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ABSTRACT. We study a family of equivalence relations in Sn, the group of permutations on n letters,
created in a manner similar to that of the Knuth relation and the forgotten relation. For our purposes,
two permutations are in the same equivalence class if one can be reached from the other through
a series of pattern-replacements using patterns whose order permutations are in the same part of a
predetermined partition of Sc.

When the partition is of S3 and has one nontrivial part of size greater than two, we provide
formulas for the number of classes created in all unresolved cases. When the partition is of S3 and
has two nontrivial parts, each of size two (as do the Knuth and forgotten relations), we enumerate
the classes for 13 of the 14 unresolved cases. In two of these cases, enumerations arise which are
the same as those yielded by the Knuth and forgotten relations. The reasons for this phenomenon
are still largely a mystery.

1. INTRODUCTION

In 1970, Donald Knuth discovered the so-called Knuth relation, using it as a tool for studying
the RSK (Robinson-Schensted-Knuth) correspondence. The RSK correspondence is a bijection
between permutations in Sn (for fixed n) and pairs of standard Young tableaux of the same shape
with n cells. The Knuth relation was designed to connect two permutations exactly when the first
tableau that each one is mapped to under the RSK correspondence is the same for both. However,
over time, it would find applications not only to combinatorics, but also to abstract algebra. The
Knuth relation is particularly well-known for its aid in the proof of the Littlewood-Richardson rule,
an identity which can be interpreted as a multiplication rule for Schur polynomials (among many
other things) and has applications in particle physics. This proof was historically one of the first
proofs to be found for the rule.

In 2008, Novelli and Schilling brought to light the so-called forgotten relation, originally dis-
covered by Lascoux and Schtzenberger in 1981, but heretofore ignored in most existing literature
(whence the name). The forgotten relation and the Knuth relation share a common structure: Each
of them is an equivalence relation on Sn (or, more generally, on some set of words) which connects
two permutations obtained from each other by a rearrangement of three consecutive letters accord-
ing to certain rules. The forgotten relation also shares a common application with its fore-father.
When either of the forgotten or Knuth relations is forced on the free associative algebra, we get
a structure in which the elementary symmetric functions (appropriately defined) commute. The
similar structure and uses of these two relations inspired two research groups to systematically
analyze relations in the same family in [LPRW] and [PRW].

There are several ways to set the rules that allow rearranging letters in a permutation. The
ones we are going to deal with allow the rearranging of more than three consecutive letters, but
the number of letters rearranged is fixed, and the rules which determine when rearrangements
are allowed depend only on the relative order of the letters we are rearranging and on the order
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in which we want to rearrange them. This is what [LPRW] and [PRW] call the ”only indices
adjacent”case (or the P| | case). We formalize the rules into the notion of a replacement partition
(see the definitions below). Both [LPRW] and [PRW] studied only replacement partitions with
one non-trivial part using patterns of size three. They considered two problems: First, how many
equivalence classes does a given such relation subdivide Sn into? Second, how big is the class
containing the identity? Along with solving the second problem, they were able to solve all but
seven cases of the first, as long as the nontrivial part of the replacement partition is required to
be of size greater than two. We extend their work by solving the remaining seven cases (Section
2). We furthermore study a family of relations more closely related to the Knuth and forgotten
relations, by considering replacement partitions of S3 having two non-trivial parts, each of size
two. We enumerate the classes in all but one of the unresolved cases (Section 3). Finally, we study
a connection between pattern-avoidance and the enumeration of equivalence classes in Section 4.
We conclude with comments on methodology and future work (Section 5).

Before we present our results, we establish some conventions. Most of these formalize conven-
tions made in [LPRW].

Definition 1.1. A word is a finite, possibly empty sequence of positive integers. The elements of a
word are called letters. We denote the i-th letter of word w as wi, with w1 as the first letter.

Definition 1.2. We regard any permutation of {1,2, . . . ,n} as a word (by writing it in one-line
notation). Conversely, given a word w with no two letters equal, we define the order permutation
of w as the unique permutation π ∈ Sn (where n is the length of w) such that for any i and j, we
have πi < π j if and only if wi < w j. This permutation π is also known as the standardization of w.

For example, the order permutation of 425 is 213. The notion of an order permutation is more
generally defined for any words (possibly with equal letters), which requires a subtler definition,
but we are never going to need it in this generality.

Definition 1.3. If a word w has order permutation w′, then we may simply say that w forms the
permutation w′.

Definition 1.4. A factor of a permutation is a subsequence of adjacent letters in a permutation.

Note that we may treat a factor either as a word or as its order permutation.

Definition 1.5. The position parity of a letter in a permutation is the parity of the position of the
letter.

For example, the first letter in a permutation has odd position parity.
Throughout the paper, may sometimes use notation like “ f (n < 3) = n+2” which is just short-

hand for “when n < 3, f (n) = n+2”.

Definition 1.6. If a and b are two words, then the concatenation of a with b is defined as the word
obtained by attaching b to the end of a. It is denoted by ab or a.b. (Note: If π is a permutation of
size n, then πn denotes the concatenation π.n, not the number π(n).)

For example, the concatenation of 21 with 72 is 2172.

Definition 1.7. Let π∈ Sn. Let w be a word with no two letters equal. If we can write w in the form
aub for some three (possibly empty) words a, u and b such that u has order permutation π, then we
say that u is a π in w (or a π pattern in w). We say that w avoids π if there is no π in w.
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For example, 574 is a 231 in 2657431 because the order permutation of 574 is 231. However,
3124 avoids 231.

We now will define the equivalence relations that we are going to study.

Definition 1.8. Let k ∈ N. A replacement partition of Sk is a set partition of the symmetric group
Sk.

Definition 1.9. Given a replacement partition K of Sk and a positive integer n, the K-equivalence
on Sn is defined as the equivalence relation on Sn generated by the following requirement: If φ∈ Sn
and ψ ∈ Sn are such that φ = aub and ψ = avb for some words a, b, u and v, where u and v have
length k, and the order permutation of u lies in the same part of K as the order permutation of v,
then we say that φ is equivalent to ψ.

Moreover, in this case, we say that ψ results from φ by a K-transformation, or more precisely, ψ

results from φ by a transformation p→ q, where p is the order permutation of u and q is the order
permutation of v.

When K is clear from the context, we abbreviate “K-equivalence” as “equivalence”, and “K-
transformation” as “transformation”.

We also write φ≡ ψ for “φ is equivalent to ψ”.

Note that if two permutations are equivalent, we may say that they are reachable from each
other. This tends to be used when we are providing the manner through which we can reach one
from the other.

If two permutations are connected by a transformation, then we say the letters in the hit used in
the transformation are involved in the transformation, even if they are static in the transformation.

What we call “K-equivalence” is denoted as “K| |-equivalence” in [LPRW].
Example: Let n = 5, k = 3, and K = {{123,321} ,{132,231} ,{213} ,{312}}. We will later
abbreviate this by K = {123,321}{132,231}, leaving out the outer brackets and the one-element
parts of the partition. Then, the permutation 15324 ∈ S5 is K-equivalent to 12354 ∈ S5 (because
15324 = aub and 12354 = avb with a = 1, u = 532, v = 235 and b = 4, and the order permutation of
532 lies in the same part of K as the order permutation of 235). More precisely, 12354 results from
15324 by a transformation 321→ 123. Similarly, 12354 is equivalent to 12453 (here, a = 12, and
b is the empty word), and 12453 results from 12354 by a transformation 132→ 231. Combining
these, we see that 15324 is equivalent to 12453, although 12453 does not directly result from 15324
by any transformation.

Definition 1.10. Given a replacement partition K and a positive integer n, the K-equivalence on Sn
partitions Sn into equivalence classes. We will briefly refer to these equivalence classes as classes.
A class is called trivial if it consists of one element only.

Definition 1.11. Let K be a replacement partition. If w is a word with no two letters equal, then
a hit (or more precisely, a K-hit) in w is a word u such that w = aub for some words a and b, and
such that the order permutation of u lies in a nontrivial part of K. A word with no two letters equal
is said to avoid K if it contains no hit, i.e., if it avoids every permutation in every nontrivial part of
K. Otherwise it is said to be non-avoiding, or, equivalently, a non-avoider (with respect to K).

Observe that each permutation that avoids K forms a trivial class (with respect to the
K-equivalence), whereas non-avoiders lie in nontrivial classes.

We will occasionally refer to the elements of K as patterns, hoping that no confusion with the
notation of “π pattern in w” can arise.
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Figure 1 shows the number of classes created in Sn by the replacement partitions considered in
this paper. Each of these results are proven in the following two sections.

replacement partition number of classes in Sn
{213,231,132} 2n−2 +2n−4
{123,132,231} 2n−1

{123,132,321} (n−1)!!+(n−2)!!+n−2
{123,132,312} f (n≥ 5) = f (n−1)+(n−2) · f (n−2)+1
{123,132,213,231} n
{123,132,231,321} 2 for n > 3
{213,132,231,312} 3
{123,132}{312,321} 2n−1

{123,132}{213,231} 2n−1

{123,231}{132,321} 2n−1

{132,312}{321,213} (n2 +n)/2−2
{123,231}{213,132} n2−3n+4
{123,321}{213,231} 3 for n > 5
{123,132}{231,312} 3 ·2n−3 +n−2 for n > 5
{123,132}{213,321} Sum of the first n−1 Motzkin numbers
{123,132}{213,312} f (n≥ 3) = f (n−1)+(n−1) · f (n−2)
{123,321}{132,213}

( n
bn/2c

)
+
( n−2
b(n−2)/2c

)
+3

{123,231}{321,213} f (n > 5) =

{
3n, if n is even
3n−1, if n is odd

{123,321}{132,231}
l
∑

x=1
x! ·
(n−x−1

h−1

)
+

h
∑

x=1
x! ·
(n−x−1

l−1

)
,

where l = bn/2c, h = dn/2e.

{123,231}{213,312} g(n,k) =



1
if n = 1 or
n−2k +1 = 0,

b(n+1)/2c
∑
j=1

g(n−1, j) if k = 1,

n−k
∑

x=k−1

n−k−x
∑
j=1

(x−1
k−2

)
·g(n−2k +1, j) otherwise.

f (n) =
bn/2+1c

∑
k=1

g(n+1,k)+n−2

FIGURE 1. The number of classes created in Sn by various replacement partitions
of S3. Unless otherwise specified, n ≥ 3. In the table, f (n) equals the number of
classes created and is used for recursive formulas.
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2. SINGLE REPLACEMENTS

In this section, we consider the number of classes created in Sn by replacement partitions of S3
with exactly one nontrivial part. This problem was previously addressed in some cases by [LPRW]
and [PRW]. We provide formulas for the number of classes in all cases where the nontrivial part
of the replacement partition is of size greater than two, apart from those that have been previously
solved.

When considering replacement partitions, it is important to note that some relations are equiv-
alent to others. In fact, let w be the permutation k(k− 1) . . .1 ∈ Sk (where k is the size of the
permutations in the replacement partition, and needs not be 3 in this argument). Without chang-
ing the structure of the classes, one can either replace each pattern π in the replacement parti-
tion by π ◦w = πkπk−1 . . .π1, or replace each pattern π in the replacement partition by w ◦ π =
(k− π1 + 1)(k− π2 + 1) . . .(k− πk + 1). By these two operations (which generate a Klein four-
group if k ≥ 3), the set of all replacement partitions of Sk is subdivided into orbits (mostly of size
4, but occasionally smaller), and if we can count the number of classes which are generated in Sn
by one partition in each orbit, we automatically obtain the same number for all the other partitions
in all of the orbits. Noting this, we will only provide results for the distinct cases.

The following subsections are concerned with one replacement partition each. In each subsec-
tion, the replacement partition K is to be understood to be the partition mentioned in the title of the
subsection.

2.1. {123,132,321}-Equivalence.

Lemma 2.1. Let n ≥ 5. Let w ∈ Sn be a permutation that is avoiding except for one hit in the
final three letters (i.e., its first n−1 letters form an avoiding word, but its final three letters form a
hit). Then, w is equivalent to a permutation that is non-avoiding in the left-most n−1 letters (i.e.,
whose first n−1 letters form a non-avoider) under the {123,132,321}-equivalence.

Proof. The word formed by the first n− 1 letters of w is avoiding, and hence contains no hit.
In particular, it contains no 123s and no 132s. Thus, the letter 1 must be among the final three
letters of w. Since these final three letters form a hit, we can rearrange them as a 123. Let w′ be
what w becomes after this rearrangement; clearly, w ≡ w′. Let w′′ be the what w′ becomes upon
swapping 1 with the final letter of w; then, w′′ ≡ w′ (since w′′ is obtained from w′ by a 123→ 321
transformation).

The final 4 letters of w′ form either a 2134, a 3124, or a 4123. In the first and the third cases,
the permutation w′′ contains a hit which ends with the penultimate letter of w′′. In the second case,
either w′ or w′′ contains a hit ending with the antepenultimate letter. Hence, in each case, either
w′ or w′′ is non-avoiding in the left-most n− 1 letters. Since w′′ ≡ w′ ≡ w, this yields that w is
equivalent to a permutation that is non-avoiding in the left-most n−1 letters. �

Note that Lemma 2.1 does not hold for n = 4. For example, it would fail in the case of w = 3124.
Before continuing, we will first define a set Bn ⊂ Sn.

Definition 2.2. The permutation bn ∈ Sn is (1,2, . . . ,n−2)◦(1,2, . . . ,n−4)◦(1,2, . . . ,n−6)◦· · · ,
where the product ends with (1) if n is odd and with (1,2) if n is even.

For example, b3 = 123, b4 = 2134, b5 = 23145, and b6 = 324156.

Definition 2.3. We say that B2 = {}. Then, Bn>2 is the set containing the following:
(1) wn for each w ∈ Bn−1;
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(2) bn.

For example, B4 = {1234,2134}, B5 = {12345,21345,23145}, and
B6 = {123456,213456,231456,324156}. Note that Bn has n−2 elements.

Three important observations should be made.
(1) For w ∈ Bn, the final three letters of w are in increasing order.
(2) For w ∈ Bn, w ends with (n−2)1(n−1)n.
(3) For w ∈ Bn, 1 and the two letters following it form a 123 hit. If w 6= bn, this means that w

contains a hit in its first n−1 letters 1.

Lemma 2.4. Let n ≥ 5. In Sn, every non-avoiding permutation is equivalent to a permutation in
Bn under the {123,132,321}-equivalence.

Proof. Assume the lemma holds for all lower n≥ 5. The inductive base case of S5 is easily shown
computationally. Let w ∈ Sn be non-avoiding. By Lemma 2.1, we may assume without loss of
generality that the left-most n−1 letters of w are non-avoiding. Applying the inductive hypothesis
to the left-most n− 1 letters of w, we rearrange them to ensure that they lie in Bn−1

2. The
resulting permutation will be called w′. By Observation (1), w′ contains a hit ending with the
penultimate letter. So, we can apply the inductive hypothesis to the right-most n− 1 letters of
w′ yielding a permutation w′′. Observation (2) shows that n must be among the right-most n− 1
letters of w′, and hence is among the right-most n−1 letters of w′′. Thus, by Observation (2) again,
n is the final letter of w′′. If w′′ is non-avoiding in the left-most n− 1 letters, then we apply the
inductive hypothesis to them and we are done. If w′′ is avoiding in the left-most n−1 letters, then
by Observation (3), the right-most n−1 letters of w′′ form bn−1. Thus the final four letters of w′′

are of the form 2134 (by Observation (2)) where 1 is the actual letter 1 (because otherwise 1 would
be the first letter of a hit in the left-most n−1 letters, a contradiction).

