Apollonian Equilateral Triangles

Christina Chen

Second Annual MIT PRIMES Conference
May 19, 2012

Geometric Motivation: Apollonian Circles

Geometric Motivation: Apollonian Circles

Figure 1: $(a+b+c+d)^{2}=2\left(a^{2}+b^{2}+c^{2}+d^{2}\right)$.

Geometric Motivation: Apollonian Circles

Figure 1: $(a+b+c+d)^{2}=2\left(a^{2}+b^{2}+c^{2}+d^{2}\right)$.

27
$18 \quad 23$

Geometric Motivation: Apollonian Circles

Figure 1: $(a+b+c+d)^{2}=2\left(a^{2}+b^{2}+c^{2}+d^{2}\right)$.

Geometric Motivation: Apollonian Circles

Figure 1: $(a+b+c+d)^{2}=2\left(a^{2}+b^{2}+c^{2}+d^{2}\right)$.

Geometric Motivation: Apollonian Circles

Figure 1: $(a+b+c+d)^{2}=2\left(a^{2}+b^{2}+c^{2}+d^{2}\right)$.

Figure 2: At each stage, a circle is incribed in each lune.

A Problem Involving an Equilateral

Triangle

A Problem Involving an Equilateral

Triangle

Figure 3: $(a+b+c+d)^{2}=3\left(a^{2}+b^{2}+c^{2}+d^{2}\right)$.

Definitions

Definition (Triangle Quadruple)

A triangle quadruple $t=(a, b, c, d)$ is a quadruple of nonnegative integers satisfying

$$
3\left(a^{2}+b^{2}+c^{2}+d^{2}\right)=(a+b+c+d)^{2} .
$$

Definitions

Definition (Triangle Quadruple)

A triangle quadruple $t=(a, b, c, d)$ is a quadruple of nonnegative integers satisfying

$$
3\left(a^{2}+b^{2}+c^{2}+d^{2}\right)=(a+b+c+d)^{2} .
$$

Definition (Primitive Triangle Quadruple)
A triangle quadruple (a, b, c, d) is primitive if

$$
\operatorname{gcd}(a, b, c, d)=1
$$

Operations

1) For solutions d and d^{\prime} to the equation for triangle quadruples,

$$
d+d^{\prime}=a+b+c
$$

Operations

1) For solutions d and d^{\prime} to the equation for triangle quadruples,

$$
d+d^{\prime}=a+b+c
$$

2) If (a, b, c, d) is a triangle quadruple, then

$$
(a, b, c, a+b+c-d)
$$

is also a triangle quadruple.

Geometric Representation of Operations

$$
t=(7,4,3,1)
$$

Geometric Representation of Operations

$$
t=(7,4,3,1)
$$

Geometric Representation of Operations

Geometric Representation of Operations

$$
t=(7,4,3,1)
$$

$t^{\prime}=(7,4,9,1)$
Figure 4: The operation is geometrically represented by reflecting two segments over a side of the equilateral triangle.

Matrix Representation of Operations

$$
\begin{aligned}
& S_{1}=\left(\begin{array}{cccc}
-1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) S_{2}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & -1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& S_{3}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & -1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) S_{4}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 1 & 1 & -1
\end{array}\right)
\end{aligned}
$$

Matrix Representation of Operations

$$
\begin{aligned}
& S_{1}=\left(\begin{array}{cccc}
-1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) S_{2}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & -1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& S_{3}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & -1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) S_{4}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 1 & 1 & -1
\end{array}\right)
\end{aligned}
$$

For $\mathbf{v}=(a, b, c, d)^{T}, S_{4} \mathbf{v}=(a, b, c, a+b+c-d)^{T}$.

More Definitions

Definition (Triangle Group)

The triangle group T is the group generated by $S_{1}, S_{2}, S_{3}, S_{4}$.

More Definitions

Definition (Triangle Group)

The triangle group T is the group generated by $S_{1}, S_{2}, S_{3}, S_{4}$.

Note that the generators satisfy:

More Definitions

Definition (Triangle Group)

The triangle group T is the group generated by $S_{1}, S_{2}, S_{3}, S_{4}$.

Note that the generators satisfy:

1. $S_{i}^{2}=I$ for $i=1,2,3,4$.

More Definitions

Definition (Triangle Group)

The triangle group T is the group generated by $S_{1}, S_{2}, S_{3}, S_{4}$.

Note that the generators satisfy:

1. $S_{i}^{2}=I$ for $i=1,2,3,4$.
2. $\left(S_{i} S_{j}\right)^{3}=I$ for $i \neq j$.

The Cayley Graph for the Triangle Group

Figure 5: Part of the Cayley graph for the infinite triangle group.

Root Quadruples

Definition (Root Quadruple)

A triangle quadruple $t=(a, b, c, d)$ is a root quadruple if it is not possible to perform an operation that reduces the sum $a+b+c+d$.

Root Quadruples

Definition (Root Quadruple)

A triangle quadruple $t=(a, b, c, d)$ is a root quadruple if it is not possible to perform an operation that reduces the sum $a+b+c+d$.

Lemma

For any triangle quadruple $t=(a, b, c, d)$, operating on the largest element does not increase $a+b+c+d$.

Root Quadruples

Lemma

Any triangle quadruple (a, b, c, d) can be reduced to the root quadruple ($0, x, x, x$) (or permutations), where $x=\operatorname{gcd}(a, b, c, d)$.

