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■ We will treat a permutation w ∈ Sn as a sequence
w1, w2, · · · , wn containing every positive integer k ≤ n

exactly once.
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■ We will treat a permutation w ∈ Sn as a sequence
w1, w2, · · · , wn containing every positive integer k ≤ n

exactly once.
■ A permutation w is called alternating if

w1 < w2 > w3 < w4 > · · · .
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■ We will treat a permutation w ∈ Sn as a sequence
w1, w2, · · · , wn containing every positive integer k ≤ n

exactly once.
■ A permutation w is called alternating if

w1 < w2 > w3 < w4 > · · · .

For example, 352614 is alternating.
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■ We will treat a permutation w ∈ Sn as a sequence
w1, w2, · · · , wn containing every positive integer k ≤ n

exactly once.
■ A permutation w is called alternating if

w1 < w2 > w3 < w4 > · · · .

For example, 352614 is alternating. Graphically, this is
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■ A permutation w is said to contain a permutation q if there
is a subsequence of w order-isomorphic to q. If w does not
contain q, then w avoids q.
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■ A permutation w is said to contain a permutation q if there
is a subsequence of w order-isomorphic to q. If w does not
contain q, then w avoids q.
For example, 325641 contains 231.
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■ A permutation w is said to contain a permutation q if there
is a subsequence of w order-isomorphic to q. If w does not
contain q, then w avoids q.
For example, 325641 contains 231.

■ Given a permutation q and a positive integer n, let Sn(q)
(An(q)) denote the set of all (alternating) permutations of
length n that avoid q.
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■ A permutation w is said to contain a permutation q if there
is a subsequence of w order-isomorphic to q. If w does not
contain q, then w avoids q.
For example, 325641 contains 231.

■ Given a permutation q and a positive integer n, let Sn(q)
(An(q)) denote the set of all (alternating) permutations of
length n that avoid q.

■ If |Sn(p)| = |Sn(q)| for all n, we say that p and q are
Wilf-equivalent.
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■ A permutation w is said to contain a permutation q if there
is a subsequence of w order-isomorphic to q. If w does not
contain q, then w avoids q.
For example, 325641 contains 231.

■ Given a permutation q and a positive integer n, let Sn(q)
(An(q)) denote the set of all (alternating) permutations of
length n that avoid q.

■ If |Sn(p)| = |Sn(q)| for all n, we say that p and q are
Wilf-equivalent.

■ If |An(p)| = |An(q)| for all n, we say that p and q are
equivalent for alternating permutations.
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■ (Mansour, Deutsch, Reifegerste) If q is a pattern of length 3,
then |An(q)| is a Catalan number (i.e. of the form

Ck = (2k)!
k!(k+1)!).

The indices depend on the choice of q and on the parity of n.
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■ (Mansour, Deutsch, Reifegerste) If q is a pattern of length 3,
then |An(q)| is a Catalan number (i.e. of the form

Ck = (2k)!
k!(k+1)!).

■ (Lewis) For patterns of length 4,

|A2n(1234)| = |A2n(2143)| =
2(3n)!

n!(n+ 1)!(n+ 2)!
,

|A2n+1(1234)| =
16(3n)!

(n− 1)!(n+ 1)!(n+ 3)!
,

|A2n+1(2143)| =
2(3n+ 3)!

n!(n+ 1)!(n+ 2)!(2n+ 1)(2n+ 2)(2n+ 3)
.
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Theorem (Backelin-West-Xin). For all t ≥ k and all

permutations q of {k + 1, k + 2, k + 3, · · · , t}, the patterns

123 · · · kq and k(k − 1)(k − 2) · · · 1q are Wilf-Equivalent.
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Theorem (Backelin-West-Xin). For all t ≥ k and all

permutations q of {k + 1, k + 2, k + 3, · · · , t}, the patterns

123 · · · kq and k(k − 1)(k − 2) · · · 1q are Wilf-Equivalent.

Main Results:
For all q, the following sets of patterns are equivalent for
alternating permutations.

■ 12q and 21q



The Main Theorem and Its Motivation

Pattern Avoidance
in Alternating
Permutations

Alternation

Patterns

Previous Results

Main Theorem

Pattern Avoidance
of Young Diagrams

Beyond Alternating
Permutations

5 / 26

Theorem (Backelin-West-Xin). For all t ≥ k and all

permutations q of {k + 1, k + 2, k + 3, · · · , t}, the patterns

123 · · · kq and k(k − 1)(k − 2) · · · 1q are Wilf-Equivalent.