Rearranging those letters to form 2431, we arrive at w′′′ which is non-avoiding in the left-most
n−1 letters and which ends with the letter 1. Performing the inductive hypothesis on the left-most
n−1 letters, we arrive at x ∈ Sn which ends with a 2341 (by Observation (2)). Note that acting as
the 1 is the letter 1, and that by Observation (2), acting as the 3 and 4 are n−1 and n respectively.
Performing 2341→ 2431→ 2134 on the final 4 letters, we get x′.

Let z∈Bn−1 be the order permutation of the first n−1 letters of x. Let z′ be the order permutation
of the first n− 1 letters of x′. If z′ is non-avoiding, then applying the inductive hypothesis to first
n−1 letters of x′, we are done. Otherwise, z′ is avoiding and so must be the first n−3 letters of z.
Hence, by Observation (3), z is either bn−1 or bn−2(n−1).

If z = bn−2(n−1), then recalling that the final letter of x is the actual 1, we see that x′ is obtained
from the bn−2 by adding 1 to each of its letters, appending n1 to the right end of the resulting word,
and replacing the final three letters (n− 1)n1 by 1(n− 1)n. It’s not hard to see that as a result,
x′ = bn and we are done.

Consider the remaining case, when z = bn−1. Then, to the right-most 5 letters of x, we apply
32451→ 32541→ 32145→ 12345 (note that the 5 here is n, due to Observation (2)) and reach
a permutation y. We know that y has n in the right-most position and has a hit ending with the
penultimate letter. So, we may apply the inductive hypothesis to the first n−1 letters and reach a
permutation in Bn. �

1This is because 1 is in position k−2 in bk for each k > 2. So, each w 6= bn in Bn has 1 in position less than n−2.
2This is a slight abuse of notation. What we really mean is that the order permutation of these n−1 letters lies in Bn−1.
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Lemma 2.5. No two distinct elements in Bn are equivalent under the {123,132,321}-equivalence
for n≥ 3.

Proof. Let k ∈ {1,2, . . . ,n}. We say that a word w satisfies property Ak if there exists a strictly
increasing sequence (i1, i2, . . . , ik) of integers of equal parity satisfying

wi1 = k, wi2 = k−1, wi3 = k−2, . . . , wik = 1

(i.e., satisfying wi j = k− j +1 for every j ∈ {1,2, . . . ,k}).
It is easy to see that if a permutation in Sn satisfies property Ak for some k, then every permu-

tation equivalent to it also satisfies Ak for the same k. Indeed, whenever we perform one of the
transformations 123↔ 132, 132↔ 321, and 321↔ 123, the position parity of a letter i does not
change as long as every letter smaller than i lies to the right of i and has the same position parity
as i. But as long as property Ak holds, this is guaranteed for any of the letters k, k−1, . . ., 1. So,
the position parity of letters ≤ k cannot change under any of these transformations as long as Ak
holds. Moreover, as long as Ak is satisfied, for every j ∈ {1,2, . . . ,k−1}, the letter j is at least two
positions to the right of the letter j+1 in our permutation (since i1, i2, . . . , ik are of equal parity and
increase), and thus it cannot ”jump” over j+1 in a single application of one of the transformations
123↔ 132, 132↔ 321, 321↔ 123 3, i.e., it stays to the right of j + 1. Thus, the order of the
letters k, k−1, . . ., 1 in our permutation does not change. Hence, after we apply a transformation,
the permutation still satisfies property Ak for the same k.

Thus, for every k ∈ {1,2, . . . ,n}, the validity of property Ak is an invariant under our equivalence
relation. Since the 2m-th and 2m + 1-th elements of Bn (where the i-th element of Bn means the
element which has 1 in position i) satisfy properties A1, A2, . . ., Am but none of Am+1, Am+2, . . .,
they can not be equivalent to any other elements of Bn. However, since the 2m-th element and the
2m+1-th elements of Bn have 1 in different position parities (and in fact, each of the letters from
1 to m in different position parities), they can not be equivalent. Thus, no two distinct elements of
Bn are equivalent. �

Remark 2.6. Noting Lemmas 2.4 and 2.5,we see that every non-trivial class in Sn under the equiva-
lence has exactly one representative in Bn. When given a non-avoider w∈ Sn, the Bn-representative
of its class can be easily found algorithmically by checking which of the relations Ak (defined in
the proof of Lemma 2.5) are satisfied for w and checking the position parity of the letter 1 in w.

Proposition 2.7. Let n ≥ 5. In Sn, there are n− 2 non-trivial classes under the {123,132,321}-
equivalence.

Proof. This follows from Lemma 2.4 and Lemma 2.5. �

Proposition 2.8. Let n ≥ 5. There are (n− 1)!! + (n− 2)!! + n− 2 classes in Sn under the
{123,132,321}-equivalence.

Proof. By Proposition 2.7, there are n− 2 non-trivial classes. By Theorem 3 of [Ki], there are
(n−1)!!+(n−2)!! trivial classes. �

Remark 2.9. Proposition 2.8 is of particular interest because [LPRW] collected computational data
in an attempt to enumerate the {123,132,321}-equivalence, but was unable to find a formula for
the number of classes in Sn. Proposition 2.8 provides this formula.

3In fact, if a letter is at least two places to the right of another letter, then the only way it can jump over that other letter
in one single application of one of these transformations is when these two letters are the last and the first letter of a
hit. But the letters j and j +1 cannot be the last and the first letter of any hit, respectively.
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2.2. {123,132,231}-Equivalence.

Definition 2.10. Let w be a word with no repeating letters. A left to right minimum of w is a letter
which is smaller than each letter to its left in w.

Definition 2.11. Let w be a word with no repeating letters. If x is a letter of w, then the x-min of w
is the first letter to x’s right that is a left to right minimum. The x-min needs not exist for all x.

Definition 2.12. We call a letter x of a word w (with no repeating letters) odd-tailed if x is a left to
right minimum and the x-min exists and is of different position parity than x.

Lemma 2.13. Let x be an odd-tailed letter of a permutation z ∈ Sn. Then, x is odd-tailed in any
permutation equivalent to z under the {123,132,231}-equivalence.

Proof. Let x be an odd-tailed letter of the permutation z in Sn. Let y be the x-min. Notice that
by their definitions, x is less than everything to its left and y is also less than everything to its left
(including x). As a consequence, x and y cannot be adjacent letters in any 123 pattern, 132 pattern,
or 231 pattern, and because x and y have different position parity, they can not be in the same hit.

In a hit of the form 123, the only possible position for x is the first (since x is a left to right
minimum). The same holds for a hit of the form 132. In a hit of the form 231, the first and the third
positions are possible candidates for containing left to right minima, but x cannot be in the first
(because then, the x-min would be in the third place, but that contradicts the fact that the x-min is
of different position parity than x). Hence, if x lies in a hit, then x is acting as the 1 in the hit. So,
after rearrangement, x is still a left to right minimum and maintains its position parity.

What remains to be shown is that the position parity of the x-min is unchanged after a trans-
formation. This is trivial if y is not in the hit being transformed. If y is in the hit, then there are
three subcases. If y is the final letter in the hit then the hit must be of the form 231, and after
any rearrangement, y is still the x-min and has the same position parity. We know that y can not
be the second letter in a hit because a left to right minimum can never be the second letter in a
hit. The final possibility is that y is the first letter in the hit. Then, any rearrangement of the hit
is either 123↔ 132, in which case y remains the x-min with the same position, or is one of the
rearrangements 231↔ 123 and 231↔ 132. In the latter scenario, the new x-min is either the first
or the final letter in the hit after the rearrangement and thus has the same position parity as y does
in z. �

Definition 2.14. A permutation is a V-permutation if its letters decrease until the letter 1 and then
increase until the end of the permutation.

For example, 531246 is a V-permutation in S6. Note that there are 2n−1 V-permutations in
Sn because for each letter other than 1, we can only choose if it is in the decreasing part or the
increasing part of the permutation.

Proposition 2.15. Let n≥ 3. In Sn, 2n−1 classes are created under the {123,132,231}-equivalence.

Proof. We will first prove that permutations in Sn are each equivalent to some V-permutation by
inducting on n with a trivial base case of n = 3. Take w ∈ Sn. If n is in the first position, leave
it there. Otherwise, slide n to the final position through repeated applications of 132→ 123 and
231→ 123. Applying the inductive hypothesis to the other n−1 letters, we reach a V-permutation.
Since there are 2n−1 V-permutations, there are at most 2n−1 classes.

Note that the set of odd-tailed letters in a V-permutation is exactly the set of letters to the left of
the letter 1. (They are odd-tailed because for a letter x to the left of 1, x is a left to right minimum
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and the x-min is the letter directly to x’s right and thus is of different position parity than x.) This set
is distinct for each V-permutation, so by Lemma 2.13, none of the V-permutations are equivalent to
each other. Hence, there are 2n−1 classes, each determined by the set of odd-tailed letters in each
of its permutations. �

2.3. {123,132,231,321}-Equivalence.

Proposition 2.16. There are two classes in Sn under the {123,132,231,321}-equivalence for n≥
4.

Proof. We will prove inductively that all permutations are reachable from either the identity or the
identity with 1 and 2 swapped. The base case of S4 can easily be shown computationally. Assume
the result holds for Sn−1. Let w ∈ Sn. First transforming the first n− 1 letters of w into either the
identity or the identity except with the first two letters swapped, then transforming the final n−1
letters (in the same way), and finally transforming the first n− 1 letters again (in the same way),
we arrive at either the identity or the identity with 1 and 2 swapped. This establishes that there is
at most two classes. There must be exactly two classes because the position parity of 1 is invariant
under the {123,132,231,321}-equivalence. �

2.4. {123,132,213,231}-Equivalence.

Proposition 2.17. There are n classes created in Sn under the {123,132,213,231}-equivalence.

Proof. We will prove this by inducting on n. The base case of S3 can easily be shown computa-
tionally. Assume the result holds for Sn−1. Note that if the left-most letter of a permutation is n,
then n is stationary under the relation. Hence, the permutations starting with n are clearly broken
into n−1 classes by the inductive hypothesis.

We will now show that the remaining permutations are reachable from the identity, thus com-
pleting the proof. Assume that all permutations not starting with n− 1 are reachable from the
identity in Sn−1. The base case for this induction is S3 and can easily be shown computationally.
The letter n, if not in the first position, can be freely moved from any position except for the first
to any position except for the first. Hence, we can move it to the second position in a given per-
mutation; then, we may apply the inductive hypothesis to the left-most n− 1 letters (resulting in
a permutation which begins with 12 or 13 or 23), then to the right-most n−1 letters (resulting in
a permutation which ends with n), and then to the left-most n− 1 letters again (which is allowed
because the first letter is 1 or 2), and obtain the identity. �

2.5. {123,132,312}-Equivalence. In this subsection, let f (n) = the number of classes created in
Sn under the {123,132,312}-equivalence.

Lemma 2.18. Every permutation not ending with 1 is equivalent to a permutation of the form
. . .1 j for some j under the {123,132,312}-equivalence.

Proof. Such a permutation is reached through repeated applications of 123→ 312 and 132→ 312
using the actual letter 1. �

Lemma 2.19. Permutations of the form . . .12 are equivalent under the {123,132,312}-equivalence.

Proof. Let w = 345 . . .12 where the letters not shown are in increasing order. We will show that
w is equivalent to an arbitrary permutation x of the form . . .12. The base cases of S3 and S4 for
the following induction are easy to show computationally. If the lemma holds for Sn−1, then from
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x, we can rearrange the right-most n−1 letters however we want, while not moving the final two.
We arrange them to be in increasing order, arriving at x′. Then, we rearrange the final three letters
of x′ with 312→ 123, arriving at x′′ where 1 and 2 are the actual letters 1 and 2. Performing the
inductive hypothesis on the left-most n−1 letters of x′′, the actual letter 3 is placed in the left-most
position and we get w′′′ (requires n ≥ 5). Rearranging the final 3 letters of w′′′, 123→ 312, we
reach y. Finally, applying the inductive hypothesis to the right-most n− 1 letters of y, we reach
w. �

Corollary 2.20. Permutations of the form 1 . . . are equivalent to each other under the
{123,132,312}-equivalence.

Proof. By Lemma 2.18, every permutation of the form 1 . . . is equivalent to a permutation of the
form . . .1 j for some j. This j must be 2 (since the smallest letter to the right of 1 never changes,
and that smallest letter is 2 in the original permutation). Thus, every permutation of the form 1 . . .
is equivalent to a permutation of the form . . .12. Since any two permutations of the latter kind are
equivalent (by Lemma 2.19), so must be any two permutations of the former kind. �

Lemma 2.21. No two permutations of the form . . .1x and . . .1y where x 6= y are equivalent under
the {123,132,312}-equivalence.

Proof. This falls easily from the fact that the smallest letter to the right of 1 never changes under
the equivalence. �

Lemma 2.22. Let a 6= 2 be a letter. Let x and y be equivalent permutations ending with 1a. Let
x′ and y′ be the permutations made from the first n− 2 letters of x and y respectively. Then, x′ is
equivalent to y′ under the {123,132,312}-equivalence.

Proof. Let x, y, x′, and y′ be as described. Consider a sequence of permutations that starts with x
and ends with y, with each pair of consecutive permutations in the sequence connected by a single
transformation. In such a sequence, going from one permutation to the next, a can never pass 1 and
1 can never pass 2 because the smallest letter to the right of 1 can not change. Note that since 1 and
2 can never be in the same hit because in the hits considered, 1 is always to the right of 2. Thus,
neither 1 nor a can be in the same hit as any letter that is to the left of 2. Consider two consecutive
permutations in the sequence, t and w. Let t ′ and w′ be t and w respectively with 1 and a slid to the
two right-most positions as 1a. If the transformation between t and w involves either 1 or a, then
it involves letters only to the right of the letter 2. However, these letters (excluding 1 and a) can be
rearranged freely in t ′ and w′ by Corollary 2.20. Thus t ′ and w′ are reachable from each other using
transformations that do not involve 1 or a. This, of course, also holds if the transformation between
t and w involves neither 1 nor a (because then, we can simply apply the same transformation to get
w′ from t ′). Thus, there exists a sequence of permutations in Sn−2 starting with x and ending with
y, with each pair of consecutive permutations in the sequence connected by transformations which
do not involve the final two letters 1a. Hence, x′ ≡ y′. �

Lemma 2.23. Let a 6= 2. Permutations of the form . . .1a break into f (n− 2) classes under the
{123,132,312}-equivalence for n≥ 5.

