diagrams

Pattern Avoidance in Alternating Permutations

Basic Definitions

■ Given a transversal $T=\left\{\left(i, b_{i}\right)\right\}$ of a Young diagram, we say that i is an ascent of T (descent) when it is an ascent (descent) of $b_{1} b_{2} \cdots$.

- An $A D$-Young diagram is a triple $\mathcal{Y}=(Y, A, D)$ of a Young diagram Y with n rows, and disjoint sets $A, D \subseteq[n-1]$ such that if $i \in A \cup D$, then the i th and $(i+1)$ st rows of Y have the same length.
■ A valid transversal of \mathcal{Y} is a transversal T of Y such that if $i \in A(D)$, then i is an ascent (descent) of T. Pattern avoidance is exactly as in Young diagrams.
■ Given a permutation matrix M and an AD-Young diagram \mathcal{Y}, let $S_{\mathcal{Y}}(M)$ denote the set of valid transversals of \mathcal{Y} that avoid M.

Alternating AD-Young Diagrams

Pattern Avoidance in Alternating Permutations

Alternation

Permutations
Matrix Extension Main Theorem

- An AD-Young diagram $\mathcal{Y}=(Y, A, D)$ with Y a Young diagram with n columns is called x-alternating if it satisfies the property that if $i \leq n-x$, then $i \in A$ if and only if $i+1 \in D$.

Alternating AD-Young Diagrams

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams
Basic Definitions
Ascents/Descents

Alternation

Permutations
Matrix Extension Main Theorem
Beyond Alternating Permutations

- An AD-Young diagram $\mathcal{Y}=(Y, A, D)$ with Y a Young diagram with n columns is called x-alternating if it satisfies the property that if $i \leq n-x$, then $i \in A$ if and only if $i+1 \in D$.

$$
A=\{1\}
$$

$$
D=\{2\}
$$

Alternating AD-Young Diagrams

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams
Basic Definitions
Ascents/Descents

Alternation

Permutations
Matrix Extension Main Theorem

Beyond Alternating Permutations

- An AD-Young diagram $\mathcal{Y}=(Y, A, D)$ with Y a Young diagram with n columns is called x-alternating if it satisfies the property that if $i \leq n-x$, then $i \in A$ if and only if $i+1 \in D$.

$$
A=\{1\}
$$

$$
D=\{2\}
$$

is 1 -alternating.

Alternating AD-Young Diagrams

Pattern Avoidance in Alternating Permutations

Alternation

Permutations
Matrix Extension Main Theorem

- An AD-Young diagram $\mathcal{Y}=(Y, A, D)$ with Y a Young diagram with n columns is called x-alternating if it satisfies the property that if $i \leq n-x$, then $i \in A$ if and only if $i+1 \in D$.

Alternating AD-Young Diagrams

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams
Basic Definitions
Ascents/Descents

Alternation

Permutations
Matrix Extension Main Theorem
Beyond Alternating Permutations

- An AD-Young diagram $\mathcal{Y}=(Y, A, D)$ with Y a Young diagram with n columns is called x-alternating if it satisfies the property that if $i \leq n-x$, then $i \in A$ if and only if $i+1 \in D$.

$$
A=\{2\}
$$

$$
D=\emptyset
$$

Alternating AD-Young Diagrams

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams
Basic Definitions
Ascents/Descents

Alternation

Permutations
Matrix Extension Main Theorem

Beyond Alternating Permutations

- An AD-Young diagram $\mathcal{Y}=(Y, A, D)$ with Y a Young diagram with n columns is called x-alternating if it satisfies the property that if $i \leq n-x$, then $i \in A$ if and only if $i+1 \in D$.

$$
A=\{2\}
$$

$$
D=\emptyset
$$

is 4-alternating.

Alternating AD-Young Diagrams

Pattern Avoidance in Alternating Permutations

- An AD-Young diagram $\mathcal{Y}=(Y, A, D)$ with Y a Young diagram with n columns is called x-alternating if it satisfies the property that if $i \leq n-x$, then $i \in A$ if and only if $i+1 \in D$.
- If M and M^{\prime} are permutation matrices such that for all x-alternating AD-Young diagrams \mathcal{Y}, we have $\left|S_{\mathcal{Y}}(M)\right|=\left|S_{\mathcal{Y}}\left(M^{\prime}\right)\right|$, then we say that M and M^{\prime} are shape-equivalent for x-alternating AD-Young diagrams.