Main Results:
For all q, the following sets of patterns are equivalent for
alternating permutations.

■ 12q and 21q
■ 123q, 213q and 321q
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Theorem (Backelin-West-Xin). For all t ≥ k and all

permutations q of {k + 1, k + 2, k + 3, · · · , t}, the patterns

123 · · · kq and k(k − 1)(k − 2) · · · 1q are Wilf-Equivalent.

Main Results:
For all q, the following sets of patterns are equivalent for
alternating permutations.

■ 12q and 21q
■ 123q, 213q and 321q
■ (Conjecture) For all k, 123 · · · kq and k(k − 1)(k − 2) · · · 1q
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■ A Young diagram with n rows/columns is a set Y of squares
of an n× n board such that if a square S ∈ Y , then any
square above and to the left of S is also in Y .



Basic Definitions

Pattern Avoidance
in Alternating
Permutations

Pattern Avoidance
of Young Diagrams

Basic Definitions

Ascents/Descents

Alternation

Permutations

Matrix Extension

Main Theorem

Beyond Alternating
Permutations

7 / 26

■ A Young diagram with n rows/columns is a set Y of squares
of an n× n board such that if a square S ∈ Y , then any
square above and to the left of S is also in Y .

■ A transversal T of Y is a set of squares of Y that contains
exactly one member per row and per column of Y .

•

•

•

•
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■ A Young diagram with n rows/columns is a set Y of squares
of an n× n board such that if a square S ∈ Y , then any
square above and to the left of S is also in Y .

■ A transversal T of Y is a set of squares of Y that contains
exactly one member per row and per column of Y .

■ T is said to contain a k × k permutation matrix M = (mi,j)
if there are k rows r1 < r2 < · · · < rk and k columns
c1 < c2 < · · · < ck of Y such that (rk, ck) ∈ Y and
(ri, cj) ∈ T if and only if the entry of mi,j = 1.

•

•

•

•

contains

[

0 1
1 0

]

.
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■ A Young diagram with n rows/columns is a set Y of squares
of an n× n board such that if a square S ∈ Y , then any
square above and to the left of S is also in Y .

■ A transversal T of Y is a set of squares of Y that contains
exactly one member per row and per column of Y .

■ T is said to contain a k × k permutation matrix M = (mi,j)
if there are k rows r1 < r2 < · · · < rk and k columns
c1 < c2 < · · · < ck of Y such that (rk, ck) ∈ Y and
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■ A Young diagram with n rows/columns is a set Y of squares
of an n× n board such that if a square S ∈ Y , then any
square above and to the left of S is also in Y .

■ A transversal T of Y is a set of squares of Y that contains
exactly one member per row and per column of Y .

■ T is said to contain a k × k permutation matrix M = (mi,j)
if there are k rows r1 < r2 < · · · < rk and k columns
c1 < c2 < · · · < ck of Y such that (rk, ck) ∈ Y and
(ri, cj) ∈ T if and only if the entry of mi,j = 1.

•

•

•

•

contains

[

0 1
1 0

]

.
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■ A Young diagram with n rows/columns is a set Y of squares
of an n× n board such that if a square S ∈ Y , then any
square above and to the left of S is also in Y .

■ A transversal T of Y is a set of squares of Y that contains
exactly one member per row and per column of Y .

■ T is said to contain a k × k permutation matrix M = (mi,j)
if there are k rows r1 < r2 < · · · < rk and k columns
c1 < c2 < · · · < ck of Y such that (rk, ck) ∈ Y and
(ri, cj) ∈ T if and only if the entry of mi,j = 1.

•

•

•

•

contains

[

0 1
1 0

]

.

All 4 red squares are in the Young diagram.
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■ A Young diagram with n rows/columns is a set Y of squares
of an n× n board such that if a square S ∈ Y , then any
square above and to the left of S is also in Y .

■ A transversal T of Y is a set of squares of Y that contains
exactly one member per row and per column of Y .

