Staged Self-Assembly

Rohil Prasad Jonathan Tidor
Second Annual MIT PRIMES Conference

Saturday, May 19, 2012

Introduction

Definition

Self-assembly is the process by which order spontaneously forms from simple parts.

Simple Parts

Definition

A tile is a non-rotatable square with a glue on each edge.

Definition

Let G be the set of all glues, including \emptyset, the null glue.

Supertiles

Definition

A supertile is a collection of tiles that are bound together. It is said to be fully connected if the strength of every bond is non-zero, otherwise, the supertile is partially connected.

Supertiles

Definition

A supertile is a collection of tiles that are bound together. It is said to be fully connected if the strength of every bond is non-zero, otherwise, the supertile is partially connected.

Supertiles

Definition

A supertile is a collection of tiles that are bound together. It is said to be fully connected if the strength of every bond is non-zero, otherwise, the supertile is partially connected.

Glues Stick Together

Definition

The glue function $g: G \times G \rightarrow \mathbb{R}_{0}^{+}$determines the strength of the bond between glues.

- $g(x, y)=g(y, x) \quad \forall x, y \in G$
- $g(\emptyset, x)=0 \quad \forall x \in G$

Glues Stick Together

Definition

The glue function $g: G \times G \rightarrow \mathbb{R}_{0}^{+}$determines the strength of the bond between glues.

- $g(x, y)=g(y, x) \quad \forall x, y \in G$
- $g(\emptyset, x)=0 \quad \forall x \in G$

For our constructions, we set

- $g(x, y)=0 \quad \forall x \neq y$
- $g(x, x) \geq 1 \quad \forall x \neq \emptyset$

Glues Stick Together

Definition

The glue function $g: G \times G \rightarrow \mathbb{R}_{0}^{+}$determines the strength of the bond between glues.

- $g(x, y)=g(y, x) \quad \forall x, y \in G$
- $g(\emptyset, x)=0 \quad \forall x \in G$

For our constructions, we set

- $g(x, y)=0 \quad \forall x \neq y$
- $g(x, x) \geq 1 \quad \forall x \neq \emptyset$

Typically,

- $g(x, x)=1 \quad \forall x \neq \emptyset$

Tiles Stick Together

Definition

The temperature, τ, is a property of the system that determines what strength bond is necessary to hold things together.

- If the strength of the bond between two tiles is at least the temperature, the tiles will connect.

Tiles Stick Together

Definition

The temperature, τ, is a property of the system that determines what strength bond is necessary to hold things together.

- If the strength of the bond between two tiles is at least the temperature, the tiles will connect.

- Typically we work in temperature $\tau=1$.

Supertiles Stick Together

- Two supertiles will stick together if the sum of the strengths of the bonds between all adjacent edges is at least the temperature.
- This means that (especially for $\tau=1$) supertiles can bind together in many ways.

Supertiles Stick Together

- Two supertiles will stick together if the sum of the strengths of the bonds between all adjacent edges is at least the temperature.
- This means that (especially for $\tau=1$) supertiles can bind together in many ways.

SEgment Construction

- Consider the single tile:

- It will assemble into the following supertiles:

SEGMENT CONSTRUCTION

- Consider the single tile:

- It will assemble into the following supertiles:

SEGMENT CONSTRUCTION

- Consider the single tile:

- It will assemble into the following supertiles:

SEGMENT CONSTRUCTION

- Consider the single tile:

- It will assemble into the following supertiles:

- This set of supertiles is not uniquely produced because it continues on indefinitely.

Segment Construction Attempt 1

- Consider the single tile:

- It will assemble into the following supertiles:

- This set of supertiles is not uniquely produced because it continues on indefinitely.

SEGMENT CONSTRUCTION

- Consider the set of tiles:

SEgment Construction

- Consider the set of tiles:

- It will assemble into many supertiles, including:

SEgment Construction

- Consider the set of tiles:

- It will assemble into many supertiles, including:

- However, all supertiles continue connecting until they reach their final state as supertile:

SEgment Construction

- Consider the set of tiles:

- It will assemble into many supertiles, including:
\square

- However, all supertiles continue connecting until they reach their final state as supertile:

- This supertile is said to be terminal, because it cannot bind to any other supertile

Segment Construction Attempt 2

- Consider the set of tiles:

- It will assemble into many supertiles, including:
\square

- However, all supertiles continue connecting until they reach their final state as supertile:

- This supertile is said to be terminal, because it cannot bind to any other supertile

Tile and Glue Complexities

- We want to minimize the number of glues because the creation of a large number of glues provides a technical challenge.