Alternating Permutations as Transversals

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams Basic Definitions Ascents/Descents Alternation

Permutations

Matrix Extension Main Theorem

Beyond Alternating Permutations

- We can treat a permutation b of length n as a transversal $\left\{\left(i, b_{i}\right)\right\}$ of the $n \times n$ Young diagram.

Alternating Permutations as Transversals

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams Basic Definitions Ascents/Descents
Alternation

Permutations

Matrix Extension Main Theorem

■ We can treat a permutation b of length n as a transversal $\left\{\left(i, b_{i}\right)\right\}$ of the $n \times n$ Young diagram.

- We can treat an alternating permutation b of length $2 n$ as a valid transversal $\left\{\left(i, b_{i}\right)\right\}$ of the 2 -alternating AD-Young diagram (Y, A, D) with Y the $2 n \times 2 n$ square, $A=\{1,3,5, \cdots, 2 n-1\}$, and $D=\{2,4,6, \cdots, 2 n-2\}$. The permutation 352614 is

Alternating Permutations as Transversals

Pattern Avoidance in Alternating Permutations

- We can treat a permutation b of length n as a transversal $\left\{\left(i, b_{i}\right)\right\}$ of the $n \times n$ Young diagram.
- We can treat an alternating permutation b of length $2 n$ as a valid transversal $\left\{\left(i, b_{i}\right)\right\}$ of the 2 -alternating AD-Young diagram (Y, A, D) with Y the $2 n \times 2 n$ square, $A=\{1,3,5, \cdots, 2 n-1\}$, and $D=\{2,4,6, \cdots, 2 n-2\}$.
- A permutation b avoids a pattern q if and only if its corresponding transversal avoids q 's permutation matrix.

Alternating Permutations as Transversals

Pattern Avoidance in Alternating Permutations

- We can treat a permutation b of length n as a transversal $\left\{\left(i, b_{i}\right)\right\}$ of the $n \times n$ Young diagram.
- We can treat an alternating permutation b of length $2 n$ as a valid transversal $\left\{\left(i, b_{i}\right)\right\}$ of the 2 -alternating AD-Young diagram (Y, A, D) with Y the $2 n \times 2 n$ square, $A=\{1,3,5, \cdots, 2 n-1\}$, and $D=\{2,4,6, \cdots, 2 n-2\}$.
■ A permutation b avoids a pattern q if and only if its corresponding transversal avoids q 's permutation matrix.
■ Similarly, alternating permutations of odd length, can be treated as valid transversals of 1 -alternating AD-Young diagrams.

Extending Alternating Shape-Equivalences

Pattern Avoidance in Alternating Permutations

Theorem (Babson-West). If M and M^{\prime} are permutation matrices that are shape-Wilf equivalent, and P is an permutation matrix of positive dimensions, then the matrices

$$
\left[\begin{array}{cc}
M & 0 \\
0 & P
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{cc}
M^{\prime} & 0 \\
0 & P
\end{array}\right]
$$

are shape-Wilf equivalent.

Extending Alternating Shape-Equivalences

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams
Basic Definitions
Ascents/Descents
Alternation
Permutations
Matrix Extension
Main Theorem
Beyond Alternating Permutations

Theorem (Babson-West). If M and M^{\prime} are permutation matrices that are shape-Wilf equivalent, and P is an permutation matrix of positive dimensions, then the matrices

$$
\left[\begin{array}{cc}
M & 0 \\
0 & P
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{cc}
M^{\prime} & 0 \\
0 & P
\end{array}\right]
$$

are shape-Wilf equivalent.
Theorem. If M and M^{\prime} are permutation matrices that are shape-Equivalent for x-alternating AD-Young diagrams, and P is an $r \times r$ permutation matrix, then the matrices

$$
\left[\begin{array}{cc}
M & 0 \\
0 & P
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{cc}
M^{\prime} & 0 \\
0 & P
\end{array}\right]
$$

are shape-equivalent for $x+r$-alternating $A D$-Young diagrams.