Proof. They clearly fall into at most f (n−2) classes. By Lemma 2.22, there are at least f (n−2)
classes. �

Theorem 2.24. f (n) = f (n−1)+(n−2) · f (n−2)+1 when n≥ 5. As base cases, f (3) = 4, and
f (4) = 9.
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Proof. Assume n ≥ 5 (The lower cases are computed manually). The permutations ending with
1 clearly fall into f (n− 1) classes because the final letter is immobile. By Lemma 2.18, every
permutation not ending with 1 is reachable from . . .1 j for some j and by Lemma 2.21, j is unique.
Permutations reachable from . . .12 fall into 1 class by Lemma 2.19. Permutations reachable from
. . .1 j where j 6= 2 fall into f (n− 2) classes for a given j by Lemma 2.23. There are n− 2 possi-
bilities for such an j. Thus, f (n) = f (n− 1)+ (n− 2) · f (n− 2)+ 1 when n ≥ 5, f (3) = 4, and
f (4) = 9. �

2.6. {213,132,231}-Equivalence.

Remark 2.25. In this subsection, let f (m) = the number of non-trivial classes created in Sm un-
der the {213,132,231}-equivalence. Let g(m) = the number of trivial classes created under the
{213,132,231}-equivalence in Sm.

Definition 2.26. A permutation in Sn is reductive if it satisfies the following three conditions.
• it does not start with n−2;
• it ends with (n−1)n;
• its left-most n−1 letters are non-avoiding.

Definition 2.27. A permutation in Sn is decent if it satisfies the following two conditions.
• it starts with n−2;
• its right-most n−1 letters are non-avoiding, do not begin with n−1, and do end with n.

Lemma 2.28. Let n > 3. All non-avoiding permutations not beginning with n−1 but ending with
n are equivalent in Sn under the {213,132,231}-equivalence.

Proof. We will prove this inductively using the easily checked base case of S4. Let n ≥ 5 and
assume that the result holds for Sn−1. Note that all reductive permutations are reachable from each
other by the inductive hypothesis applied to the left-most n−1 letters.

Let w ∈ Sn be a non-avoiding permutation that is not beginning with n− 1 and that ends with
n. We will prove that w is equivalent to a reductive permutation. Since reductive permutations are
all equivalent, this will complete the proof. Applying repeatedly either 132→ 213 or 231→ 213
to w, we place n− 1 in the second to final position (while keeping n in the final position). If the
resulting permutation does not begin with n− 2, then it is reductive (because its left-most n− 1
letters are clearly non-avoiding, given how we constructed it) and we are done. In the remaining
case, the resulting permutation y begins with n−2.

Note that y begins with n−2 and ends with (n−1)n. Since y begins with n−2 and is of size≥ 5,
the first three letters of y form a 312 or 321 and thus do not form a hit. Since y is non-avoiding and
cannot begin with a hit, the right-most n−1 letters of y must be non-avoiding. Thus, y is decent.
Any two decent permutations are equivalent to each other by the inductive hypothesis applied to
the right-most n−1 letters. Thus, we only need to show that some decent permutation is equivalent
to a reductive permutation.

Consider the permutation w = (n− 2)1(n− 1)2n . . .. Note that the letters not shown are those
between 1 and n− 2, and are in increasing order from left to right. Sliding n to the final position
through repeated applications of 132→ 213, and then sliding (n−1) to the second to final position
in the same manner, we reach w′ = (n−2) . . .21(n−1)n. One can easily check that w′ is decent.
From w, we can obtain w′′ = 21(n−1)n(n−2) . . . in the following way.

(n−2)1(n−1)2n . . .→
11



(n−2)1(n−1)n2 . . .→
1(n−1)(n−2)n2 . . .→
1(n−1)2n(n−2) . . .→
21(n−1)n(n−2) . . .

From w′′, we can first slide n to the final position through repeated applications of 231 or 132
→ 213, and then slide n−1 to the second to final position in the same manner to get w′′′. Note that
w′′′ begins with the letter 2, ends with the letters (n− 1)n, and has a hit in the penultimate three
letters. Hence, w′′′ is a reductive permutation and we are done. �

Lemma 2.29. Let n > 3. All non-avoiding permutations of the form (n− 1) j . . .n with j 6= n− 2
are equivalent in Sn under the {213,132,231}-equivalence. (The letter j is not fixed here.)

Proof. Let w be such a permutation in Sn>3. Since w begins with n−1, ends with n, and is of size
≥ 4, the first three letters of w form a 312 or 321 and thus don’t form a hit. Since w is non-avoiding
and cannot begin with a hit, the right-most n−1 letters of w must be non-avoiding. Thus, they can
be rearranged as the identity with n−2 and n−3 swapped (by Lemma 2.28). �

Lemma 2.30. Let n > 3. All non-avoiding permutations of the form (n−1) . . .n are equivalent in
Sn under the {213,132,231}-equivalence.

Proof. We will prove this inductively. Assume it is true for Sn−1. The base cases of S4 and S5 can
be easily checked computationally. By Lemma 2.29, all such permutations whose second letters
are not n− 2 are equivalent. Let w be such a permutation whose second letter is n− 2. Note that
w has the form (n− 1)(n− 2) . . .n. By the inductive hypothesis (applied to the right-most n− 1
letters), w is equivalent to any non-avoiding permutation of the form (n−1)(n−2) . . .n.

One such permutation is y = (n− 1)(n− 2) . . .1n. Here, the letters not shown are the letters
between 1 and n−1 and are in increasing order from left to right. Through repeated applications
of 213→ 132, we can reach w′ = (n−1)(n−2)1n . . .. From w′, we reach w′′ = (n−1)n1(n−2) . . .
in the following manner.

(n−1)(n−2)1n . . .→
(n−1)1n(n−2) . . .→
(n−1)n1(n−2) . . .

From w′′, we may first slide n− 2 to the final position through repeated applications of 132→
213, and then slide n to the final position through repeated applications of 132 or 231→ 213. This
yields a permutation which is non-avoiding, begins with n− 1, ends with n, and has its second
letter 6= n−2. Thus, all non-avoiding permutations of the form (n−1)(n−2) . . .n are equivalent
to a non-avoiding permutation of the form (n− 1) j . . .n for some j 6= n− 2. Hence, by Lemma
2.29, all non-avoiding permutations of the form (n−1) . . .n are equivalent. �

Definition 2.31. A permutation in Sn will be called fronted if it starts either with n− 1 or with
jn(n−1) for some j ≤ n−2.

Lemma 2.32. Any permutation starting with n−1 is only equivalent to permutations where n−1
is in the first or third position under the {213,132,231}-equivalence.

Proof. It is easy to see that any transformation, applied to a fronted permutation, yields another
fronted permutation. Hence, any fronted permutation is equivalent only to fronted permutations.
In particular, any permutation starting with n− 1 is only equivalent to fronted permutations, and
these have n−1 either in the first or in the third position. �
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Lemma 2.33. Let n > 3. Non-avoiding permutations not beginning with n in Sn fall into 2 non-
trivial classes under the {213,132,231}-equivalence.

Proof. From an arbitrary non-avoiding permutation not beginning with n, we can move n to the
right-most position through repeated applications of 132 or 231→ 213. By Lemmas 2.28 and 2.30,
we have established that non-avoiding permutations not beginning with n break into at most two
classes: those containing permutations of the form (n−1) . . .n, and those containing permutations
not beginning with n− 1 but ending with n. Noting Lemma 2.32, and that there exists a non-
avoiding permutation of the form (n−1) . . .n as well as one which is non-fronted and ending with
n, they break into exactly two classes in Sn for n > 3. �

Proposition 2.34. f (n) = f (n−1)+2 for n > 3.

Proof. We will calculate f (n). Consider the non-avoiding permutations that have n as the first
letter. These clearly break into f (n− 1) nontrivial classes because the first letter can be ignored.
By Lemma 2.33, the remaining non-avoiding permutations fall into two classes. �

Lemma 2.35. If the n-th letter of an avoiding permutation in Sn is smaller than the (n−1)-th one,
then the permutation must be the decreasing permutation.

Proof. Let w∈ Sn be an avoiding permutation. Whenever, for some i∈ {2,3, . . . ,n−1}, the (i+1)-
th letter of w is smaller than the i-th one, it is clear that the i-th letter must be smaller than the
(i− 1)-th one (since otherwise it would give a 132 or a 231 hit, contradicting the avoidance). By
applying this observation iteratively, we see that if the n-th letter of w is smaller than the (n−1)-th
one, then the (n−1)-th one must be smaller than the (n−2)-th one, which in turn must be smaller
than the (n− 3)-th one, etc.. Altogether, this yields that, if the n-th letter of w is smaller than the
(n−1)-th one, the permutation w must be decreasing. �

Proposition 2.36. g(n) = g(n−1) ·2−1 for n > 3.

Proof. We will calculate g(n) for n > 3. Consider the avoiding permutations in Sn that have n as
the first letter. There are clearly g(n− 1) of them because the first letter can be ignored. Now,
consider the permutations that have n not as the first letter but are avoiding. Then, n must be the
final letter because otherwise there is a 132 or 231 in the permutation. Ignoring the letter n, these
permutations are avoiding permutations from Sn−1. The converse of this, however, is not true, but
instead we have something more delicate: If we take an arbitrary permutation w from Sn−1 and
append n to the end, then the resulting permutation is still avoiding if and only if the (n− 1)-th
letter of w is greater than the (n− 2)-th one. This requirement holds in all but one case (since
Lemma 2.35, applied to Sn−1, shows that if the (n− 1)-th letter of an avoiding permutation in
Sn−1 is smaller than the (n−2)-th one, then this permutation must be (n−1)(n−2) . . .1). Hence,
g(n) = g(n−1) ·2−1 for n > 3. �

Theorem 2.37. The number of classes created in Sn under the {213,132,231}-equivalence is
2n−2 +2n−4 for n > 3.

Proof. Let n > 3. Because f (3) = 1, Proposition 2.34 shows that f (n) = 2 ·n−5. Because g(3) =
3, Proposition 2.36 shows that g(n) = 2n−2 + 1. Thus, the number of classes created in Sn is
2 ·n−5+2n−2 +1 = 2n−2 +2n−4 for n > 3. �
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2.7. {213,132,231,312}-Equivalence.

Proposition 2.38. Sn breaks into three classes under the {213,132,231,312}-equivalence.

Proof. There are clearly two trivial classes, one containing the identity and one containing the
descending permutation. We will now show that the remaining permutations are equivalent by
inducting on n. For the base cases of n = 3 and n = 4, this is easily shown computationally. Let w
be a non-avoiding permutation in Sn for n > 4 and assume that we have shown our claim for Sn−1.
If the first n−1 letters of w are avoiding, then applying the inductive hypothesis to the right-most
n−1 letters of w we can clearly reach a permutation that is non-avoiding in the first n−1 letters.
So, without loss of generality, w is non-avoiding in the first n− 1 letters. Applying the inductive
hypothesis to the first n− 1 letters of x, we rearrange them as the identity from Sn−1 except with
the second and third to final letters swapped, yielding w′. Note that w′ has n among its final n−1
positions (actually in the final two positions) and is non-avoiding in its final n−1 letters. Applying
the inductive hypothesis to them, we rearrange them to be the identity from Sn−1 with the second
and third to final letters swapped, yielding w′′. Note that w′′ is non-avoiding in the first n−1 letters
and has n as its final letter. Thus, applying the inductive hypothesis to the first n− 1 letters of
w′′, we can reach the identity with 1 and 2 swapped. Hence, all non-avoiding permutations are
equivalent and we are done. �

3. DOUBLE REPLACEMENTS

In this section, we consider the classes created under replacement partitions of S3 with two
nontrivial parts, each of size two. Both the forgotten and Knuth relations are members of this
family of relations; they are the main inspiration for this direction of work. We find the number
of equivalence classes created in Sn in all but one of the unresolved cases (up to symmetry). In
the final case, the {231,132}{213,312}-equivalence, we provide computational data for the use of
future authors. When convenient, we also calculate the size of the class containing the identity.

Surprisingly, class enumerations equal to those yielded by each of the Knuth relation and for-
gotten relation show up in our study of the {123,132}{213,312}-equivalence and
{123,231}{213,132}-equivalence respectively. The reason for this is still largely a mystery.

The following subsections are concerned with one replacement partition each. In each subsec-
tion, the replacement partition K is to be understood to be the partition mentioned in the title of the
subsection.

3.1. {123,132}{213,231}-Equivalence.

Proposition 3.1. There are 2n−1 classes in Sn under the {123,132}{213,231}-equivalence.

Proof. We can prove this by inducting on n. For the base case of S3, this is trivial. Assume as an
inductive hypothesis, that the proposition holds for Sn−1. In Sn, the permutations beginning with
n clearly fall into 2n−2 classes because the first letters of each of them can be ignored and each
all are isolated from all other permutations. Permutations not beginning with n are equivalent to a
permutation ending with n through repeated applications of 132→ 123 or 231→ 213.

If two permutations in Sn are separated by a transformation, then the two permutations in Sn−1
obtained by removing the letter n from each of them are either equal or connected by the same
transformation. Hence, if two permutations are equivalent, then the permutations obtained by
removing n from each must be as well. For permutations ending with n, the converse holds as well;
two equivalent permutations in Sn−1 are still equivalent when n is appended to the end of each.
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Thus, by the inductive hypothesis, there are exactly 2n−2 classes containing some permutations
ending with n.

Hence, there are exactly 2n−2 classes containing permutations beginning with n, 2n−2 classes
containing other permutations, and 2n−1 classes in total. �

Corollary 3.2. Let w be in Sn>1 and w′ be w with n struck. The size of the equivalence class of w
under the {123,132}{213,231}-equivalence is the size of the class containing w′ if n is in the first
position in w and is the size times n−1 of the class containing w′ otherwise.

Proof. In the proof of Proposition 3.1, we showed the corollary for the case where w begins with
n, and that for w not beginning with n, w is equivalent to a w with n struck and then appended to
the end. Since, from any permutation ending with n, n can be slid to any of n− 1 positions, the
case of n not being in the first position of w is solved. �

Corollary 3.3. The number of permutations in Sn in the class containing the identity under the
{123,132}{213,231}-equivalence is (n−1)!.

Proof. As a result of Corollary 3.2, this falls from straightforward computation. �

3.2. {312,321}{123,132}-Equivalence.

Lemma 3.4. (a) Letters to the right of 1 can be rearranged freely under the {312,321}{123,132}-
equivalence. (b) Letters to the right of n can be rearranged freely under the {312,321}{123,132}-
equivalence.

Proof. We first prove (a). It is sufficient to prove that in Sn, all permutations of the form 1 . . . are
equivalent to the identity. We will prove this by induction. The base case of S3 is trivial. Assume
that we have shown the result to hold for Sn−1. Let w be a permutation beginning with 1 in Sn. We
will prove that w is reachable from the identity. We consider two cases:

(1) The final letter of w is 2.
(2) The final letter of w is not 2.

We deal with Case 2 first. In this case, the letter 2 is among the first n− 1 positions of w.
Applying the inductive hypothesis to the first n−1 letters of w, we rearrange the first n−1 letters
as the identity, yielding w′. Note that the first two letters of w′ are 12. Thus, applying the inductive
hypothesis to the final n−1 letters of w′, we arrive at the identity.