■ T is said to contain a k × k permutation matrix M = (mi,j)
if there are k rows r1 < r2 < · · · < rk and k columns
c1 < c2 < · · · < ck of Y such that (rk, ck) ∈ Y and
(ri, cj) ∈ T if and only if the entry of mi,j = 1.

•

•

•

•

is not a copy of

[

0 1
1 0

]

.
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■ A Young diagram with n rows/columns is a set Y of squares
of an n× n board such that if a square S ∈ Y , then any
square above and to the left of S is also in Y .

■ A transversal T of Y is a set of squares of Y that contains
exactly one member per row and per column of Y .

■ T is said to contain a k × k permutation matrix M = (mi,j)
if there are k rows r1 < r2 < · · · < rk and k columns
c1 < c2 < · · · < ck of Y such that (rk, ck) ∈ Y and
(ri, cj) ∈ T if and only if the entry of mi,j = 1.

•

•

• X

•

is not a copy of

[

0 1
1 0

]

.

The square X is not in the Young diagram.
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■ A Young diagram with n rows/columns is a set Y of squares
of an n× n board such that if a square S ∈ Y , then any
square above and to the left of S is also in Y .

■ A transversal T of Y is a set of squares of Y that contains
exactly one member per row and per column of Y .

■ T is said to contain a k × k permutation matrix M = (mi,j)
if there are k rows r1 < r2 < · · · < rk and k columns
c1 < c2 < · · · < ck of Y such that (rk, ck) ∈ Y and
(ri, cj) ∈ T if and only if the entry of mi,j = 1.
Otherwise, we say that T avoids M .
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■ A Young diagram with n rows/columns is a set Y of squares
of an n× n board such that if a square S ∈ Y , then any
square above and to the left of S is also in Y .

■ A transversal T of Y is a set of squares of Y that contains
exactly one member per row and per column of Y .

■ T is said to contain a k × k permutation matrix M = (mi,j)
if there are k rows r1 < r2 < · · · < rk and k columns
c1 < c2 < · · · < ck of Y such that (rk, ck) ∈ Y and
(ri, cj) ∈ T if and only if the entry of mi,j = 1.
Otherwise, we say that T avoids M .

■ If permutation matrices M and M ′ are such that, for all
Young diagrams Y , the number of transversals of Y avoiding
M is the same as the number avoiding M ′, we say that M
and M ′ are shape-Wilf equivalent.
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■ Given a transversal T = {(i, bi)} of a Young diagram, we say
that i is an ascent of T (descent) when it is an ascent
(descent) of b1b2 · · · .
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■ Given a transversal T = {(i, bi)} of a Young diagram, we say
that i is an ascent of T (descent) when it is an ascent
(descent) of b1b2 · · · .

■ An AD-Young diagram is a triple Y = (Y,A,D) of a Young
diagram Y with n rows, and disjoint sets A,D ⊆ [n− 1]
such that if i ∈ A ∪D, then the ith and (i+ 1)st rows of Y
have the same length.

Y =
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■ Given a transversal T = {(i, bi)} of a Young diagram, we say
that i is an ascent of T (descent) when it is an ascent
(descent) of b1b2 · · · .

■ An AD-Young diagram is a triple Y = (Y,A,D) of a Young
diagram Y with n rows, and disjoint sets A,D ⊆ [n− 1]
such that if i ∈ A ∪D, then the ith and (i+ 1)st rows of Y
have the same length.

Y =

A = {1} D = {3}
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■ Given a transversal T = {(i, bi)} of a Young diagram, we say
that i is an ascent of T (descent) when it is an ascent
(descent) of b1b2 · · · .

■ An AD-Young diagram is a triple Y = (Y,A,D) of a Young
diagram Y with n rows, and disjoint sets A,D ⊆ [n− 1]
such that if i ∈ A ∪D, then the ith and (i+ 1)st rows of Y
have the same length.

■ A valid transversal of Y is a transversal T of Y such that if
i ∈ A (D), then i is an ascent (descent) of T .

Y = A = {1} D = {3}
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■ Given a transversal T = {(i, bi)} of a Young diagram, we say
that i is an ascent of T (descent) when it is an ascent
(descent) of b1b2 · · · .

■ An AD-Young diagram is a triple Y = (Y,A,D) of a Young
diagram Y with n rows, and disjoint sets A,D ⊆ [n− 1]
such that if i ∈ A ∪D, then the ith and (i+ 1)st rows of Y
have the same length.

