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INTRODUCTION

Definition
Self-assembly is the process by which order spontaneously forms
from simple parts.



SIMPLE PARTS

Definition
A tile is a non-rotatable square with a glue on each edge.

Definition
Let G be the set of all glues, including ∅, the null glue.



SUPERTILES

Definition
A supertile is a collection of tiles that are bound together. It is said to
be fully connected if the strength of every bond is non-zero,
otherwise, the supertile is partially connected.



SUPERTILES

Definition
A supertile is a collection of tiles that are bound together. It is said to
be fully connected if the strength of every bond is non-zero,
otherwise, the supertile is partially connected.



SUPERTILES

Definition
A supertile is a collection of tiles that are bound together. It is said to
be fully connected if the strength of every bond is non-zero,
otherwise, the supertile is partially connected.



GLUES STICK TOGETHER

Definition
The glue function g : G× G→ R+

0 determines the strength of the
bond between glues.

I g(x, y) = g(y, x) ∀x, y ∈ G
I g(∅, x) = 0 ∀x ∈ G

For our constructions, we set
I g(x, y) = 0 ∀x 6= y
I g(x, x) ≥ 1 ∀x 6= ∅

Typically,
I g(x, x) = 1 ∀x 6= ∅
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TILES STICK TOGETHER

Definition
The temperature, τ , is a property of the system that determines what
strength bond is necessary to hold things together.

I If the strength of the bond between two tiles is at least the
temperature, the tiles will connect.

I Typically we work in temperature τ = 1.
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strengths of the bonds between all adjacent edges is at least
the temperature.

I This means that (especially for τ = 1) supertiles can bind
together in many ways.
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I Consider the single tile:

I It will assemble into the following supertiles:

This set of supertiles is not uniquely produced because it
continues on indefinitely.
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I However, all supertiles continue connecting until they
reach their final state as supertile:

I This supertile is said to be terminal, because it cannot bind
to any other supertile
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SEGMENT CONSTRUCTION ATTEMPT 2

I Consider the set of tiles:

I It will assemble into many supertiles, including:

I However, all supertiles continue connecting until they
reach their final state as supertile:

I This supertile is said to be terminal, because it cannot bind
to any other supertile



TILE AND GLUE COMPLEXITIES

I We want to minimize the number of glues because the
creation of a large number of glues provides a technical
challenge.

Definition
The glue complexity of a construction is |G|, the number of glues
used, and the tile complexity, T, is the number of distinct tiles used
in the construction.

I |G|/4 ≤ T ≤ |G|4, so we typically attempt to minimize the
tile complexity.
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SEGMENT CONSTRUCTION ATTEMPT 3

I We need some way of separating groups of tiles so that not
every possible connection occurs.



BINS AND STAGES

Definition
A bin is a container of tiles, and a stage is a unit of time.

I Every stage, the contents of each bin interact until they
reach a terminal state.

I Then, the terminally produced supertiles from each bin
can be copied and mixed into multiple other bins.

I This mixing can occur between any number of pairs of
bins between each stage.

I In addition, specific tiles may be added to each bin at each
stage.



THE MIX GRAPH

Definition
Given an assembly system with r stages and b bins, the mix graph is
an rb-vertex graph that provides a visual representation of the mixing
of bins from stage to stage.



SEGMENT CONSTRUCTION ATTEMPT 3 REVISITED
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SEGMENT QUESTIONS

Theorem
A 1× n line segment can be constructed using 6 tiles, 7 bins, and
O(log n) stages.

Can the same segment be constructed with:

I fewer bins?
I fewer tiles?
I more bins?
I more tiles?
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B = 2

Theorem
A 1× n line segment can be constructed using O(1) tiles, 2 bins, and
O(log n) stages.
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B BINS, T TILES

Theorem
A 1× n line segment can be constructed using T tiles, B bins, and
O(logB

n
T ) stages for T ≥ B and in O(logT n) stages for T < B.

Proof:

I With more tiles, we divide them into separate groups, each
with distinct glues, which allows the construction of
multiple identical segments in parallel.

I This construction proceeds in O(logB
n
T ) stage complexity if

there are enough tiles to create a single group of tiles.
I With less than B tiles, we can make one group if we use

only T of the bins and leave the others empty.



IS THIS OPTIMAL?

I Yes it is!
I Given the tiles in our final shape, an analysis of the paths

they take in the mix graph gives Ω(logB
n
T ) stages in our

construction.
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CHANGING THE TEMPERATURE

Definition
Remember that the temperature, τ , is the total connection strength
along the border of two supertiles that is necessary for connection to
occur.

I When τ = 2, it is useful to have some glues where
g(x, x) = 1 and some where g(x, x) = 2.

Definition
If g(x, x) = 1, x is said to be a single-strength glue, while if
g(x, x) = 2, x is a double-strength glue.

I Using τ = 2 yields simple constructions for shapes that
have more complex constructions in τ = 1.



n× n SQUARE IN τ = 2

Theorem
A n× n square can be constructed using O(1) tiles, 2 bins, and
O(log n) stages in temperature τ = 2.
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ARBITRARY MONOTONE SHAPE CONSTRUCTION

Theorem
Any monotone shape can be constructed using O(n) tiles, 2 bins, and
O(log n) stages in temperature τ = 2.

I Construct a ‘border’ for the desired shape.
I Fill in the other parts of the shape using tiles with the same

glue on all sides.



ANOTHER ARBITRARY SHAPE CONSTRUCTION

Definition
A shape is called radially monotone if, for some choice of the center,
every tile can be connected to the center as a path whose lattice
distance from the center is increasing.



A DIAMOND CONSTRUCTION

Theorem
A diamond of radius r can be constructed using O(r) tiles, 1 bin, and
O(r) stages.
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WHY SO SLOW?

I Compared to our other constructions, the two
constructions of arbitrary shapes have very high tile and
stage complexities. Why?

I From an information theory perspective, an arbitrary
shape encodes much more information than a segment or
square, which can be described by a single number.

I In fact, using the Kolmogorov Complexity, we can show
that these constructions proceed in the optimal stage
complexity for their tile and bin complexities.
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FURTHER DIRECTIONS

I Optimize construction of n× n squares for B bins and T
tiles

I Probabilistic model
I Abnormal shapes (Extremely long rectangles, etc.)
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