Now, we consider Case 1. In this case, the final letter of w is 2. By the inductive hypothesis, we
can rearrange the first n− 1 letters of w to be the identity with the final two letters swapped. We
apply 321→ 312 to the final three letters, yielding a permutation starting with 1 but not ending
with 2. Hence, we can proceed as in Case 2, and conclude that in Case 1, w is equivalent to the
identity.

Now, we note that (b) falls from (a) because whenever two permutations x and y are equivalent
under the {312,321}{123,132}-equivalence, so are their complements. (The complement of a
permutation a1a2 . . .an is defined as the permutation (n+1−a1)(n+1−a2) . . .(n+1−an).) �

Definition 3.5. The proximum of a word w is the left-most of the largest and smallest letters in w.

For example, the proximum of 519234 is 1.

Definition 3.6. Let w be a word consisting of n pairwise distinct letters. We define the set Ww (of
letters) in the following way.
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• If w has only one letter, then Ww = ∅.
• Otherwise, Ww = {u}∪Wf , where u is the proximum of w, and f is the factor of w going

from the first letter of w to u (inclusive).

For example, if w = 453216, then Ww contains 1 as well of the elements of W45321 which are 5
as well as the elements of W45, which are just 4. So, Ww contains 1, 5, and 4.

Lemma 3.7. If w and w′ are separated by a single transformation, then Ww = Ww′ .

Proof. Assume that the lemma holds for smaller n, with an inductive base case of n = 1. Let w
and w′ in Sn be separated by a single transformation using the hit h. We notice that the relative
order of 1 and n can never change during a transformation (since this would only be possible if
1 and n are in the same hit, but then they would have to be acting as the 1 and the 3 of that hit).
Hence, either 1 is to the left of n in each of w and w′, or n is to the left of 1 in each of w and w′.
We will only treat the former of these cases; the latter is completely analogous. Assume that 1 is
to the left of n in w and w′. Let f and f ′ be the factors of w and w′ respectively which begin with
the first letter of w and w′ respectively, and end with 1. If h only involves letters to the left of 1,
then Ww = Wf ∪{1} = Wf ′ ∪{1} = Ww′ because Wf = Wf ′ by the inductive hypothesis. If h only
involves letters to the right of 1, then the lemma is trivial. If h involves 1, then the greatest letter to
1’s left does not change under the transformation. Hence, the greatest letter in f and f ′ is the same.
Since the letters to the left of that letter in f and f ′ clearly are static under the transformation,
Wf = Wf ′ and Ww = Wf ∪{1}= Wf ′ ∪{1}= Ww′ . �

Definition 3.8. The origin permutation of a permutation w in Sn is a permutation beginning with
the letters of Ww, in the same order that they appear in w, and then continued with the remaining
letters in increasing order.

Lemma 3.9. Let w and w′ in Sn be such that Ww = Ww′ . Then, the origin permutations of w and w′

are the same.

Proof. As a consequence of the definition of Ww, for a given choice of letters to be in the set, there
is exactly one possibility for the order of those letters in w. One can find this order in the following
way. The right-most letter in Ww is 1 or n. Assume without loss of generality that Ww contains n.
Then, the next right-most letter is the smallest letter in Ww, the next right-most letter is the second
largest letter in Ww, the next right-most letter is the second smallest letter in Ww and so on. This
shows that the order in which the letters of Ww appear in w is uniquely determined by the set Ww.
But the origin permutation of w only depends on the set Ww and the order in which the letters of
Ww appear in w. Hence, the origin permutation of w is uniquely determined by the set Ww, and the
origin permutations of w and w′ are the same. �

Lemma 3.10. Let w ∈ Sn and w′ be the origin permutation of w. Then, w≡ w′ under the
{312,321}{123,132}-equivalence.

Proof. Inductively assume the result holds in Sn−1 with a trivial base case of S1. Let w be in Sn and
w′ be the origin permutation of w. Let j1, j2, . . . , jk be the letters of Ww in the order that they appear
in w from left to right. If k = 1, then we may apply Lemma 3.4 to w to reach w′. Otherwise, we
may apply Lemma 3.4 to the factor going from j1 to j2, and slide j2 to be adjacent to j1, reaching
x which begins with j1 j2. Applying the inductive hypothesis to the final n−1 letters of x, we reach
w′. �

Proposition 3.11. There are 2n−1 classes in Sn under the {312,321}{123,132}-equivalence.
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Proof. By Lemma 3.7, each class in Sn gives rise to a set W ⊆ {1,2, . . . ,n} such that W = Ww
for each w in the class, and such that W contains exactly one of 1 and n. Thus we obtain a map
from the set of classes in Sn to {W ⊆ {1,2, . . . ,n} | W contains exactly one of 1 and n}. This map
is injective as a consequence of Lemma 3.9 and Lemma 3.10. We will now show that it is also
surjective.

Let W be a set containing letters from 1 to n, including exactly one of 1 and n. Assume without
loss of generality that W contains n. Let k be the size of W . We define the word f as the word of size
k ending with the largest letter in W , following the smallest letter, following the next largest letter,
following the next smallest letter, etc.. Then, we define w to be the permutation in Sn beginning
with f and followed by the letters not in f in increasing order. Note that Ww = W . Therefore, there
is a bijection from the set of classes in Sn to the set
{W ⊆ {1,2, . . . ,n} | W contains exactly one of 1 and n}, and thus the number of classes in Sn is

|{W ⊆ {1,2, . . . ,n} | W contains exactly one of 1 and n}|= 2n−1.

�

Definition 3.12. Let w∈ Sn. Let g1,g2, . . . ,gk be the letters of Ww in the order in which they appear
in w from right to left. Then, gi is a valley if it is less than each of its adjacent letters in the sequence
g1,g2, . . . ,gk and is a peak if it is greater than its adjacent letters in the sequence g1,g2, . . . ,gk. If
k = 1, then if g1 = 1 it is a valley and if g1 = n it is a peak. If n = 1, we consider g1 to be a valley.

Corollary 3.13. Let w ∈ Sn. Let g1,g2, . . . ,gk be the letters of Ww in the order that they appear in
w from right to left. Let ji = gi if gi is a valley and ji = n−gi if gi is a peak. The class containing
w is of size

(n−1)!
k−1
∏

a=1
( ja + ja+1)

under the {312,321}{123,132}-equivalence.

Proof. We want the number of permutations w′ ∈ Sn with Ww′ = Ww for a given w ∈ Sn. Recall that
in such a situation, w and w′ must have the letters of Ww in the same order. We will prove the result
by inducting on k; the base case of k = 1 falls from Lemma 3.4. Assume the corollary holds for
smaller k. Let w ∈ Sn, g1, . . . ,gk, and j1, . . . , jk be as stated. Note that gk is the left-most letter of
w and of w′. Also note that in this proof, a letter a is said to be between two letters b and c if and
only if min{b,c}< a < max{b,c}. In particular, “between” refers to value, not position, and does
not include the boundaries of the interval.

Let E be the set of all w′ ∈ Sn such that Ww′ = Ww. Observe that E is the class of w. Let I be the
union of {gk} with the set of all letters between gk−1 and gk. An I-purged word is a word which
contains every letter from {1,2, . . . ,n}\ I exactly once (and no other letters). Let S be the set of all
I-purged words x with Wx = {g1,g2, . . . ,gk−1}. Let T be the set

{x∈ Sn−|gk−gk−1||Wx = {gi|1≤ i≤ k−1,gi is a valley}∪{gi−|gk−gk−1||1≤ i≤ k−1,gi is a peak}}.

Let Y be the set of words of size n consisting of zeros and a single occurrence of each letter between
gk and gk−1 as well as gk which is the first letter.

A bijection between S and T can be created by mapping s ∈ S to its order permutation. Hence
|S|= |T |.
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Let e ∈ E. Let s be the word obtained by striking the letters between gk and gk−1 as well as gk
from e. Let y be e except that each letter that is neither between gk and gk−1 nor gk is replaced with
a zero. Then, we define f : E → S×Y such that f (e) = (s,y). Note that s ∈ S because no gi with
i < k is equal to gk or any letter between gk−1 and gk. Now we go in the other direction; let s ∈ S
and y ∈ Y be arbitrary. Then, g : S×Y → E is defined such that g(s,y) is y except with each of the
zeros of y replaced by the letters of s (in the order that they appear in s). Since f and g are inverses
of each other, we have that |E|= |S×Y |. Since |S|= |T |, we have |E|= |T ×Y |.

It’s easy to see that |Y |= (n−1)(n−2) . . .(n−|gk−gk−1|+1). By the inductive hypothesis,

|T |= (n−|gk−gk−1|−1)!
k−2
∏

a=1
( j′a + j′a+1)

where j′i≤k−1 is gi = ji if gi is a valley and is (n−|gk−gk−1|)− (gi−|gk−gk−1|) = n−gi = ji if
gi is a peak. Therefore,

|E|= (n−1)(n−2) . . .(n−|gk−gk−1|+1) · (n−|gk−gk−1|−1)!
k−2
∏

a=1
( ja + ja+1)

.

This simplifies to

|E|= (n−1)!
k−1
∏

a=1
( ja + ja+1)

.

�

Proposition 3.14. The multiset of sizes of classes in Sn under the {123,132}{213,231}-equivalence
is the same as the multiset of sizes of classes in Sn under the {312,321}{123,132}-equivalence.

Proof. Let us consider the multiset of sizes of classes in Sn under the {123,132}{213,231}-
equivalence. By the induction in the proof of Proposition 3.1, it is easy to see that in each class in
Sn, there is exactly one V-permutation.

Let v be a V-permutation. Consider the set Lv containing the letters to the left of 2 in v with the
exception of the letter 1. Then, we may define k−1 as the size of Lv and l1 +1, . . . , lk−1 +1 to be
the letters in Lv in increasing order (thus from right to left in position in v). Then, by Corollary 3.2,
the size of the class containing v is

(n−1)!
k−1
∏
i=1

li

.

For a given choice of letters l1 < l2 < · · · < lk−1 with lk−1 ≤ n− 1 and l1 > 1, there are exactly
two classes containing a V-permutation v such that Lv consists of the letters li + 1. (The two V-
permutations are identical except with 1 and 2 swapped.)

Now, we consider the multiset of sizes of classes in Sn under the
{312,321}{123,132}-equivalence.

Let j1, . . . , jk be distinct letters from 0 to n− 1 such that j1 is 1 or 0, j2 > 1 if k > 1, ji < ji−2
for i > 2, jk + jk−1 ≤ n−1 if k > 1, and k ≥ 1. Let gi = ji if i is odd and j1 = 1 or if i is even and
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j1 = 0. Let gi = n− ji otherwise. Then, since the set g1, . . . ,gk contains exactly one of 1 or n, we
know that there is exactly one class in Sn such that Ww = {g1, . . . ,gk} and that it is of size

(n−1)!
k−1
∏

a=1
( ja + ja+1)

.

Given a permutation w in Sn, we can construct g1, . . . ,gk and j1, . . . , jk for some k ≥ 1 as done
in Corollary 3.13 so that they meet the stated restrictions and so that w is in a class of size

(n−1)!
k−1
∏

a=1
( ja + ja+1)

.

Thus, there is a bijection between sets { j1, . . .} ⊆ {1,2, . . . ,n} of size k for some k≥ 1 such that
j1 is 1 or 0, j2 > 1 if k > 1, ji < ji−2 for i > 2, and jk + jk−1 ≤ n− 1 if k > 1 and classes in Sn
which are of size

(n−1)!
k−1
∏

a=1
( ja + ja+1)

.

For such a set J, let L be the set containing li = ji + ji+1 for i < k. Since ji < ji+2, li < li+1
for i < k−1. Since jk−1 + jk ≤ n−1, li is from 1 to n−1 for i < k. If L is not empty, then since
a2 > 1, l1 > 1. For any set L⊆ {2,3, . . . ,n−1} (possibly empty), there are two possible (and valid)
J which could yield such a set L, one with j1 = 1 and one with j1 = 0. Thus, for a given choice of
letters l1 < l2 < · · ·< lk−1 with lk−1 ≤ n−1 and l1 > 1, there are exactly two classes of size

(n−1)!
k−1
∏
i=1

li

.

Hence, the multiset of sizes of classes in Sn is the same for both equivalences. �

3.3. {123,231}{132,321}-Equivalence.

Proposition 3.15. There are 2n−1 classes in Sn under the {123,231}{132,321}-equivalence.

Proof. We will show that the permutations with the letter 1 in an odd position (type 1) break
into 2n−2 classes and that those with 1 in an even position (type 2) break into 2n−2 classes, thus
completing the proof. We will do this by inducting on n with a trivial base case of S3. Assume that
the result holds in Sn−1. We will first make three observations:

(1) The two types of permutations being considered are clearly not equivalent;
(2) From a permutation w, we can reach any permutation which is the same as w, except with

1 slid to an arbitrary position of the same position parity as it has in w.
(3) If 1 takes part in a transformation, then the relative position of any two letters, neither of

which are 1, does not change with the transformation.
Using these observations, we can complete our induction. Noting Observation (3), we can

conclude that there are at least 2n−2 classes that each type breaks into because we can ignore the
1 and apply the inductive hypothesis. Hence, by observation (1), there are at least 2n−1 classes in
total.
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Let w ∈ Sn and w′ be w with 1 struck from the permutation. Let a,b,c be three adjacent letters in
w′ which form a hit. Then, in w, by observation (2), we can slide 1 so that a, b, and c are adjacent
and form a hit4. Then, rearranging the hit, we can slide 1 back to its original position (observation
(2)). Hence, if 1 is in position k in w, then for each w′′ equivalent to w′, w is equivalent to w′′

except with 1 inserted in position k. Therefore, by the inductive hypothesis, there are at most 2n−2

classes that each type falls into, and we are done. �

Definition 3.16. A permutation is trivializable if is equivalent to the identity.

Proposition 3.17. In Sn, under the {123,231}{132,321}-equivalence, the number of trivializable
permutations is dn/2e!2 if n is even and dn/2e!2/dn/2e if n is odd. By symmetry, the same holds
for the number of permutations equivalent to the descending permutation.

Proof. We will prove this by inducting on n, noting that for the base case of S3, the statement is
trivial. Assume that the result holds for Sn−1. Noting observations (2) and (3) from the previ-
ous proof, when constructing from the identity a trivializable permutation w, one can always first
construct the permutation which is w except with 1 slid to the first position, and then slide the 1
to its proper position in w. Thus, there are at most the number of trivializable permutations in
Sn−1 times dn/2e trivializable permutations in Sn. However, there are also at least dn/2e times as
many trivializable permutations because from a given rearrangement of the final n− 1 letters of
the identity, the letter 1 can then always be slid to any one of dn/2e positions, resulting in a unique
permutation. Noting an inductive base case of S3, the enumeration provided inductively holds. �

3.4. {132,312}{321,213}-Equivalence.

Lemma 3.18. There are n−1 trivial classes under the {132,312}{321,213}-equivalence.