■ A valid transversal of Y is a transversal T of Y such that if
i ∈ A (D), then i is an ascent (descent) of T .

Y =
•

•

•

•

•

A = {1} D = {3}
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■ Given a transversal T = {(i, bi)} of a Young diagram, we say
that i is an ascent of T (descent) when it is an ascent
(descent) of b1b2 · · · .

■ An AD-Young diagram is a triple Y = (Y,A,D) of a Young
diagram Y with n rows, and disjoint sets A,D ⊆ [n− 1]
such that if i ∈ A ∪D, then the ith and (i+ 1)st rows of Y
have the same length.

■ A valid transversal of Y is a transversal T of Y such that if
i ∈ A (D), then i is an ascent (descent) of T . Pattern
avoidance is exactly as in Young diagrams.
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■ Given a transversal T = {(i, bi)} of a Young diagram, we say
that i is an ascent of T (descent) when it is an ascent
(descent) of b1b2 · · · .

■ An AD-Young diagram is a triple Y = (Y,A,D) of a Young
diagram Y with n rows, and disjoint sets A,D ⊆ [n− 1]
such that if i ∈ A ∪D, then the ith and (i+ 1)st rows of Y
have the same length.

■ A valid transversal of Y is a transversal T of Y such that if
i ∈ A (D), then i is an ascent (descent) of T . Pattern
avoidance is exactly as in Young diagrams.

■ Given a permutation matrix M and an AD-Young diagram
Y , let SY(M) denote the set of valid transversals of Y that
avoid M .
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■ An AD-Young diagram Y = (Y,A,D) with Y a Young
diagram with n columns is called x-alternating if it satisfies
the property that if i ≤ n− x, then i ∈ A if and only if
i+ 1 ∈ D.

Y =
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■ An AD-Young diagram Y = (Y,A,D) with Y a Young
diagram with n columns is called x-alternating if it satisfies
the property that if i ≤ n− x, then i ∈ A if and only if
i+ 1 ∈ D.

Y =

A = {1}

D = {2}
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■ An AD-Young diagram Y = (Y,A,D) with Y a Young
diagram with n columns is called x-alternating if it satisfies
the property that if i ≤ n− x, then i ∈ A if and only if
i+ 1 ∈ D.

Y =

A = {1}

D = {2}

is 1-alternating.
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■ An AD-Young diagram Y = (Y,A,D) with Y a Young
diagram with n columns is called x-alternating if it satisfies
the property that if i ≤ n− x, then i ∈ A if and only if
i+ 1 ∈ D.

Y =
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■ An AD-Young diagram Y = (Y,A,D) with Y a Young
diagram with n columns is called x-alternating if it satisfies
the property that if i ≤ n− x, then i ∈ A if and only if
i+ 1 ∈ D.

Y =

A = {2}

D = ∅
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■ An AD-Young diagram Y = (Y,A,D) with Y a Young
diagram with n columns is called x-alternating if it satisfies
the property that if i ≤ n− x, then i ∈ A if and only if
i+ 1 ∈ D.

Y =

A = {2}

D = ∅

is 4-alternating.
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■ An AD-Young diagram Y = (Y,A,D) with Y a Young
diagram with n columns is called x-alternating if it satisfies
the property that if i ≤ n− x, then i ∈ A if and only if
i+ 1 ∈ D.

■ If M and M ′ are permutation matrices such that for all
x-alternating AD-Young diagrams Y , we have
|SY(M)| = |SY(M

′)|, then we say that M and M ′ are
shape-equivalent for x-alternating AD-Young diagrams.
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■ We can treat a permutation b of length n as a transversal
{(i, bi)} of the n× n Young diagram.
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■ We can treat a permutation b of length n as a transversal
{(i, bi)} of the n× n Young diagram.

■ We can treat an alternating permutation b of length 2n as a
valid transversal {(i, bi)} of the 2-alternating AD-Young
diagram (Y,A,D) with Y the 2n× 2n square,
A = {1, 3, 5, · · · , 2n− 1}, and D = {2, 4, 6, · · · , 2n− 2}.
The permutation 352614 is

•

•

•

•

•

•

.
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■ We can treat a permutation b of length n as a transversal
{(i, bi)} of the n× n Young diagram.