Definition

The glue complexity of a construction is $|G|$, the number of glues used, and the tile complexity, T, is the number of distinct tiles used in the construction.

- $|G| / 4 \leq T \leq|G|^{4}$, so we typically attempt to minimize the tile complexity.

SEGMENT CONSTRUCTION

Segment Construction Attempt 3

- We need some way of separating groups of tiles so that not every possible connection occurs.

Bins and Stages

Definition

A bin is a container of tiles, and a stage is a unit of time.

- Every stage, the contents of each bin interact until they reach a terminal state.
- Then, the terminally produced supertiles from each bin can be copied and mixed into multiple other bins.
- This mixing can occur between any number of pairs of bins between each stage.
- In addition, specific tiles may be added to each bin at each stage.

The Mix Graph

Definition

Given an assembly system with r stages and b bins, the mix graph is an rb-vertex graph that provides a visual representation of the mixing of bins from stage to stage.

Segment Construction Attempt 3 Revisited

Segment Construction Attempt 3 Revisited

Segment Construction Attempt 3 Revisited

Segment Questions

Theorem
A $1 \times n$ line segment can be constructed using 6 tiles, 7 bins, and $O(\log n)$ stages.

Can the same segment be constructed with:

- fewer bins?
- fewer tiles?
- more bins?
- more tiles?

Segment Questions

Theorem

A $1 \times n$ line segment can be constructed using 6 tiles, 7 bins, and $O(\log n)$ stages.

Can the same segment be constructed with:

- fewer bins? yes
- fewer tiles? no
- more bins? yes
- more tiles? yes

$B=2$

Theorem

A $1 \times n$ line segment can be constructed using $O(1)$ tiles, 2 bins, and $O(\log n)$ stages.

$B=2$

Theorem

A $1 \times n$ line segment can be constructed using $O(1)$ tiles, 2 bins, and $O(\log n)$ stages.

$B=2$

Theorem

A $1 \times n$ line segment can be constructed using $O(1)$ tiles, 2 bins, and $O(\log n)$ stages.

B BINS

Theorem

$A 1 \times n$ line segment can be constructed using $O(1)$ tiles, B bins, and $O\left(\log _{B} n\right)$ stages.

B Bins

Theorem

A $1 \times n$ line segment can be constructed using $O(1)$ tiles, B bins, and $O\left(\log _{B} n\right)$ stages.

B Bins, T Tiles

Theorem

A $1 \times n$ line segment can be constructed using T tiles, B bins, and $O\left(\log _{B} \frac{n}{T}\right)$ stages for $T \geq B$ and in $O\left(\log _{T} n\right)$ stages for $T<B$.

Proof:

- With more tiles, we divide them into separate groups, each with distinct glues, which allows the construction of multiple identical segments in parallel.
- This construction proceeds in $O\left(\log _{B} \frac{n}{T}\right)$ stage complexity if there are enough tiles to create a single group of tiles.
- With less than B tiles, we can make one group if we use only T of the bins and leave the others empty.

Is This Optimal?

Is This Optimal?

- Yes it is!
- Given the tiles in our final shape, an analysis of the paths they take in the mix graph gives $\Omega\left(\log _{B} \frac{n}{T}\right)$ stages in our construction.

Changing the Temperature

Definition

Remember that the temperature, τ, is the total connection strength along the border of two supertiles that is necessary for connection to оссит.

- When $\tau=2$, it is useful to have some glues where $g(x, x)=1$ and some where $g(x, x)=2$.

Definition

If $g(x, x)=1, x$ is said to be a single-strength glue, while if $g(x, x)=2, x$ is a double-strength glue.

- Using $\tau=2$ yields simple constructions for shapes that have more complex constructions in $\tau=1$.

$n \times n$ SQUARE $\operatorname{IN} \tau=2$

Theorem

A $n \times n$ square can be constructed using $O(1)$ tiles, 2 bins, and $O(\log n)$ stages in temperature $\tau=2$.

$n \times n$ SQUARE $\operatorname{IN} \tau=2$

Theorem

A $n \times n$ square can be constructed using $O(1)$ tiles, 2 bins, and $O(\log n)$ stages in temperature $\tau=2$.