Proof. Because 312 and 213 are hits, we only need to consider Λ-permutations, that is permuta-
tions that increase to n and then decrease until the final letter. Since 321 is a hit, we only need to
consider Λ-permutations which increase for at least the first n−1 letters. There are n such permu-
tations because given an ending letter, the rest of such a permutation can be uniquely determined.
Since the final possible hit is a 132, the final letter can be any letter except for n−1. Hence, there
are n−1 avoiders. �

Definition 3.19. We say that w ∈ Sk is in Tk if and only if the letters of w other than 1 and 2 are in
increasing order, and the letters 1 and 2 are adjacent and in 21 order.

For example, T5 = {21345,32145,34215,34521}.

Lemma 3.20. The elements of Tn form an equivalence class under the {132,312}{321,213}-
equivalence.

Proof. Let w ∈ Tn. Clearly, the only possible hits in w are k21 and 21 j for some k and j with the
actual letters 2 and 1. We can rearrange such a hit as 21k and j21 respectively. By the definition
of Tn, the permutation reached is in Tn. Furthermore, sliding the letters 21 in this way, all of the
permutations in Tn are reachable from each other. �

Note that any three-letter factor abc with a > b must form a hit. This will be useful in the proof
of Lemma 3.21.

4This is because a1bc≡ abc1 and ab1c≡ 1abc.
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Lemma 3.21. Let w ∈ Sn be non-avoiding and not in Tn. Then, w is equivalent to a permutation
which begins with the letter n under the {132,312}{321,213}-equivalence.

Proof. Assume inductively that the proposition holds for Sk for k < n. Inductive base cases of
n ∈ {3,4,5} can easily be shown computationally. We can assume that the final n− 1 letters of
w are non-avoiding. In fact, if the only hit is in the first three letters, then the hit is either 312 or
213 and rearranging it as either a 132 or 321 creates a hit to the right. We can also assume that
the final n−1 letters of w do not form a permutation in Tn−1. In fact, if they do, then they can be
rearranged as the identity in Sn−1 with 1 and 2 swapped. Then, the first four letters are either 1324,
2314, 3214, or k213 where k > 3. The third case will never happen because then w would have to
be in Tn. In each remaining case there is a series of steps with which one can reach a permutation
which is non-avoiding in the final n− 1 letters and for which the final n− 1 letters do not form a
permutation in Tn−1: 1324→ 1432→ 4132, 2314→ 2431→ 4231, and k213→ k321→ 32k1.

So, we can apply the inductive hypothesis to the final n− 1 letters of w, placing n either in the
first or second position of w, and obtaining w′. Because of the position of n, the first n−1 letters
of w′ can not form a permutation in Tn−1 for n > 5. Also, because of the position of n, the first 4
letters contain a hit. Thus, since n > 5, applying the inductive hypothesis to the first n−1 letters,
we can place n in the first position. �

Proposition 3.22. The number of classes containing permutations in Sn>3 that are non-avoiding
and not in Tn equals the number of classes created in Sn−1 under the {132,312}{321,213}-
equivalence.

Proof. Let f (n) be the number of classes created in Sn. By Lemma 3.21, a non-avoiding permu-
tation in Sn that is not in Tn is reachable from a permutation beginning with n. Since n > 3, every
permutation beginning with n is non-avoiding and not in Tn; we just need to consider how many
classes they fall into. Since we can ignore the first letter, permutations beginning with n fall into at
most f (n−1) classes. In a hit involving n, no two letters that are not n can change relative order.
Hence, the permutations beginning with n fall into at least f (n−1) classes, and we are done. �

Proposition 3.23. There are
n(n+1)

2
−2 classes in Sn≥3 under the

{132,312}{321,213}-equivalence.

Proof. We will show that with the step from Sn−1 to Sn, n classes are added to the enumeration.
Noting the base case of S3, this will inductively prove the proposition. Let f (n) be the number of
classes created in Sn. By Lemma 3.18 there are n−1 trivial classes. By Lemma 3.20 and Lemma
3.21, there is one nontrivial class containing no permutations beginning with n. By Proposition
3.22, the remaining permutations fall into f (n− 1) classes. So, f (n > 3) = f (n− 1)+ n and we
are done. �

3.5. {123,231}{213,132}-Equivalence. Let f (m) be the number of classes in Sm under the
{123,231}{213,132}-equivalence.

Lemma 3.24. The permutations of a given parity which end with n and which do not begin with
n−1 are all equivalent under the {123,231}{213,132}-equivalence.

Proof. We will prove this inductively. The result is simple to show computationally for n ≤ 5.
Assume (as an induction hypothesis) that whenever x ∈ Sn−1 ends with n and does not begin with
n− 1, x is equivalent either to the identity or the identity but with 1 and 2 swapped. Let w be a
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permutation in Sn ending with n and not beginning with n−1. Applying 123→ 231 and 213→ 132
repeatedly, we place n−1 in position 2 and then n in position n−1. Then, applying the inductive
hypothesis to the left-most n− 1 letters, we rearrange them as the identity or the identity with 1
and 2 swapped depending on the parity of the permutation that they form, yielding w′. Note that
the first letter of w′ is 1, 2, or 3. Sliding n from the second to final position to the final position
with an application of either 132→ 213 or 231→ 123, we then apply the inductive hypothesis to
the right-most n− 1 letters of w′ and get w′′. Note that w′′ is the identity in Sn except with the
first three letters possibly in any order. Finally, applying the inductive hypothesis to the first n−1
letters of w′′, we reach the identity or the identity with 1 and 2 swapped in Sn. Hence, all such w
of a given parity are equivalent. �

Lemma 3.25. A permutation beginning with a decreasing subsequence of consecutive values start-
ing with n (that is, a permutation beginning with n(n−1)(n−2) . . .(n−k+1) for some k≥ 0) will
always have that same decreasing subsequence at its start after transformations. In particular, the
longest such subsequence never changes in length under the {123,231}{213,132}-equivalence.

Proof. It is sufficient to note that no hits begin with the largest letter in the hit. �

Definition 3.26. We define a k-hill to be k consecutively positioned and consecutively valued letters
in a permutation in Sn, each of which is greater than all of the letters to its right in the permutation
which are not n. A k-hill may also be called a hill if k is unknown.

Definition 3.27. In this subsection, we consider a permutation in Sn to satisfy the property Ck if
either

• the permutation begins with (n−1) and begins with a k-hill not followed directly by n, or
• the permutation begins with a g-hill followed by the letters jn and then a (k− g)-hill for

some integer g between 0 and k inclusive and for some letter j, where n−1 is the first letter
of those in the mentioned hills (meaning that n−1 is the first letter of the first hill if g > 0,
and of the second hill if g = 0).

Lemma 3.28. If a permutation satisfies Ck, then any equivalent permutation will as well under the
{123,231}{213,132}-equivalence.

Proof. Let w be a permutation satisfying property Ck. We will show that after a transformation, the
resulting permutation will still satisfy Ck. There are two cases for w:

(1) In the first case, w begins with a k-hill not directly followed by n. If a transformation does
not involve any letters in the k-hill, then it is easy to see that the resulting permutation still
starts with a k-hill not directly followed by n. If a transformation does involve letters in
the k-hill, the transformation must be (n− k) jn→ jn(n− k) for some j. This results in a
permutation which starts with a g-hill followed by the letters jn and then a (k−g)-hill for
g = k−1. Hence, the yielded permutation still satisfies Ck.

(2) In the second case, w begins with a g-hill followed by the letters jn and then a (k−g)-hill
for some integer g and letter j. There are three subcases for a hit involved in a transfor-
mation. The hit can contain only letters to the right of n (subcase 1); contain letters only
to the left of n (subcase 2); contain n (subcase 3). In subcase 1, by Lemma 3.25, after a
transformation using the hit, the resulting permutation will still satisfy Ck. Subcase 2 can
never happen because the letters to the left of n are in strictly decreasing order. In subcase
3, the hit is either 213 or 132 where 3 is the actual n, 1 is the letter referred to as j in
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the definition of Ck, and 2 is a letter in one of the two hills mentioned in the definition of
Ck. If the hit is used in an application of 213→ 132, the resulting permutation must begin
with a g-hill followed by the letters jn and then a (k−g)-hill for one lesser g than before
and the same j. If the hit is used in an application of 132→ 213, then either the resulting
permutation begins with a g-hill followed by the letters jn and then a (k− g)-hill for one
greater g than before and the same j, or it begins with a k-hill not followed directly by the
letter n. Hence, the resulting permutation satisfies Ck.

�

Proposition 3.29. There are n2−3n+4 classes in Sn under the {123,231}{213,132}-equivalence.

Proof. Consider the permutations that begin with n for n > 3. They clearly fall into f (n− 1)
classes because we can ignore the n. From a permutation not beginning with n, n can be moved to
the final position through repeated applications of 231→ 123 and 132→ 213. Hence, each of the
remaining uncounted equivalence classes contains a permutation which ends with n. By Lemma
3.24, permutations ending with n and not beginning with n− 1 fall into two classes, divided by
parity. Hence, we need only consider permutations of the form (n−1) . . .n which are not reachable
from any permutation ending with n but not beginning with n− 1. By Lemma 3.28, these are
exactly the permutations of the form (n− 1) . . .n since such permutations each satisfy C1 and
permutations not beginning with n−1 and ending with n do not.

Let x and y in Sn both begin with n− 1 and end with n. If x and y are of different parity, then
clearly they are not equivalent. Assume that x and y are the same parity. Let k be the largest k such
that x begins with a k-hill and k is less than n−1 (when k = n−1, the k-hill is followed by n). Let
k′ be the largest k′ such that y begins with a k′-hill and k′ is less than n−1.

If k 6= k′, then by Lemma 3.28, x and y are not equivalent.
Otherwise, assume that k′ = k. If k = n−2 or k = n−3, then it is easy to check that x must equal

y. Thus, there is a total of two classes for the cases of k = n−2 and k = n−3.
Otherwise, assume that k < n−3. Then, x and y begin with the same first k letters, the remaining

letters do not begin with n− k (because then x or y would begin with a (k + 1)-hill), and they do
end with n. Hence, we can apply Lemma 3.24 to those remaining letters to conclude that x and y
are equivalent.

Thus, x is equivalent to y exactly when they are of the same parity and they satisfy C j for the same
j. When the highest such j is between 1 and n− 4 inclusive, there are 2(n− 4) resulting classes.
As mentioned previously, there is one additional class for each of the cases where the highest such
j is n−2 and n−3. Note also that it is impossible for a permutation to satisfy Cn−1. This means
that permutations beginning with n−1 and ending with n fall into 2(n−4)+2 classes. Recall that
permutations beginning with n fall into f (n−1) classes, and that the permutations ending with n
but not beginning with n−1 fall into two more classes. So, f (n > 3) = f (n−1)+2(n−4)+2+2,
f (3) = 4. This recursion inductively implies that there are n2−3n+4 classes. �

Proposition 3.30. The number of elements in the class containing the identity in Sn is ((n−2)(n−
1)!)/2 for n > 3 under the {123,231}{213,132}-equivalence.

Proof. Consider permutations in Sn>3. By Lemma 3.28, no permutations equivalent to the identity
satisfy C1. A permutation w fails to satisfy C1 exactly when w begins with neither n− 1 nor
jn(n−1) for any j, or when w begins with (n−1)n. If a permutation is equivalent to the identity,
then it also can not begin with n. There are (n−2)(n−1)!− (n−2)! permutations not beginning
with n−1, jn(n−1), or n. There are (n−2)! permutations beginning with (n−1)n. It is easy to
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see that half of the permutations counted in each of these enumerations are odd and half are even. If
we consider only the even ones (noting that transformations do not change parity), there are at most
(n−2)(n−1)!/2 permutations that can be equivalent the identity. From an even permutation not
starting with n or n−1 and not starting with three letters of the form jn(n−1) for some j, through
repeated applications 132→ 213 and 231→ 123, one can reach an even permutation ending with
n and not starting with n−1 which by Lemma 3.24 is equivalent to the identity. Similarly, all even
permutations of the form (n−1)n . . . are equivalent to the identity. Thus, the number of elements
in the class containing the identity is (n−2)(n−1)!/2 for n > 3. �

3.6. {123,132}{231,312}-Equivalence.

Lemma 3.31. The class containing the identity contains exactly the permutations beginning with
1 under the {123,132}{231,312}-equivalence.

Proof. We will prove this inductively. In S3, the lemma is trivial. Assume the lemma holds in
Sn−1. Let w be a permutation beginning with 1 in Sn. We rearrange the first n−1 letters of w as the
identity (using the inductive hypothesis), resulting in w′. If w′ ends with 2 (i.e., does not have 2 in
the second position), then through repeated applications of 231→ 312 (where the actual two is the
lowest letter in the hit), we move it to the third position; then, applying 132→ 123 to the first three
letters, we arrive at a permutation starting with 12. Thus, w is equivalent to a permutation starting
with 12, and applying the inductive hypothesis to the final n−1 letters of such a permutation, we
reach the identity. �

Lemma 3.32. Every permutation is reachable from a permutation of the form w1 . . . where w is
a word and w1 is avoiding. Note that this means w1 is decreasing. Thus, by Lemma 3.31, all
permutations are reachable from a V-permutation under the {123,132}{231,312}-equivalence.

Proof. This is trivial for n = 3. Assume that the result holds for n−1. If 1 is not in the final position
of a permutation, then using the inductive hypothesis, we are done. Let x be a permutation ending
with 1. By the inductive hypothesis (on the first n− 1 letters), x is reachable from a permutation
which is a V-permutation in the first n−1 letters and ends with 1. Let y be such a permutation. If 2
is not the second to final letter, then the final three letters can be rearranged as 231→ 312 yielding
a permutation not ending with 1 (a case for which we have already shown that the lemma holds).
If 2 is the second to final letter, then the entire permutation is decreasing and we have thus reached
a V-permutation. �

Lemma 3.33. A V-permutation of the form j . . . and a V-permutation of the form k . . . where k 6= j
can not be equivalent under the {123,132}{231,312}-equivalence.

Proof. The largest letter to the left of the 1 does not change under the transformations considered.
�

Definition 3.34. Let En be the set of permutations in Sn which are the descending permutation
except with two consecutive letters swapped.

For example, E4 = {3421,4231,4312}.

Lemma 3.35. The permutations in En form an equivalence class under the {123,132}{231,312}-
equivalence.
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Proof. We will first show that the set En is closed under the transformations considered. Let w∈En.
There are at most two hits in w, a 231 hit and a 312 hit, each using the pair of letters in increasing
order in w. After a 231↔ 312 rearrangement, we have simply swapped which pair of consecutive
letters is in increasing order, resulting in a permutation in En.

What remains to be shown is that all of the permutations in En are equivalent. Through re-
peated applications of the rearrangement 312→ 231, we can go from the descending permutation
with 1 and 2 swapped to each of the permutations in En. Hence, the permutations in En form an
equivalence class. �

Lemma 3.36. Each V-permutation of the form . . .21 . . . is not equivalent to any other V-permutations
under the {123,132}{231,312}-equivalence.

Proof. Let w be a V-permutation of the form j . . .21 . . .. Since no hit can begin with 21, the letters
to the left of 1 are in decreasing order, and hits beginning with 1 can only be rearranged to form
other hits beginning with 1, we have that all permutations equivalent to w must have the letters
leading up to 1 exactly the same as in w. So, w can not be equivalent to any V-permutations other
than itself. �

Lemma 3.37. Each V-permutation of the form . . .31 . . . is not equivalent to any other V-permutations
under the {123,132}{231,312}-equivalence.