The Main Theorem Revisited

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams
Basic Definitions
Ascents/Descents
Alternation
Permutations
Matrix Extension
Main Theorem
Beyond Alternating Permutations

Theorem (Backelin-West-Xin). For all k, the permutation matrices of the permutations $(k-1)(k-2)(k-3) \cdots 1 k$ and $k(k-1)(k-2) \cdots 1$ are shape-Wilf equivalent.

The Main Theorem Revisited

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams Basic Definitions Ascents/Descents Alternation
Permutations
Matrix Extension

Theorem (Backelin-West-Xin). For all k, the permutation matrices of the permutations $(k-1)(k-2)(k-3) \cdots 1 k$ and $k(k-1)(k-2) \cdots 1$ are shape-Wilf equivalent.

Theorem. The permutation matrices corresponding to the permutations 12 and 21 are shape-equivalent for 1-alternating AD-Young diagrams.

The Main Theorem Revisited

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams Basic Definitions Ascents/Descents Alternation
Permutations
Matrix Extension

Theorem (Backelin-West-Xin). For all k, the permutation matrices of the permutations $(k-1)(k-2)(k-3) \cdots 1 k$ and $k(k-1)(k-2) \cdots 1$ are shape-Wilf equivalent.

Theorem. The permutation matrices corresponding to the permutations 12 and 21 are shape-equivalent for 1-alternating AD-Young diagrams.

Theorem. The permutation matrices corresponding to the permutations 213 and 321 are shape-equivalent for 1-alternating AD-Young diagrams.

The Main Theorem Revisited

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams
Basic Definitions
Ascents/Descents
Alternation
Permutations
Matrix Extension

Theorem (Backelin-West-Xin). For all k, the permutation matrices of the permutations $(k-1)(k-2)(k-3) \cdots 1 k$ and $k(k-1)(k-2) \cdots 1$ are shape-Wilf equivalent.

Theorem. The permutation matrices corresponding to the permutations 12 and 21 are shape-equivalent for 1-alternating AD-Young diagrams.

Theorem. The permutation matrices corresponding to the permutations 213 and 321 are shape-equivalent for 1-alternating AD-Young diagrams.

Corollary. For all $t>2$ and all permutations q of $\{3,4,5, \cdots, t\}$, the patterns $12 q$ and $21 q$ are equivalent for alternating permutations. For all $t>3$ and all permutations q of $\{4,5,6, \cdots, t\}$, the patterns $123 q, 213 q$ and $321 q$ are equivalent for alternating permutations.

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams

Beyond Alternating Permutations
Motivation
Reading Words
321 Avoidance
Proof
321 Applications
Data for $l=0$
Investigating $l=0$
Repetitive Patterns
Further Work

Beyond Alternating Permutations

Motivation

Pattern Avoidance in Alternating Permutations	- Joel's question in his paper.
Pattern Avoidance of Young Diagrams	
Beyond Alternating Permutations	
Motivation	
Reading Words	
321 Avoidance	
Proof	
321 Applications	
Data for $l=0$	
Investigating $l=0$	
Repetitive Patterns	
Further Work	

Motivation

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams

Beyond Alternating Permutations
Motivation
Reading Words
321 Avoidance
Proof
321 Applications
Data for $l=0$
Investigating $l=0$
Repetitive Patterns Further Work

■ Joel's question in his paper.

- Bijection from permutations to Young tableaux
- Definition of tableau

- Entries increase left to right; top to bottom

Motivation

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams

Beyond Alternating Permutations

Motivation

Reading Words
321 Avoidance
Proof
321 Applications
Data for $l=0$
Investigating $l=0$
Repetitive Patterns Further Work

■ Joel's question in his paper.

- Bijection from permutations to Young tableaux
- Definition of tableau

- Entries increase left to right; top to bottom
- l : Number of adjacent edges between adjacent rows
- k : Number of cells per row (except top row)
- n : Total number of cells/values in the permutation
- Ex. $(2,4,10) ; l=2, k=4, n=10$

Reading Words

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams

Beyond Alternating
Permutations
Motivation
Reading Words
321 Avoidance
Proof
321 Applications
Data for $l=0$
Investigating $l=0$
Repetitive Patterns
Further Work

■ Reading word: 124(10)357968

- Pattern avoidance is exactly as in permutations.