■ We can treat an alternating permutation b of length 2n as a
valid transversal {(i, bi)} of the 2-alternating AD-Young
diagram (Y,A,D) with Y the 2n× 2n square,
A = {1, 3, 5, · · · , 2n− 1}, and D = {2, 4, 6, · · · , 2n− 2}.

■ A permutation b avoids a pattern q if and only if its
corresponding transversal avoids q’s permutation matrix.
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■ We can treat a permutation b of length n as a transversal
{(i, bi)} of the n× n Young diagram.

■ We can treat an alternating permutation b of length 2n as a
valid transversal {(i, bi)} of the 2-alternating AD-Young
diagram (Y,A,D) with Y the 2n× 2n square,
A = {1, 3, 5, · · · , 2n− 1}, and D = {2, 4, 6, · · · , 2n− 2}.

■ A permutation b avoids a pattern q if and only if its
corresponding transversal avoids q’s permutation matrix.

■ Similarly, alternating permutations of odd length, can be
treated as valid transversals of 1-alternating AD-Young
diagrams.
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Theorem (Babson-West). If M and M ′ are permutation

matrices that are shape-Wilf equivalent, and P is an permutation

matrix of positive dimensions, then the matrices

[

M 0
0 P

]

and

[

M ′ 0
0 P

]

are shape-Wilf equivalent.
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Theorem (Babson-West). If M and M ′ are permutation

matrices that are shape-Wilf equivalent, and P is an permutation

matrix of positive dimensions, then the matrices

[

M 0
0 P

]

and

[

M ′ 0
0 P

]

are shape-Wilf equivalent.

Theorem. If M and M ′ are permutation matrices that are

shape-Equivalent for x-alternating AD-Young diagrams, and P is

an r × r permutation matrix, then the matrices

[

M 0
0 P

]

and

[

M ′ 0
0 P

]

are shape-equivalent for x+ r-alternating AD-Young diagrams.
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Theorem (Backelin-West-Xin). For all k, the permutation

matrices of the permutations (k − 1)(k − 2)(k − 3) · · · 1k and

k(k − 1)(k − 2) · · · 1 are shape-Wilf equivalent.
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Theorem (Backelin-West-Xin). For all k, the permutation

matrices of the permutations (k − 1)(k − 2)(k − 3) · · · 1k and

k(k − 1)(k − 2) · · · 1 are shape-Wilf equivalent.

Theorem. The permutation matrices corresponding to the

permutations 12 and 21 are shape-equivalent for 1-alternating

AD-Young diagrams.
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Theorem (Backelin-West-Xin). For all k, the permutation

matrices of the permutations (k − 1)(k − 2)(k − 3) · · · 1k and

k(k − 1)(k − 2) · · · 1 are shape-Wilf equivalent.

Theorem. The permutation matrices corresponding to the

permutations 12 and 21 are shape-equivalent for 1-alternating

AD-Young diagrams.

Theorem. The permutation matrices corresponding to the

permutations 213 and 321 are shape-equivalent for 1-alternating

AD-Young diagrams.
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Theorem (Backelin-West-Xin). For all k, the permutation

matrices of the permutations (k − 1)(k − 2)(k − 3) · · · 1k and

k(k − 1)(k − 2) · · · 1 are shape-Wilf equivalent.

Theorem. The permutation matrices corresponding to the

permutations 12 and 21 are shape-equivalent for 1-alternating

AD-Young diagrams.

Theorem. The permutation matrices corresponding to the

permutations 213 and 321 are shape-equivalent for 1-alternating

AD-Young diagrams.

Corollary. For all t > 2 and all permutations q of

{3, 4, 5, · · · , t}, the patterns 12q and 21q are equivalent for

alternating permutations. For all t > 3 and all permutations q of

{4, 5, 6, · · · , t}, the patterns 123q, 213q and 321q are equivalent

for alternating permutations.
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■ Joel’s question in his paper.
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■ Joel’s question in his paper.
■ Bijection from permutations to Young tableaux