Proof. Let w be a V-permutation of the form . . .31 . . . with k letters to the left of 1. We posit that
the letters to the left of 1 in each permutation equivalent to w are either exactly the same as in w
and are in decreasing order, or form a permutation in Ek+1 using the same letters as are to the left
of 1 in w as well as the letter 2. Assume inductively that this is true for permutations which are j
transformations away from w, with an inductive base case of j = 0. We will show that the claim
holds for permutations j + 1 transformations away from w, completing the proof. Let x ∈ Sn be j
transformations away from w and x′ ∈ Sn be one transformation away from x. There are two cases.

• The letters to the left of 1 in x are in decreasing order and are the same letters as in w. If x′ is
reached using a hit to the right of 1, then the claim is trivial. Otherwise, the rearrangement
must be 312→ 231 using the actual letters 1,2,3. Then, the letters to the left of 1 in x′

form a permutation in Ek+1 and are exactly the letters to the left of 1 in w in addition to the
letter 2.
• The letters to the left of 1 in x form a permutation in Ek+1 using the same letters as are to

the left of 1 in w in addition to the letter 2. If x′ is reached by a transformation using letters
only to the right of 1, then the claim is trivial. If x′ is reached by a transformation using
letters only to the left of 1, then by Lemma 3.35, the claim holds. If x′ is reached using
a transformation using the letter 1, then the transformation is 231→ 312 using the actual
letters 1,2,3, and the letters before 1 in x′ are in decreasing order and are the same as in w.

�

Lemma 3.38. V-permutations of the form j . . .k1 . . . as well as the V-permutation of the form
j1 . . . where j ≥ 4 is fixed and k is any letter ≥ 4 are equivalent under the {123,132}{231,312}-
equivalence.

Proof. By computation, one can show that 51 . . . is reachable from 541 . . . (we will refer to this
as the hypothesis): 51234→ 51324→ 35124→ 35142→ 34512→ 35412→ 35241→ 52341→
52413→ 54123. Consider an arbitrary V-permutation w of the form j . . .k1 . . . for some j and
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for some k ≥ 4. By the hypothesis, this is reachable from a permutation starting with the same
decreasing factor which ends with 1 except with k excluded. By Lemma 3.31, this is equivalent
to the V-permutation starting with the same factor which terminates with 1 as w does except with
k excluded. Thus, all such V-permutations are equivalent to the V-permutation j1 . . . and we are
done. �

Proposition 3.39. In Sn, there are 3 ·2n−3+n−2 classes for n > 5 under the {123,132}{231,312}-
equivalence.

Proof. Consider the classes in Sn where n > 5. By Lemma 3.32, we simply have to count the
number of classes that the V-permutations break into. By Lemma 3.37 there are 2n−2 classes with
only V-permutations of the form j . . .21 . . . and 2n−3 classes with only V-permutations of the form
j . . .31 . . .. By Lemma 3.38 there are n− 3 classes with V-permutations of the form j . . .k1 . . .
where k > 3. Finally, by Lemma 3.31, there is 1 class containing only the remaining permutations,
those of the form 1 . . .. So, there are 2n−2 +2n−3 +n−3+1 = 3 ·2n−3 +n−2 classes in Sn. �

3.7. {123,132}{213,321}-Equivalence.

Definition 3.40. We call a permutation w bushy-tailed if the following is true. Let x be the factor
of w containing the letters in w to the left of 1 as well as 1. In x, the letters in odd positions are in
decreasing order, the letters in even positions are in decreasing order, and each of the letters of the
same position parity as 1 is less than the adjacent letter to its right and the one to its left (if there
is such a letter).

Note that bushy-tailed is a property of the letters up to 1 only.

Lemma 3.41. Permutations of the form 1 . . . are equivalent. Thus, there are (n− 1)! elements in
the class containing the identity under the {123,132}{213,321}-equivalence.

Proof. We will prove this inductively. In S3, the lemma is trivial. Assume the lemma holds in
Sn−1 and that any permutation starting with 1 is equivalent to the identity in Sn−1. Let x be a
permutation starting with 1 in Sn. We rearrange the first n− 1 letters of x as the identity using
the inductive hypothesis, and arrive at x′. If x′ ends with 2, then through repeated 321→ 213
rearrangements (where 2 is the lowest letter in the hit), we move it to the third position, and then
applying 132→ 123 to the first three letters, we arrive at a permutation starting with 12. Thus, x
is reachable from a permutation starting with 12, and applying the inductive hypothesis to the final
n−1 letters of such a permutation, we reach the identity. �

Lemma 3.42. Every permutation is equivalent to a bushy-tailed permutation of the form w1 . . .
where w is a word under the {123,132}{213,321}-equivalence.

Proof. Note that for w1 to form a bushy-tailed permutation is equivalent to w1 avoiding 123, 132,
321, and 213. (This is not actually very useful, but is interesting to note.) The lemma is trivial in
S3. Assume inductively that the result holds in Sn−1. If 1 is not in the final position of a permutation
in Sn, then using the inductive hypothesis, we are done. Let x be a permutation ending with 1. By
the inductive hypothesis (applied to the first n− 1 letters), x is equivalent to a permutation which
is a bushy-tailed permutation in the first n−1 letters and ends with 1. Let y be such a permutation.
There are three cases for y, as follows.

• The second to final letter of y is 2. Applying 321→ 213 to the final three letters, we reach
a permutation where 1 is not in the final position, an instance of a case we have already
covered.
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• The third to final letter of y is 2. Then, the final four letters of y either form the permutation
3241 or the permutation 4231. In the first subcase, we apply 3241→ 4321→ 4213 to reach
a permutation where 1 is not in the final position. In the second subcase, y is a bushy-tailed
permutation.
• The letter 2 is before the third to final letter in y. Applying Lemma 3.41 to the letters to

the right of 2 and left of 1 along with 2, we rearrange the two letters to the immediate left
of 1 such that the final three letters form the hit 321. Applying 321→ 213, we reach a
permutation where 1 is not in the final position.

�

Definition 3.43. Let w be a bushy-tailed permutation. A letter in w which is to the left of 1 or is 1
is a w-starter.

Lemma 3.44. Let y be a bushy-tailed permutation. Let x be a permutation equivalent to y under
the {123,132}{213,321}-equivalence. In x, the y-starters are in the same relative order as they
are in y (property 1). Furthermore, ignoring each other, they are all left to right minima (property
2). Finally, in x, each y-starter other than 1 (the final y-starter) is less than each letter between it
and the next in position y-starter (property 3).

Proof. Let x be a permutation equivalent to a bushy-tailed permutation y which satisfies properties
1, 2, and 3. We will show that any single rearrangement using a hit in x will result in a permutation
for which the properties still are satisfied. Assume a rearrangement exists which swaps two y-
starter letters j and k (where k is without loss of generality, to the right of j in x). There are three
cases for such a rearrangement.

• The rearrangement is 213→ 321. Due to property 1, not all three letters can be y-starters.
So, in order for j and k to be swapped, j must play the role of 3 in the hit, and k must play
the role of 2 or 1. Because the remaining letter is not a y-starter, property 2 is not satisfied
in x, a contradiction.
• The rearrangement is 321→ 213. Clearly, not all three letters can be y-starters. So, j must

play the role of 3 and k must play the role of either 2 or 1. If k plays the role of 1, then
property 3 is not satisfied in x, a contradiction. If k plays the role of 2, then property 3 is
again not satisfied in x, a contradiction.
• The rearrangement is either 123→ 132 or 132→ 123. Since not all three letters can be

y-starters (property 1), in both cases, property 2 is not satisfied in x, a contradiction.
Assume a rearrangement exists which results in a permutation not satisfying property 2. There are
two possible cases for the rearrangement.

• The rearrangement is 132→ 123 where the letters playing the roles of 1 and 3 are y-starters
and the letter playing the role of 2 is not (the letter playing the role of 1 is a y-starter by
property 2; by property 1, not all three letters can by y-starters, and for property 2 to be
broken by the transformation, 3 must be a y-starter). However, because 2 is not a y-starter,
property 3 is not satisfied in x, a contradiction.
• The rearrangement is 321→ 213 where the letter playing the 3 is a y-starter and one of the

remaining letters is not. However, then property 3 is not satisfied in x, a contradiction.
Assume a rearrangement exists which results in a permutation not satisfying property 3. Let j
and k be the first and second y-starter respectively which have a letter less than j being brought
between them by the rearrangement. Such a letter can not come from the left of j by property 2.
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Such a letter can not come from the right of k because then k would be playing the role of 1 in
213→ 321 and property 3 could not be satisfied in x, a contradiction. Thus, such a rearrangement
can not exist. �

Note that by Lemma 3.44, no two distinct bushy-tailed permutations with the letters to the right
of 1 in increasing order are equivalent.

Proposition 3.45. The number of classes in Sn is the sum of the first n−1 Motzkin numbers under
the {123,132}{213,321}-equivalence.

Proof. By Lemmas 3.44 and 3.42, the number of classes in Sn is exactly the number of bushy-
tailed permutations with the letters to the right of 1 in increasing order. We will call a bushy-tailed
permutation with the letters to the right of 1 in increasing order a beaver-permutation. What
remains is to count the number of beaver-permutations. Let f (n) be the number of classes in Sn
(and thus the number of beaver-permutations). Then, the number of beaver-permutations in Sn
with n not to the left of 1 is clearly f (n− 1) because we can just append n to the end of each
beaver-permutation from Sn−1. Consider a beaver-permutation w with n to the left of 1. Let k be
the number of letters to the left of 1 in w. Note that k can be any value greater than 0 and less than
n. There are

(n−2
k−1

)
ways to choose these letters without yet fixing their order.

Let g(k) be the number of possible arrangements for a given set of letters to the left of 1 in a
beaver-permutation. Assume that k is even. Then, each arrangement of the letters corresponds
with a 2× k/2 standard Young tableau (in English notation); reading from right to left in the
permutation (starting with the letter preceding 1), we fill the column of the tableau, then the second,
and so on5. The number of 2× k/2 standard Young tableaux is Ck/2 where Cn denotes the n-th
Catalan number6. Hence, g(k) = Ck/2 for even k. If k is odd, then n is forced in the first position,
and ignoring it, we see that g(k) = g(k−1) = C(k−1)/2. So,

f (n) = f (n−1)+
n−1

∑
k=1

(
n−2
k−1

)
·Cbk/2c

= f (n−1)+
n−2

∑
k=0

(
n−2

k

)
·Cdk/2e

= f (n−1)+
b(n−2)/2c

∑
k=0

(
n−2

2k

)
·Ck +

b(n−1)/2c

∑
k=1

(
n−2
2k−1

)
·Ck.

Recall that Mn is the number of Motzkin n-paths, paths from (0,0) to (n,0) in in the grid N×N
using only steps U = (1,1), F = (1,0) and D = (1,−1). We will enumerate Mn. Consider the paths
where F is used exactly n− j times for a given j. The uses can be distributed in any of

( n
n− j

)
=
(n

j

)
ways. The remaining j steps must consist of uses of U and D. If k is even, then there are clearly
Ck/2 arrangements for these steps. Note that k can not be odd. So,

Mn =
bn/2c

∑
k=0

(
n
2k

)
Ck.

5i.e., if the letter 1 is the g-th letter, then the i-th column contains the g− (2i−1)-th and g−2i-th letter.
6This is well known. It is also easy to prove by bijecting such standard Young tableaux with Catalan paths by means
of traversing the cells of the Young tableau by increasing letter and using each letter in the bottom row to represent a
side step and each letter in the top row to represent a down step.
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Hence,

Mn−2 =
b(n−2)/2c

∑
k=0

(
n−2

2k

)
Ck.

So,

f (n) = f (n−1)+Mn−2 +
b(n−1)/2c

∑
k=1

(
n−2
2k−1

)
·Ck.

Consider
b(n−1)/2c

∑
k=1

( n−2
2k−1

)
·Ck. We will show that this is the difference between Mn−2 and Mn−1.

Note that Mn−2 is the number of Motzkin n−1-paths that go through point (n−2,0). We will now
enumerate those Motzkin n−1-paths which do not go through (n−1,0). (There are Mn−1−Mn−2
such paths.) In such a path, excluding the final step, there must be one more use of U than of D.
So, the number of uses of both combined must be odd. Let that value be 2h−1. We pick 2h−1 of
the first n−2 steps to be the steps which are not F . These 2h−1 steps, with a D appended to the
end must form a Catalan path of length 2h. Thus, there are Ch possibilities for the arrangements of
these steps. Hence,

Mn−1−Mn−2 =
b(n−1)/2c

∑
k=1

(
n−2
2k−1

)
·Ck.

So, f (n) = f (n−1)+Mn−1. Inductively, f (n) is the sum of the first n−1 Motzkin numbers. �

3.8. {123,132}{213,312}-Equivalence. In this subsection, f (n) be the number of classes that Sn
breaks into under the {123,132}{213,312}-equivalence.

Definition 3.46. We call the root-permutation (or root) of a permutation w the permutation ob-
tained from w by applying 123→ 132 and 213→ 312 repeatedly to the hit ending with n in order
to bring n to the first or second position (We will call this sliding n).

We first make two observations. When sliding n in x, each transformation only uses letters that
were to the left of n before the transformation (observation 1). Additionally, the letters to the left
of n after the transformation were static in the transformation (observation 2).

Lemma 3.47. Let x and y be two permutations reachable from each other through a single trans-
formation under the {123,132}{213,312}-equivalence. Let x′ and y′ be the root-permutations of
x and y respectively. Then, either x′ and y′ are each of the form n . . ., or they are each of the form
jn . . . for the same j.

Proof. Let x,y,x′,y′ be such permutations. Consider the transformation connecting x to y. There
are the following cases.

• The transformation involves a hit using letters only to the right of n. In this case, the series
of transformations from x to x′ is the same as the series from y to y′.
• The transformation uses a hit containing n. In this case, x′ and y′ are clearly the same; the

series of transformations used to obtain from x′ from x is the same as the one used to obtain
y′ from y′ except plus or minus an extra transformation.
• The transformation uses a hit involving only letters to the left of n. There are two subcases.
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(1) The rearrangement connecting y to x is 123→ 132 (without loss of generality, in that
order). Let j, k, and r be the letters playing the roles of 1, 2, and 3 respectively,
and w be the factor containing the letters to the left of the hit. In x, we may slide n
within the factor going from k to the end of x to reach a permutation of the form either
w jkn . . . or w jn . . . (observation 2). In the first case, if we continue sliding n, we reach
a permutation of the form w jn . . .. In y, we may slide n within the factor going from r
to the end of y to reach a permutation of the form either w jrn . . . or w jn . . . (observation
2). In the first of the two cases, if we continue sliding n, we reach a permutation of the
form w jn . . .. Hence, noting observation 1, completing the sliding of n in x and y will
result in either a permutation beginning with n in both cases or a permutation of the
form jn . . . for the same j in both cases.