Reading Words

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams

Beyond Alternating
Permutations
Motivation
Reading Words
321 Avoidance
Proof
321 Applications
Data for $l=0$
Investigating $l=0$
Repetitive Patterns
Further Work

■ Reading word: 124(10)357968

- Pattern avoidance is exactly as in permutations.

■ Define $U_{n}^{k, l}(r)$ to be the set of permutations p that fill tableau of the form (l, k, n) and such that p avoids r.

Reading Words

Pattern Avoidance in Alternating Permutations

- Reading word: 124(10)357968
- Pattern avoidance is exactly as in permutations.

■ Define $U_{n}^{k, l}(r)$ to be the set of permutations p that fill tableau of the form (l, k, n) and such that p avoids r.

- Alternating permutation pattern avoidance is a special case: $A_{n}(r)=U_{n}^{2,1}(r)$.

321 Avoidance

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams

Beyond Alternating
Permutations
Motivation
Reading Words
321 Avoidance
Proof
321 Applications
Data for $l=0$
Investigating $l=0$
Repetitive Patterns
Further Work

Theorem. For $t>1$, we have

$$
\left|U_{k t+1}^{k, 1}(321)\right|=\sum_{i=k(t-1)+2}^{k t}\left|U_{i}^{k, 1}(321)\right|
$$

321 Avoidance

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams

Beyond Alternating Permutations

Motivation
Reading Words
321 Avoidance
Proof
321 Applications
Data for $l=0$
Investigating $l=0$ Repetitive Patterns Further Work

Theorem. For $t>1$, we have

$$
\left|U_{k t+1}^{k, 1}(321)\right|=\sum_{i=k(t-1)+2}^{k t}\left|U_{i}^{k, 1}(321)\right| .
$$

Example when $k=3$:

$$
\left|U_{3 t+1}^{3,1}(321)\right|=\left|U_{3 t-1}^{3,1}(321)\right|+\left|U_{3 t}^{3,1}(321)\right|
$$

Some data:

n	1	2	3	4	5	6	7	8	9	10
$U_{n}^{3,1}(321)$	1	1	1	3	9	19	28	90	207	297

Outline of Proof Regarding 321 Avoidance

$l=1$: one edge shared between adjacent rows

Outline of Proof Regarding 321 Avoidance

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams

Beyond Alternating
Permutations
Motivation
Reading Words
321 Avoidance
Proof
321 Applications
Data for $l=0$
Investigating $l=0$
Repetitive Patterns
Further Work

Claim: $a_{k t}=k t+1$.

- Assume for sake of contradiction that $a_{k t}<k t+1$.

Outline of Proof Regarding 321 Avoidance

Pattern Avoidance in Alternating Permutations

Proof

321 Applications
Data for $l=0$
Investigating $l=0$
Repetitive Patterns Further Work

Claim: $a_{k t}=k t+1$.
■ Assume for sake of contradiction that $a_{k t}<k t+1$.

- Since $a_{k t+1}<a_{k t}$, we have $a_{k t+1} \neq k t+1$.

Outline of Proof Regarding 321 Avoidance

Pattern Avoidance in Alternating Permutations

Proof

321 Applications
Data for $l=0$
Investigating $l=0$
Repetitive Patterns Further Work

Claim: $a_{k t}=k t+1$.
■ Assume for sake of contradiction that $a_{k t}<k t+1$.
■ Since $a_{k t+1}<a_{k t}$, we have $a_{k t+1} \neq k t+1$.
■ So, for some $i<k t$, we have $a_{i}=k t+1$.

Outline of Proof Regarding 321 Avoidance

Pattern Avoidance in Alternating Permutations

Proof

321 Applications
Data for $l=0$
Investigating $l=0$
Repetitive Patterns Further Work

Claim: $a_{k t}=k t+1$.
■ Assume for sake of contradiction that $a_{k t}<k t+1$.

- Since $a_{k t+1}<a_{k t}$, we have $a_{k t+1} \neq k t+1$.
- So, for some $i<k t$, we have $a_{i}=k t+1$.
- Then, $a_{i} a_{k t} a_{k t+1}$ is order-isomorphic to 321 , contradiction.