◆ Definition of tableau

6 8

3 5 7 9

1 2 4 10

◆ Entries increase left to right; top to bottom



Motivation

Pattern Avoidance
in Alternating
Permutations

Pattern Avoidance
of Young Diagrams

Beyond Alternating
Permutations

Motivation

Reading Words

321 Avoidance

Proof

321 Applications

Data for l = 0

Investigating l = 0

Repetitive Patterns

Further Work

14 / 26

■ Joel’s question in his paper.
■ Bijection from permutations to Young tableaux

◆ Definition of tableau

6 8

3 5 7 9

1 2 4 10

◆ Entries increase left to right; top to bottom
◆ l : Number of adjacent edges between adjacent rows
◆ k : Number of cells per row (except top row)
◆ n : Total number of cells/values in the permutation
◆ Ex. (2, 4, 10); l = 2, k = 4, n = 10
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6 8

3 5 7 9

1 2 4 10

■ Reading word: 124(10)357968
■ Pattern avoidance is exactly as in permutations.
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6 8

3 5 7 9

1 2 4 10

■ Reading word: 124(10)357968
■ Pattern avoidance is exactly as in permutations.
■ Define U

k,l
n (r) to be the set of permutations p that fill

tableau of the form (l, k, n) and such that p avoids r.
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6 8

3 5 7 9

1 2 4 10

■ Reading word: 124(10)357968
■ Pattern avoidance is exactly as in permutations.
■ Define U

k,l
n (r) to be the set of permutations p that fill

tableau of the form (l, k, n) and such that p avoids r.
■ Alternating permutation pattern avoidance is a special case:

An(r) = U
2,1
n (r).
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Theorem. For t > 1, we have

∣

∣

∣
U

k,1
kt+1(321)

∣

∣

∣
=

kt
∑

i=k(t−1)+2

∣

∣

∣
U

k,1
i (321)

∣

∣

∣
.
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Theorem. For t > 1, we have

∣

∣

∣
U

k,1
kt+1(321)

∣

∣

∣
=

kt
∑

i=k(t−1)+2

∣

∣

∣
U

k,1
i (321)

∣

∣

∣
.

Example when k = 3:

∣

∣

∣
U

3,1
3t+1(321)

∣

∣

∣
=

∣

∣

∣
U

3,1
3t−1(321)

∣

∣

∣
+

∣

∣

∣
U

3,1
3t (321)

∣

∣

∣

Some data:

n 1 2 3 4 5 6 7 8 9 10
∣

∣

∣
U

3,1
n (321)

∣

∣

∣
1 1 1 3 9 19 28 90 207 297
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l = 1: one edge shared between adjacent rows

akt+1

akt−t+1 akt−t+2 . . . akt

. .
.

ak+1 ak+2 . . . a2k

a1 a2 . . . ak
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akt+1

· · · akt−1 akt

Claim: akt = kt+ 1.

■ Assume for sake of contradiction that akt < kt+ 1.
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akt+1

· · · akt−1 akt

Claim: akt = kt+ 1.

■ Assume for sake of contradiction that akt < kt+ 1.
■ Since akt+1 < akt, we have akt+1 6= kt+ 1.



Outline of Proof Regarding 321 Avoidance

Pattern Avoidance
in Alternating
Permutations

Pattern Avoidance
of Young Diagrams

Beyond Alternating
Permutations

Motivation

Reading Words

321 Avoidance

Proof

321 Applications

Data for l = 0

Investigating l = 0

Repetitive Patterns

Further Work

18 / 26

akt+1

· · · akt−1 akt

Claim: akt = kt+ 1.

■ Assume for sake of contradiction that akt < kt+ 1.
■ Since akt+1 < akt, we have akt+1 6= kt+ 1.
■ So, for some i < kt, we have ai = kt+ 1.
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akt+1

· · · akt−1 akt

Claim: akt = kt+ 1.