(2) The rearrangement connecting y to x is 213→ 312 (without loss of generality, in that
order). Let j, k, and r be the letters playing the roles of 1, 2, and 3 respectively,
and w be the factor containing the letters to the left of the hit. In x, we may slide
n within the factor going from r to the end of x to reach a permutation of the form
either wk jrn . . . or wk jn . . . (observation 2). In each case, we may continue sliding n
to reach a permutation of the form wn . . . (we go wk jrn . . .→ wk jn . . .→ wn . . . and
wk jn . . .→ wn . . . respectively). In y, we may slide n within the factor going from k to
the end of y to reach a permutation of the form either wr jkn . . . or wr jn . . . (observation
2). In each case, we may continue sliding n to reach a permutation of the form wn . . .
(we go wr jkn . . .→ wr jn . . .→ wn . . . and wr jn . . .→ wn . . . respectively). Hence,
noting observation 1, completing the sliding of n in x and y will result in either a
permutation beginning with n in both cases or a permutation of the form jn . . . for the
same j in both cases.

�

Lemma 3.48. Let x,y ∈ Sn be permutations separated by a single transformation under the
{123,132}{213,312}-equivalence. Let x′,y′ be the root-permutations of x and y. Then, x′ is
reachable from y′ using hits only to the right of n under the {123,132}{213,312}-equivalence.

Proof. We use as a base case (the “hypothesis”) that this holds in S5. One can also easily show
that the result holds in S≤5. Assume that n > 5. Let x,y,x′,y′ be as described in Sn. There are three
cases for the hit used to reach x from y:

(1) The hit uses only letters to the right of n. Then x′ and y′ are reachable from each other with
the same transformation (observation 1).

(2) The hit contains n. Then x′ = y′ because the transformation is undone in sliding n to the
left in one of x or y.

(3) The hit uses only letters to the left of n. Then, n can be slid within the letters to the right of
the hit to reach a and b from x and y respectively. In both a and b, n is either immediately
to the right of the hit, or to the right of the hit and separated from it by one letter. Consider
the factors of each a and b containing the hit and the two letters to its right, w and w′

respectively. By the hypothesis, the root-permutations of w and w′ are reachable from each
other using only hits containing letters to the right of n. Hence, sliding n within w and w′

of a and b respectively, we reach a′ and b′ such that the letters to the left of n form exactly
the same factor, and the letters to the right of n form permutations that are equivalent in a′

and b′. So, the root-permutations of a′ and b′ are reachable from each other by using hits
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only containing letters to the right of n (observation 1). Noting that the root-permutations
of a and b are x′ and y′, x′ is reachable from y′ using hits only containing letters to the right
of n.

�

Proposition 3.49. f (n≥ 3) = f (n−1)+(n−1) · f (n−2).

Proof. Sliding n to the left in a given permutation, we can reach a permutation either of the form
jn . . . or n . . . for any permutation. By Lemma 3.47, permutations of those forms are not equivalent
for distinct j. By Lemma 3.48, permutations of the form jn . . . fall into f (n−2) classes for a given
j and permutations of the form n . . . fall into f (n−1) classes. So, f (n≥ 3) = f (n−1)+(n−1) ·
f (n−2). �

3.9. {123,321}{213,231}-Equivalence.

Lemma 3.50. All non-avoiding permutations are equivalent in Sn for n > 5 under the
{123,321}{213,231}-equivalence.

Proof. We will prove by inducting on n that every non-avoiding permutation is equivalent to the
identity, noting that the base case of S6 can be checked computationally. Let w be a permutation
in Sn. Without loss of generality, the first n−1 letters of w are non-avoiding (otherwise, the final
n−1 letters are non-avoiding and the proof goes similarly). Applying the inductive hypothesis to
the first n− 1 letters of w, and then to the final n− 1 letters of w (noting that they are then non-
avoiding), we reach a permutation which is non-avoiding in its first n−1 letters and ends with n.
Applying the inductive hypothesis to the first n−1 letters of such a permutation, we are done. �

Proposition 3.51. There are 3 classes in Sn under the {123,321}{213,231}-equivalence for n > 5.

Proof. By Lemma 3.50, there is one class containing the non-avoiders. Any avoiders must consist
of only 312 and 132 patterns. Let w be an avoiding permutation. Clearly the letters of one position
parity in w are in decreasing order and the letters of the other position parity are in increasing
order. Furthermore, the position parity which has its letters in decreasing order also has all of its
letters greater than those of the other position parity. So, w can be one of exactly two permutations
(determined by which position parity contains letters in decreasing order). Hence, there are three
equivalence classes. �

Corollary 3.52. The class containing the identity in Sn contains n!− 2 elements for n > 5 under
the {123,321}{213,231}-equivalence.

Proof. This is because all n!−2 of the non-trivial permutations are reachable from the identity. �

3.10. {123,321}{132,231}-Equivalence.

Definition 3.53. The fall of a permutation x ∈ Sn is the set
{k ∈ {1,2, . . . ,n} | each letter greater than k in x has the same position parity as k}.

Proposition 3.54. Let x be a permutation containing letters a and b separated by one letter. Let
k be the greatest letter of different position parity than a and b. Assume that a and b are not both
in the fall of x. Then, x is equivalent to the permutation which is identical to x except with a and b
swapped under the {123,321}{132,231}-equivalence.
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Proof. Let x be such a permutation with letters a, b, and k as described. Note that k > a or k > b
because a and b are not both in the fall of x. We will prove the proposition by inducting on n.
Assume, inductively, that the result holds for lesser n with a trivial base case of n = 3. Due to
symmetries of the relation, we can assume without loss of generality that a and k are to the left of
b. If k is between a and b, then we simply swap them. Otherwise, consider the factor of x beginning
with k and ending with b. If it is of length less than n, then applying the inductive hypothesis to it,
we are done. If it is of length n, then n must be even. Thus, we can slide the letter 1 to the first or
final position by repeatedly swapping it with the letter two positions to its left or right respectively.
Applying the inductive hypothesis to the remaining n− 1 letters, we can swap a and b. Then,
sliding 1 back to its previous position by repeatedly swapping it with the letter two positions to its
right or left respectively, we reach the desired permutation. �

Proposition 3.55. The set of permutations equivalent to a permutation x under the
{123,321}{132,231}-equivalence is exactly the set of all permutations with the letters in their fall
being in the same relative order as in x and with all letters having the same position parity as in x.

Proof. By Proposition 3.54, every permutation in the latter set is equivalent to x. Observe that un-
der the relation, any permutation equivalent to x must have each letter be of the same position parity
as in x. Therefore, such a permutation must also have the same fall as x has. The relation never
allows two letters in the fall of a permutation to swap relative positions. Hence, any permutation
equivalent to x is in the set. �

Corollary 3.56. Let x be a permutation with a fall of size j. Then, the size of the class containing
x is bn/2c!·dn/2e!

j! under the {123,321}{132,231}-equivalence.

Proof. Any two letters of the same position parity not both in the fall of x can be swapped. There
would be bn/2c! · dn/2e! elements in the class if letters both in the fall could be swapped as well.
However, keeping in mind that they can not, we must divide by the number of ways they can be
sorted, j!. �

Corollary 3.57. Let l be bn/2c and h be dn/2e. There are
l
∑
j=1

j! ·
(n− j−1

h−1

)
+

h
∑
j=1

j! ·
(n− j−1

l−1

)
classes

in Sn under the {123,321}{132,231}-equivalence.

Proof. Each class is determined by its fall, the order of the letters in its fall in each permutation
in the class, the position parity of the letters in its fall, and the position parity of each of the
remaining letters. So, if the letters in its fall are of a given position parity and the fall is of size
j (each possibility is summed over in the final equation), then there are j! possible orderings for
the letters in the fall. Then, out of the n− j remaining letters, the position parity of the letter n− j
is already determined as the opposite of that of n, but the other n− j− 1 letters can be of either
position parity, thus yielding the binomial coefficient portion of the equation. �

3.11. {123,231}{321,213}-Equivalence. Let ik be the identity in Sk and uk be the identity in Sk
except with 1 and 2 swapped.

Definition 3.58. A permutation is layered if each letter of one position parity is less than each
letter of the other.

Remark 3.59. Note that when studying the {123,231}{321,213}-equivalence, we will often use
the symmetry (specific to the relation) between a permutation and the corresponding permutation
which has every letter k mapped to n− k +1.
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Lemma 3.60. Let x be a permutation in Sn≥5 containing a factor which forms either i5 or u5. Then,
x is equivalent to either in or un under the {123,231}{321,213}-equivalence.

Proof. We will prove this by inducting on n, using S5 and S6 as our base cases. (These can easily be
checked computationally.) Assume the lemma holds in Sn−1. Let x be a permutation as described.
Without loss of generality, x contains a factor forming i5 or u5 in its first n−1 letters. Applying the
inductive hypothesis to the first n−1 letters, and then the final n−1 letters (reaching a permutation
ending with n), and then the first n−1 letters again, we reach either in or un. �

Lemma 3.61. Let n > 5. Let w be a permutation in Sn not equivalent to in or un under the
{123,231}{321,213}-equivalence. For symmetry reasons, we may assume without loss of general-
ity that x begins with a descent. Under the transformations considered, all permutations equivalent
to x begin with a descent as well under the {123,231}{321,213}-equivalence.

Proof. One can check computationally that the lemma holds in S6. Let w ∈ Sn>6 not be equivalent
to in or un, begin with a descent, and be equivalent to a permutation not beginning with a descent.
Then, there is some transformation which connects two permutations in w’s equivalence class, one
of which begins with a descent and one of which begins with an ascent. Applying the inductive
hypothesis to the first six letters of such a permutation, we rearrange them to form i6 or u6, and by
Lemma 3.60, we can reach either in or un. �

Lemma 3.62. Let a be the decreasing permutation and b be the decreasing permutation with its
first two letters swapped, both in Sn>5. Then, a and b are each equivalent to a different one of in
and un under the {123,231}{321,213}-equivalence.

Proof. Computationally, one can easily check that this holds for n = 6. For n > 6, we may rearrange
the first 6 letters of a and b to form either i6 or u6. Then, applying Lemma 3.60, we reach either in
or un from each of a and b. Noting that that parity is invariant under the relation, we conclude that
a and b are each equivalent to a different one of in and un. �

For the rest of this subsection, we ask for the reader to remember that Lemma 3.62 makes a
permutation being equivalent to ik or uk the same as a permutation being equivalent to a or b (as
defined in the proof of the lemma). This means that when a permutation is equivalent to one of uk
or ik, the permutation which is the same but with each letter j mapped to n− j +1 is as well; this
argument of symmetry, although nontrivial, will be assumed to work for the rest of the subsection.

Lemma 3.63. Let x ∈ Sn>5 be a layered permutation not beginning with n or n− 1, but starting
with a decrease. Then, x is equivalent to in or un under the {123,231}{321,213}-equivalence.

Proof. Inductively assume the lemma holds in Sn−2, using S6 and S7 as base cases (these can be
checked computationally). Let x be a permutation as described. Assume x is not equivalent to in or
un. We must not be able to apply the inductive hypothesis to the first n−2 letters, or else x would
be equivalent to in or un by Lemma 3.60. Hence, x must have n or n−1 in the final two positions
and start with n−2. Since we must also not be able to apply the inductive hypothesis to the final
n−2 letters, the third letter in x must be either n−1 or n. So, we know that we can slide the right-
most of n− 1 and n two positions to the left through a 123→ 231 or 213→ 321 rearrangement
without moving any other of n, n−1, or n−2. Then, applying the inductive hypothesis to the first
n−2 letters, and noting Lemma 3.60, x is equivalent to in or un, a contradiction. �

Lemma 3.64. Let x ∈ Sn>5. For symmetry reasons, we assume without loss of generality that x
begins with a decrease. Then, x is equivalent to a layered permutation starting with n or n− 1
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which starts with a decrease or x is equivalent to either in or un under the {123,231}{321,213}-
equivalence.

Proof. Let x∈ Sn be not equivalent to the in or un and begin with a decrease. We assume inductively
that the result holds in Sn−1 with an inductive base case of S6. Applying the inductive hypothesis to
the first n−1 letters of x, we reach a permutation which is layered in all of its letters but possibly its
final letter (otherwise, they could be rearranged as in−1 or un−1, we would be able to apply Lemma
3.60, and x would be equivalent to the identity). Without loss of generality, this permutation begins
with n, n−1, or n−2 because its first n−1 letters do not form a permutation equivalent to in−1 or
un−1 (Lemma 3.63). This creates the following three cases.

(1) The first letter is n. Applying the inductive hypothesis to the final n− 1 letters (Using
symmetry, they may be rearranged to be either layered or to form in−1 or un−1; by Lemma
3.60, they must form a layered permutation; by Lemma 3.61, this layered permutation
begins with an increase.), we reach a layered permutation starting with n.

(2) The first letter is n−1. Applying the inductive hypothesis to the final n−1 letters (Using
symmetry, they may be rearranged to be either layered or to form in−1 or un−1; by Lemma
3.60, they must form a layered permutation; by Lemma 3.61, this layered permutation
begins with an increase.), we reach a layered permutation starting with a n−1.

(3) The first letter is n−2. Applying the inductive hypothesis to the final n−1 letters (Using
symmetry, they may be rearranged to be either layered or to form in−1 or un−1; by Lemma
3.60, they must form a layered permutation; by Lemma 3.61, this layered permutation be-
gins with an increase.), we reach a layered permutation starting with a descent and starting
with n−2. By a Lemma 3.63, we reach a contradiction, as such permutation is equivalent
to in or un.

�

Lemma 3.65. Let x ∈ Sn>5 be a layered permutation beginning with (n−1) and not equivalent to
in or un under the {123,231}{321,213}-equivalence. Then, n is in the final position of odd parity.

Proof. As a base case, one can show computationally that this holds in S6 and S7. Inductively, it
holds in Sn−2. Let w be a layered permutation in Sn>6 beginning with (n− 1) and not equivalent
to in or un. Assume that n is not in the final position of odd parity in w. Then, so that we can not
apply the inductive hypothesis to the first n− 2 letters and then apply Lemma 3.60 to reach in or
un, n must be in the second to final position of odd parity. Furthermore, so that we can not apply
Lemma 3.63 to the final n− 2 letters and then Lemma 3.60 to reach in or un, the third letter of x
must be n−2. However, applying the inductive hypothesis to the final n−2 letters and then using
Lemma 3.60, this means we can reach in or un from x, a contradiction. �

Lemma 3.66. Excluding the class containing in and the class containing un, the classes containing
some permutation starting with n in Sn>6 are exactly the classes with permutations not equivalent
to in or un and beginning with an ascent in Sn−1, except with n appended to the beginning of each
permutation in each class, under the {123,231}{321,213}-equivalence.

Proof. Let n > 6. Consider a layered permutation in Sn−1 which is not equivalent to in or un
and which (without loss of generality) starts with an ascent. Appending n to the beginning, we
reach a layered permutation x ∈ Sn. In permutations equivalent to x, n can never be involved in
a hit because by Lemma 3.61, the two letters to the right of it will always be in increasing order
under the relation considered. Thus, x is a layered permutation which is not equivalent to in or
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un. Now, consider y, an arbitrary layered permutation not equivalent to in or un. By Lemma 3.60
and symmetry, the final n− 1 letters of y must form a layered permutation not equivalent to in−1
or un−1. Hence, if y starts with n, then y is one of the permutations found in the manner that x is
found, completing the proof. �

Let s ∈ Sn for odd n be the permutation beginning with 2 and then followed by consecutive
values every two positions until the third to final position, ending with 1, and then going from right
to left, increasing every two positions from the second to final letter. Let s′ be s except with each
letter j mapped to n− j +1.