Outline of Proof Regarding 321 Avoidance

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams

Beyond Alternating Permutations

Motivation Reading Words 321 Avoidance

Proof

321 Applications
Data for $l=0$
Investigating $l=0$
Repetitive Patterns Further Work

Define a consecutive block to be a subsequence $a_{i} a_{i+1} \cdots a_{j}$ of $a_{1} a_{2} \cdots a_{n}$, such that the values a_{k} are consecutive and in increasing order for $i<k<j$.
We remove the largest consecutive block with anchor (last value) $a_{k t}$ for each permutation in $U_{k t+1}^{k}(321)$; suppose that the block has length s. Then,

Outline of Proof Regarding 321 Avoidance

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams

Beyond Alternating Permutations

Motivation Reading Words 321 Avoidance

Proof

321 Applications
Data for $l=0$
Investigating $l=0$
Repetitive Patterns Further Work

Define a consecutive block to be a subsequence $a_{i} a_{i+1} \cdots a_{j}$ of $a_{1} a_{2} \cdots a_{n}$, such that the values a_{k} are consecutive and in increasing order for $i<k<j$.
We remove the largest consecutive block with anchor (last value) $a_{k t}$ for each permutation in $U_{k t+1}^{k}(321)$; suppose that the block has length s. Then,

is sent to

Outline of Proof Regarding 321 Avoidance

Pattern Avoidance in Alternating Permutations of Young Diagrams

Beyond Alternating Permutations

Proof

321 Applications
Data for $l=0$
Investigating $l=0$
Repetitive Patterns Further Work

The other direction of inserting a consecutive block is clear. Thus, the bijection holds.

Outline of Proof Regarding 321 Avoidance

Pattern Avoidance in Alternating Permutations of Young Diagrams

Beyond Alternating Permutations

Motivation
Reading Words
321 Avoidance

Proof

321 Applications
Data for $l=0$
Investigating $l=0$
Repetitive Patterns
Further Work

The other direction of inserting a consecutive block is clear. Thus, the bijection holds.

$$
\left|U_{k t+1}^{k, 1}(321)\right|=\sum_{i=k(t-1)+2}^{k t}\left|U_{i}^{k, 1}(321)\right|
$$

Further Application of (321)-avoidance

Pattern Avoidance in Alternating Permutations of Young Diagrams

Beyond Alternating Permutations

Motivation
Reading Words
321 Avoidance
Proof
321 Applications
Data for $l=0$
Investigating $l=0$
Repetitive Patterns
Further Work

■ This gives us a nice enumeration of $U_{n}^{k, l}(321)$ for $n=k t+1$.
■ What about $n=k t+m$?

Further Application of (321)-avoidance

Pattern Avoidance in Alternating Permutations of Young Diagrams

Beyond Alternating Permutations

Motivation
Reading Words
321 Avoidance
Proof
321 Applications
Data for $l=0$
Investigating $l=0$
Repetitive Patterns Further Work

■ This gives us a nice enumeration of $U_{n}^{k, l}(321)$ for $n=k t+1$.

■ What about $n=k t+m$?

- A similar removal of a consecutive block likely holds, but the procedure of "collapsing" the highest row into the row under it may result in a row with more than k elements:

Further Application of (321)-avoidance

Pattern Avoidance in Alternating Permutations of Young Diagrams

Beyond Alternating Permutations

Motivation Reading Words 321 Avoidance
Proof
321 Applications
Data for $l=0$
Investigating $l=0$
Repetitive Patterns Further Work

■ This gives us a nice enumeration of $U_{n}^{k, l}(321)$ for $n=k t+1$.

■ What about $n=k t+m$?

- A similar removal of a consecutive block likely holds, but the procedure of "collapsing" the highest row into the row under it may result in a row with more than k elements:

Further Application of (321)-avoidance

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams

Beyond Alternating Permutations

Motivation Reading Words 321 Avoidance
Proof
321 Applications
Data for $l=0$
Investigating $l=0$
Repetitive Patterns Further Work

■ This gives us a nice enumeration of $U_{n}^{k, l}(321)$ for $n=k t+1$.