■ Assume for sake of contradiction that akt < kt+ 1.
■ Since akt+1 < akt, we have akt+1 6= kt+ 1.
■ So, for some i < kt, we have ai = kt+ 1.
■ Then, aiaktakt+1 is order-isomorphic to 321, contradiction.
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Define a consecutive block to be a subsequence aiai+1 · · · aj of
a1a2 · · · an, such that the values ak are consecutive and in
increasing order for i < k < j.
We remove the largest consecutive block with anchor (last value)
akt for each permutation in Uk

kt+1(321); suppose that the block
has length s. Then,

akt+1

akt−t+1 akt−t+2 akt−t+3 akt−t+4 . . . akt
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Define a consecutive block to be a subsequence aiai+1 · · · aj of
a1a2 · · · an, such that the values ak are consecutive and in
increasing order for i < k < j.
We remove the largest consecutive block with anchor (last value)
akt for each permutation in Uk

kt+1(321); suppose that the block
has length s. Then,

akt+1

akt−t+1 akt−t+2 akt−t+3 akt−t+4 . . . akt

is sent to

akt−t+1 akt−t+2 . . . akt−s akt+1

.
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akt−t+1 akt−t+2 . . . akt−s akt+1

. .
.

a1 a2 . . . ak

The other direction of inserting a consecutive block is clear.
Thus, the bijection holds.
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akt−t+1 akt−t+2 . . . akt−s akt+1

. .
.

a1 a2 . . . ak

The other direction of inserting a consecutive block is clear.
Thus, the bijection holds.

∣

∣

∣
U

k,1
kt+1(321)

∣

∣

∣
=

kt
∑

i=k(t−1)+2

∣

∣

∣
U

k,1
i (321)

∣

∣

∣
.
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■ This gives us a nice enumeration of Uk,l
n (321) for n = kt+ 1.

■ What about n = kt+m?
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■ This gives us a nice enumeration of Uk,l
n (321) for n = kt+ 1.

■ What about n = kt+m?
■ A similar removal of a consecutive block likely holds, but the

procedure of “collapsing” the highest row into the row under
it may result in a row with more than k elements:

6 7 9

1 5 10 11

2 3 4 8
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■ This gives us a nice enumeration of Uk,l
n (321) for n = kt+ 1.

■ What about n = kt+m?
■ A similar removal of a consecutive block likely holds, but the

procedure of “collapsing” the highest row into the row under
it may result in a row with more than k elements:

6 7 9

1 5 10 11

2 3 4 8

1 5 6 7 9

2 3 4 8
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■ This gives us a nice enumeration of Uk,l
n (321) for n = kt+ 1.

■ What about n = kt+m?
■ A similar removal of a consecutive block likely holds, but the

procedure of “collapsing” the highest row into the row under
it may result in a row with more than k elements:

6 7 9

1 5 10 11

2 3 4 8

1 5 6 7 9

2 3 4 8

■ Thus, we will likely need to define new classes (different from

U
k,l
n ) to describe such tableaux, and so, the recursion for this

case is likely more complicated, but not intractable.
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■ Now we turn to the l = 0 case.
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■ Now we turn to the l = 0 case.

For k = 3:

1342 1243 2341 3124 2134 4123
1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 1 1 1 1 1 1
4 3 3 3 4 4 4
5 6 6 6 10 10 10
6 10 10 10 10 10 10
7 37 38 38 60 60 60
8 90 94 94 180 190 190
9 180 190 190 180 190 190
10 725 806 806 1330 1400 1400
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■ Only avoidance patterns of a particular structure show
nontrivial repetitions for n = m and n = m+ 1 for large n.

■ Let q be a permutation of length t that is structurally
dictated as a single down-step followed by t− 2 up-steps, i.e.
q = b123 · · · (b− 1)(b+ 1) · · · (t− 1)t with b 6= 1.

■ We shall call such patterns repetitive patterns.
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Theorem. For k ≥ t− 1 and q a repetitive pattern, we have

∣

∣

∣
U

k,0
km+(t−2)

(q)
∣

∣

∣
=

∣

∣

∣
U

k,0
km+(t−1)

(q)
∣

∣

∣
=

∣

∣

∣
U

k,0
km+t(q)

∣

∣

∣
= · · · =

∣

∣

∣
U

k,0
km+k(q)

∣

∣

∣

■ The approach to this is a bijective proof.
■ Based on the pattern q, we perform an insertion of the

proper value into a corresponding location.
■ This serves as a surprising result for no other patterns contain

repeats; for all other patterns q,
∣

∣

∣
U

k,0
n (q)

∣

∣

∣
<

∣

∣

∣
U

k,0
n+1(q)

∣

∣

∣

(except for patterns of the form 123 · · · t of course).
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■ The result in the previous slide is quite nice, but it is very
limited. However, checking numerical data indicates that a
similar theorem holds for l > 0.
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