Root Quadruples

Lemma

Any triangle quadruple (a, b, c, d) can be reduced to the root quadruple ($0, x, x, x$) (or permutations), where $x=\operatorname{gcd}(a, b, c, d)$.

Example
$(3,4,7,1) \longrightarrow(3,4,1,1) \longrightarrow(3,1,1,1) \longrightarrow(0,1,1,1)$

Consequences Involving Orbits

A triangle quadruple (a, b, c, d) can generate a triangle quadruple $\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)$ in a finite number of operations if $\operatorname{gcd}(a, b, c, d)=\operatorname{gcd}\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)$.

Consequences Involving Orbits

A triangle quadruple (a, b, c, d) can generate a triangle quadruple $\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)$ in a finite number of operations if $\operatorname{gcd}(a, b, c, d)=\operatorname{gcd}\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)$.

Theorem

All primitive triangle quadruples are contained in one orbit.

Counting the Number of Quadruples

Question

Is it possible to compute the number of triangle quadruples with height $\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}$ below a given value?

Counting the Number of Quadruples

Question

Is it possible to compute the number of triangle quadruples with height $\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}$ below a given value?

Theorem

Let $F(x)$ be the number of triangle quadruples with $\sqrt{a^{2}+b^{2}+c^{2}+d^{2}} \leq x$. Then $F(x)=O\left(x^{2}\right)$.

Growth Rates

Growth Rates

Let W denote a word $S_{a_{1}} S_{a_{2}} \cdots$, where $S_{a_{i}} \neq S_{a_{i+1}}$.

Theorem

For any W of length $n \equiv i(\bmod 4)$ and a root quadruple $\mathbf{t}=(a, b, c, d)$ with $a \leq b \leq c \leq d$,

$$
\|W \mathbf{t}\|_{\infty} \leq\left\|T_{i}\left(S_{4} S_{3} S_{2} S_{1}\right)^{\frac{n-i}{4}} \mathbf{t}\right\|_{\infty}
$$

where $T_{i}=I, S_{1}, S_{2} S_{1}, S_{3} S_{2} S_{1}$ for $i=0,1,2,3$, respectively.

Is the Triangle Group a Coxeter Group?

Is the Triangle Group a Coxeter Group?

Lemma
The generators are reflections.

Is the Triangle Group a Coxeter Group?

Lemma

The generators are reflections.

Proof.

The eigenvalues of S_{i} are $1,1,1,-1$. It follows that the operation corresponding to S_{i} is the reflection over the plane spanning the vectors $v_{i_{1}}, v_{i_{2}}, v_{i_{3}}$, denoting the eigenvectors of S_{i}.

Is the Triangle Group a Coxeter Group?

Lemma

For $x=(a, b, c, d), S_{i}$ preserves the quadratic form $F(x)=3\left(a^{2}+b^{2}+c^{2}+d^{2}\right)-(a+b+c+d)^{2}=x Q x^{\top}$, where

$$
Q=\left(\begin{array}{cccc}
2 & -1 & -1 & -1 \\
-1 & 2 & -1 & -1 \\
-1 & -1 & 2 & -1 \\
-1 & -1 & -1 & 2
\end{array}\right)
$$

That is, $F(x)=F\left(S_{i} x\right)$.

Is the Triangle Group a Coxeter Group?

Theorem

The triangle group is a Coxeter group. In particular, since the determinant of its Cartan matrix is negative, it is a hyperbolic Coxeter group.

Is the Triangle Group a Coxeter Group?

Theorem

The triangle group is a Coxeter group. In particular, since the determinant of its Cartan matrix is negative, it is a hyperbolic Coxeter group.

Proof.

Abstractly, construct a Coxeter group with Q as its Cartan matrix. By the previous two lemmas, the triangle group is that Coxeter group.

Open Questions

1. Beginning with a specific root quadruple, is it possible to calculate the average value of the maximum element in the triangle quadruple obtained after n operations?

Open Questions

1. Beginning with a specific root quadruple, is it possible to calculate the average value of the maximum element in the triangle quadruple obtained after n operations?
2. Given any integer n, is it possible to calculate the number of triangle quadruples with n as the largest element?

Open Questions

1. Beginning with a specific root quadruple, is it possible to calculate the average value of the maximum element in the triangle quadruple obtained after n operations?
2. Given any integer n, is it possible to calculate the number of triangle quadruples with n as the largest element?
3. Given any pairs of number (p, q), is it possible to determine whether there exists a triangle quadruple containing p and q, and if such a quadruple does exist, is it possible to determine how many there are?

Acknowledgments

I want to thank

- Prof. R. Stanley, for suggesting this project and for answering my questions,
- my mentor Nan Li, for always being patient and willing to discuss problems,
- Prof. G. Strang, Prof. B. Poonen, and Prof. P. Etingof, for helping with various parts of the project,
- PRIMES, for another great year of research experience,
- my parents, for always supporting me.

Bibliography

嗇 R. Graham, J. Lagarias, C. Mallows, A. Wilks, and C. Yan, Apollonian Circle Packings: Geometry and Group Theory I. The Apollonian Group, Discrete Comput. Geom. 34(2005), 547-585.
R R. Graham, J. Lagarias, C. Mallows, A. Wilks, and C. Yan, Apollonian Circle Packings: Number Theory, J. of Number Theor. 100(2003), 1-45.
P. Sarnak, Integral Apollonian Packings,

Trans. Amer. Math. Mon. 118(2011), 291-306.