$n \times n$ SQUARE $\operatorname{IN} \tau=2$

Theorem

A $n \times n$ square can be constructed using $O(1)$ tiles, 2 bins, and $O(\log n)$ stages in temperature $\tau=2$.

$n \times n$ SQUARE $\operatorname{IN} \tau=2$

Theorem

A $n \times n$ square can be constructed using $O(1)$ tiles, 2 bins, and $O(\log n)$ stages in temperature $\tau=2$.

$n \times n$ Right Isosceles Triangle In $\tau=2$

Theorem

A $n \times n$ isosceles right triangle can be constructed using $O(1)$ tiles, 2 bins, and $O(\log n)$ stages in temperature $\tau=2$.

$n \times n$ Right Isosceles Triangle In $\tau=2$

Theorem

A $n \times n$ isosceles right triangle can be constructed using $O(1)$ tiles, 2 bins, and $O(\log n)$ stages in temperature $\tau=2$.

$n \times n$ Right Isosceles Triangle In $\tau=2$

Theorem

A $n \times n$ isosceles right triangle can be constructed using $O(1)$ tiles, 2 bins, and $O(\log n)$ stages in temperature $\tau=2$.

Arbitrary Monotone Shape Construction

Theorem

Any monotone shape can be constructed using $O(n)$ tiles, 2 bins, and $O(\log n)$ stages in temperature $\tau=2$.

- Construct a 'border' for the desired shape.
- Fill in the other parts of the shape using tiles with the same glue on all sides.

Another Arbitrary Shape Construction

Definition

A shape is called radially monotone if, for some choice of the center, every tile can be connected to the center as a path whose lattice distance from the center is increasing.

A Diamond Construction

Theorem

A diamond of radius r can be constructed using $O(r)$ tiles, 1 bin, and $O(r)$ stages.

A Diamond Construction

Theorem

A diamond of radius r can be constructed using $O(r)$ tiles, 1 bin, and $O(r)$ stages.

Arbitrary Radially Monotone Shapes

Theorem

Any radially monotone shape of radius r can be constructed using $O(r)$ tiles, 1 bin, and $O(r)$ stages.

Arbitrary Radially Monotone Shapes

Theorem

Any radially monotone shape of radius r can be constructed using $O(r)$ tiles, 1 bin, and $O(r)$ stages.

Arbitrary Radially Monotone Shapes

Theorem

Any radially monotone shape of radius r can be constructed using $O(r)$ tiles, 1 bin, and $O(r)$ stages.

Arbitrary Radially Monotone Shapes

Theorem

Any radially monotone shape of radius r can be constructed using $O(r)$ tiles, 1 bin, and $O(r)$ stages.

Arbitrary Radially Monotone Shapes

Theorem

Any radially monotone shape of radius r can be constructed using $O(r)$ tiles, 1 bin, and $O(r)$ stages.

Arbitrary Radially Monotone Shapes

Theorem

Any radially monotone shape of radius r can be constructed using $O(r)$ tiles, 1 bin, and $O(r)$ stages.

Arbitrary Radially Monotone Shapes

Theorem

Any radially monotone shape of radius r can be constructed using $O(r)$ tiles, 1 bin, and $O(r)$ stages.

Arbitrary Radially Monotone Shapes

Theorem

Any radially monotone shape of radius r can be constructed using $O(r)$ tiles, 1 bin, and $O(r)$ stages.

Why So SLOW?

- Compared to our other constructions, the two constructions of arbitrary shapes have very high tile and stage complexities. Why?

Why So SLOW?

- Compared to our other constructions, the two constructions of arbitrary shapes have very high tile and stage complexities. Why?
- From an information theory perspective, an arbitrary shape encodes much more information than a segment or square, which can be described by a single number.
- In fact, using the Kolmogorov Complexity, we can show that these constructions proceed in the optimal stage complexity for their tile and bin complexities.

Further Directions

- Optimize construction of $n \times n$ squares for B bins and T tiles
- Probabilistic model
- Abnormal shapes (Extremely long rectangles, etc.)

AcKnowledgments

We would like to thank:

- Our families for their continual support.
- Jesse Geneson for putting up with us for many months.
- The MIT PRIMES Program for giving us the opportunity to do this research.