■ What about $n=k t+m$?

- A similar removal of a consecutive block likely holds, but the procedure of "collapsing" the highest row into the row under it may result in a row with more than k elements:

- Thus, we will likely need to define new classes (different from $U_{n}^{k, l}$) to describe such tableaux, and so, the recursion for this case is likely more complicated, but not intractable.

Data for $l=0$

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams

Beyond Alternating
Permutations
Motivation
Reading Words
321 Avoidance
Proof
321 Applications
Data for $l=0$
Investigating $l=0$
Repetitive Patterns
Further Work

■ Now we turn to the $l=0$ case. -

\qquad

Data for $l=0$

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams

Beyond Alternating Permutations

Motivation
Reading Words
321 Avoidance
Proof
321 Applications

Data for $l=0$

Investigating $l=0$
Repetitive Patterns
Further Work

■ Now we turn to the $l=0$ case.
For $k=3$:

	1342	1243	2341	3124	2134	4123
1	1	1	1	1	1	1
2	1	1	1	1	1	1
3	1	1	1	1	1	1
4	3	3	3	4	4	4
5	6	6	6	$\mathbf{1 0}$	$\mathbf{1 0}$	$\mathbf{1 0}$
6	10	10	10	$\mathbf{1 0}$	$\mathbf{1 0}$	$\mathbf{1 0}$
7	37	38	38	60	60	60
8	90	94	94	$\mathbf{1 8 0}$	$\mathbf{1 9 0}$	$\mathbf{1 9 0}$
9	180	190	190	$\mathbf{1 8 0}$	$\mathbf{1 9 0}$	$\mathbf{1 9 0}$
10	725	806	806	1330	1400	$\mathbf{1 4 0 0}$

Investigating $l=0$

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams

Beyond Alternating Permutations

Motivation
Reading Words
321 Avoidance
Proof
321 Applications
Data for $l=0$

Investigating $l=0$

Repetitive Patterns
Further Work

■ Only avoidance patterns of a particular structure show nontrivial repetitions for $n=m$ and $n=m+1$ for large n.

- Let q be a permutation of length t that is structurally dictated as a single down-step followed by $t-2$ up-steps, i.e. $q=b 123 \cdots(b-1)(b+1) \cdots(t-1) t$ with $b \neq 1$.
■ We shall call such patterns repetitive patterns.

Enumerations of Repetitive Patterns

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams

Beyond Alternating Permutations

Motivation
Reading Words
321 Avoidance
Proof
321 Applications
Data for $l=0$
Investigating $l=0$

Repetitive Patterns

Theorem. For $k \geq t-1$ and q a repetitive pattern, we have

$$
\left|U_{k m+(t-2)}^{k, 0}(q)\right|=\left|U_{k m+(t-1)}^{k, 0}(q)\right|=\left|U_{k m+t}^{k, 0}(q)\right|=\cdots=\left|U_{k m+k}^{k, 0}(q)\right|
$$

- The approach to this is a bijective proof.
- Based on the pattern q, we perform an insertion of the proper value into a corresponding location.
■ This serves as a surprising result for no other patterns contain repeats; for all other patterns q, $\left|U_{n}^{k, 0}(q)\right|<\left|U_{n+1}^{k, 0}(q)\right|$ (except for patterns of the form $123 \cdots t$ of course).

Possible Further Directions to Our Work

Pattern Avoidance in Alternating Permutations

Beyond Alternating Permutations

Motivation
Reading Words
321 Avoidance
Proof
321 Applications
Data for $l=0$
Investigating $l=0$
Repetitive Patterns

■ The result in the previous slide is quite nice, but it is very limited. However, checking numerical data indicates that a similar theorem holds for $l>0$.

Acknowledgements

Pattern Avoidance
in Alternating
Permutations
Pattern Avoidance of Young Diagrams
Beyond Alternating Permutations
Motivation
Reading Words
321 Avoidance
Proof
321 Applications
Data for $l=0$
Investigating $l=0$
Repetitive Patterns
Further Work

Thanks to

- Our mentor Joel Lewis for his valuable insight and guidance.
- The PRIMES program for making this experience possible.
- Our parents for their support.

Thanks to all of you for listening.