Let d ∈ Sn for even n be the permutation starting with 2 and then followed by consecutively in-
creasing letters every two positions until the second to final position, ending with 1, and increasing
from right to left in the remaining positions. Let f be d except with the final two letters swapped.
Let d′ and f ′ be f and d respectively except with each letter j mapped to n− j +1.

Under the transformations considered, parity is maintained. Hence, it is worth noting that if
n ≡ 1 (mod 4), then s and s′ are equivalent only to even permutations; if n ≡ 1 (mod 4) then s
and s′ are only equivalent to even and odd permutations respectively; if n≡ 0 (mod 4), then d and
d′ are only equivalent to even permutations while f and f ′ are only equivalent to odd ones; if n≡ 2
(mod 4), then d and f ′ are only equivalent to odd permutations while d′ and f are only equivalent
to even ones.

Lemma 3.67. Consider the layered permutations not equivalent to in or un under the
{123,231}{321,213}-equivalence which do not begin with 1 or n for n ≥ 6. For odd n, there are
two of them, s and s′, each in a class of size (n+1)/2. For even n, there are four of them, d, f , d′

and f ′, each in classes of size n+1, n/2, n+1, and n/2 respectively.

Proof. Assume the lemma holds in Sn−1 and Sn−2 (with inductive base cases of S6 and S7). For
simplification, we will consider only the permutations beginning with a decrease and note that this
describes the others as well by symmetry (and are separate by Lemma 3.61). By the inductive
hypothesis for Sn−1, and the inductive hypothesis for Sn−2 working along with Lemma 3.66 (ap-
plied using symmetry so that we append 1 rather than n−1), in Sn−1 there is exactly one layered
permutation ending with (n−1) and not equivalent to in−1 or un−1, and two layered permutations
with n−1 in the second to final position which are not equivalent to in−1 or un−1. Recall that any
layered permutation not equivalent to in or un and not beginning with n must begin with n−1 by
Lemma 3.63. Further noting that the final n−1 letters of such a permutation must form a layered
permutation7 with n− 1 in the final position of odd parity (Lemma 3.65), we may conclude that
there are at most 2 layered permutations with n in the second to final position and 1 layered permu-
tation with n in the final position in Sn which are not equivalent to in or un. By explicitly describing
the classes they determine, we will complete the proof.

Keeping symmetry in mind, it is sufficient to show that s is in a class of size (n+1)/2, d is in a
class of size n+1, f is in a class of size n/2, and none of these classes overlap. We will do this by
characterizing each class.

The class containing s clearly just contains copies of s except with 1 slid an even number of
positions to its left. So, the class containing s has (n+1)/2 elements. For example, in S5 the class
contains 25341,25134, and 12534.

From d, the only transformation is to slide the third to final letter to the right-most position
(321→ 213), bringing us to e. From e, 1 can then be slid two positions to the left (231→ 123),
7Every factor of a layered permutation forms a layered permutation.
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resulting in e′ (without going back to d, this is the only transformation possible). From e′, one
can rearrange the first three letters as a 231 and then slide 1 two positions to the right. Other then
that, without returning to e, from e′, one can only slide the 1 an even number of positions to the
left (repeated 231→ 123 rearrangements), and choose if the last hit will form a 123 or 231 pattern
for each of slide of 1. This results in 5 + 2(n− 4)/2 = n + 1 permutations being in the class. As
an example, in S8, the class containing d contains 28374651, 28374516, 28371456, 28371564,
28475614, 28137456, 28137564, 12837456, and 1283756.

From f , one can only slide 1 to any position of the same position parity, resulting in n/2 per-
mutations being in its class. For example, when n = 6, the class contains 263541,263154, and
216354. �

Proposition 3.68. For n > 5 odd, there are 3n−1 classes in Sn under the {123,231}{321,213}-
equivalence. For n > 5 even, there are 3n classes.

Proof. Let n > 6. Permutations equivalent to un or in (or to un or in except with each letter j
mapped to n− j + 1 by Lemma 3.62) fall into two classes, separated by parity. The remaining
permutations fall into the same number of classes as they fall into in Sn−1 (Lemma 3.66), with the
exception of, when n is even, four additional classes, and when n is odd, two additional classes
(Lemma 3.67). So, noting the number of classes in S6, for n > 5 odd, there are 3n−1 classes, and
for n > 5 even, there are 3n classes. �

Proposition 3.69. For n > 5, one can easily count the number of permutations in the class con-
taining in or in the class containing un under the {123,231}{321,213}-equivalence. For the sake
of brevity, enumerations are provided inside of the proof.

Proof. Recall that there are two large classes containing permutations equivalent to in or un in
Sn. For n > 6, these classes each consist of the permutations of a given parity not in the smaller
classes which were constructed in the proofs of Lemma 3.67 and Lemma 3.66. To find how many
permutations are in each of the two, it is sufficient to count how many odd and even permutations
are in the smaller classes. Let oin,odn,ein,edn be the number of permutations in these smaller
classes that are odd/even and beginning with an increase/decrease as indicated by the variables.
We will keep track of these in a matrix (as shown below). Bearing in mind the construction of the
classes provided in Lemmas 3.67 and 3.66, these variables can be kept track of in the following
manner. Let

Mn =
(

oin odn
ein edn

)
.

If n≡ 0 (mod 4), then

Mn =
(

odn−1 +n/2 ein−1 +n/2
edn−1 +n+1 oin−1 +n+1

)
.

If n≡ 1 (mod 4), then

Mn =
(

odn−1 oin−1
edn−1 +(n+1)/2 ein−1 +(n+1)/2

)
.

If n≡ 2 (mod 4), then

Mn =
(

odn−1 +n+1 ein−1 +n/2
edn−1 +n/2 oin−1 +n+1

)
.
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If n≡ 3 (mod 4), then

Mn =
(

odn−1 oin−1 +(n+1)/2
edn−1 +(n+1)/2 ein−1

)
.

Keeping these identities in mind, enumerations for the variables fall inductively. Assume as the
inductive hypothesis that

M4k+0 =
(

4k2 +3k +4 4k2 +3k +4
4k2 +3k−1 4k2 +3k−1

)
.

Note that the hypothesis holds for a base case of k = 2. Using the identities, we get that

M4k+1 =
(

4k2 +3k +4 4k2 +2k +4
4k2 +5k 4k2 +5k

)
,

and that

M4k+2 =
(

4k2 +7k +7 4k2 +7k +1
4k2 +7k +1 4k2 +7k +7

)
,

and that

M4k+3 =
(

4k2 +7k +1 4k2 +9k +9
4k2 +9k +9 4k2 +7k +1

)
,

and that

M4k+4 =
(

4k2 +11k +11 4k2 +11k +11
4k2 +11k +6 4k2 +3k +6

)
=
(

4(k +1)2 +3(k +1)+4 4(k +1)2 +3(k +1)+4
4(k +1)2 +3(k +1)−1 4(k +1)2 +3(k +1)−1

)
.

Hence, the inductive hypothesis holds for k + 1. Although we use S8 as our base case, we only
do this for aesthetic reasons. We could instead use S6 (for which the proposition holds) as a base
case, and it is easy to see that the inductive step would still work. �

3.12. {123,321}{132,213}-Equivalence.

Definition 3.70. Let j and k be two letters in a permutation w. A letter s is a j,k-extreme if s is
either less than j or greater than k and s is positioned between j and k.

Definition 3.71. Let j and k be two letters in a permutation. We say that j and k are a dangerous
pair of letters when the following requirements are satisfied.

• We require that j is to the left of k, j < k, and both j and k are of the same position parity.
• We require that there are more j,k-extremes which are of different position parity than j

and k than there are of the same.

Lemma 3.72. Let j and k be two letters in a permutation w. Let w′ be a permutation reached
from w through a single 321→ 123 transformation using the hit h in w. If j and k do not form a
dangerous pair of letters in w, then they are not a dangerous pair of letters in w′.

Proof. Let j,k,w,w′, and h be as stated. Because of the definition of dangerous, we only need to
consider the case where j is to the left of k, j < k, and j and k are of the same position parity. If the
hit h does not contain j or k, then the lemma is trivial. The hit cannot contain both j and k because
j < k and j is to the left of k. If the hit contains only one of j and k, then by symmetry, we may
assume without loss of generality that it contains j. Hence, there are three cases.
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(1) In this case, j is the first letter of h. Then, in w′, there are two less j,k-extremes (acting as
2 and 1 in h), one of each position parity. Hence, j and k are not a dangerous pair of letters
in w′.

(2) In this case, j is the second letter of h. Then, in w′, a j,k-extreme of different position
parity than j and k (acting as 1 in h) is replaced with a letter which may or may not be a
j,k-extreme (acting as 3 in h). Hence, there are still are not more j,k-extremes of the same
position parity as j and k than there are of different position parity in w′, and j and k are
not a dangerous pair of letters in w′.

(3) In this case, j is the final letter of h. Since, the transformation using h only adds letters to
the set which are between j and k, the number of j,k-extremes of each position parity can
only increase. If a j,k-extreme of different position parity than j and k is added (acting as
the 2 in h), then so is one of the same position parity (acting as the 3 in h). Hence, j and k
are not a dangerous pair of letters in w′.

�

Definition 3.73. A permutation is zipped if for each letter except for the final letter, the letter two
positions to its right is smaller.

Definition 3.74. A permutation is k-downed for k > 0 if every permutation which can be reached
through a single 123→ 321 rearrangement is k− 1-downed. A permutation is 0-downed if it is
zipped.

Proposition 3.75. Let d be a downed permutation and w be a permutation equivalent to d under
the {123,321}{132,213}-equivalence. Let k be the number of transformations needed for d to be
reached from w. Then, w is k-downed and both 132 and 213 avoiding.

Proof. We will prove this by inducting on k, with a trivial base case of k = 0. Assume as the induc-
tive hypothesis, that the proposition holds for all smaller k. Let d and w be as described. Since w is
reachable from d through some k transformations, let us pick such a sequence of transformations
and let r be w after the first transformation which uses the hit h. By the inductive hypothesis, r is
k−1-downed. If w is reached from r through a 123→ 321 transformation, then w is k−2-downed,
which cannot be. If w is reached from r through a 132↔ 213 transformation, then r is a k− 1-
downed permutation which is not 132 and 213 avoiding, a contradiction. Hence, w is reached from
r through a 321→ 123 rearrangement.

Since w can be reached from d through as sequence of 321→ 123 transformations, by Lemma
3.72, w contains no pair of dangerous letters. Hence, w is 231 and 213 avoiding since both patterns
contain a pair of dangerous letters.

It remains to show that w is k-downed. Because of the inductive hypothesis, it is sufficient to
show that any 123→ 321 transformation applied to w brings us to a permutation r′ which can be
reached from d through k−1 transformations8. Let r′ be a permutation reached from w through a
single 123→ 321 rearrangement using the hit h′. If h′ = h then r′ = r which clearly can be reached
from d in k transformations. If h includes just some of the letters of h′, then the letters around and
including h must form a 1234 pattern; in r, this becomes a pattern which contains a 132 or 213
pattern, which cannot be. In the final case, h′ and h do not use any of the same letters. Let x be the
permutation reached from r by rearranging h and from r′ by rearranging h′. Since x can be reached

8Note that r′ cannot be i-downed for i < k−1 because then w would not require k transformations to be reached from
d.
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from r through a 123→ 321 rearrangement, it is k− 2-downed, and hence reachable from d in
k−2 transformations. Thus, r′ is reachable from d in k−1 transformations, and we are done. �

Definition 3.76. A permutation is partially zipped if for each letter but the final three, the letter
two positions to its right is smaller, and the final two letters are 1n.

Definition 3.77. A permutation is k-pdowned for k > 0 if every permutation which can be reached
through a single 123 → 321 rearrangement is k− 1-pdowned and each permutation reached
through a single 1nl → l1n rearrangement is k-pdowned. A permutation is 0-pdowned if it is
zipped.

Note that the preceding definition is both explicitly and implicitly recursive, with two actual re-
cursion parameters. Given the shortest path of transformations from a k-downed permutation and a
0-downed permutation, we use both k, the parameter for the number of 123→ 321 rearrangements
in this path, and the number of 1nl→ l1n rearrangements in the path as parameters.

Definition 3.78. A pair of letters in a permutation is pdangerous if the pair is dangerous and one
of the following is true.

• Neither letter is 1 or n.
• Exactly one of the two letters is 1 or n and the other of 1 or n is not between the two letters.

Lemma 3.79. Let w be a permutation which contains no pair of pdangerous letters, which has
1 and n with different position parities and which has 1 to the left of n, and for which the letters
positioned between 1 and n can be paired up so that each letter with the same position parity as
1 is paired with a smaller letter of the same position parity as n. Let w′ be a permutation reached
from w with a single 321→ 123 rearrangement or a l1n→ 1nl rearrangement. Then, w′ satisfies
the properties noted for w.

Proof. If the rearrangement going from w to w′ does not involve n or 1, then this falls from Lemma
3.72. If the rearrangement involves both n and 1, then it must be ln1→ 1nl. In this case, the set
of letters between 1 and n does not change; no pair of letters with either 1 or n can be pdangerous
because 1 and n are adjacent; and any pair of pdangerous letters, j and k, remains pdangerous after
the transformation because if either 1 or n changes its state of being a j,k-extreme, so does the
other which is of different position parity.

In the remaining case, the transformation from w to w′ uses exactly one of n or 1. Let h be
the hit in w involved in the transformation. Because of symmetry, we can assume without loss of
generality that h uses n as its first letter and is of the form nab in w and ban in w′. By Lemma 3.72,
no pair of letters in w′ which does not include one of n or 1 can be pdangerous in w′ which was not
pdangerous in w. Pairing up a with b, we see that the claim of “the letters positioned between 1
and n can be paired up so that each letter with the same position parity as 1 is paired with a smaller
letter of the same position parity as n” still holds after the transformation. As a consequence, a
and 1 cannot form a pdangerous pair in w′ because because there are at least as many 1,a-extremes
with the same position parity as 1 and a as there are with different position parity; this means there
are no pdangerous pairs of letters including 1 in w′. As an additional consequence, n cannot be in a
pdangerous pair in w′ because the pair of letters would have the same letters between them as in w
except with the addition of a and b; since a being a j,n-extreme implies b is as well, there are still
at least as many j,n-extremes with the same position parity as n and j as there are with different
position parity. So, w′ has no pdangerous pairs of letters. �
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Lemma 3.80. Let w be a k-pdowned permutation with 1 and n adjacent. Let w′ be w after a
j1n→ 1n j rearrangement. Then, w′ is k-pdowned.

Proof. Let w and w′ be as specified. Let h and h′ be the hit w and w′ respectively which can be
rearranged to obtain w′ and w respectively. It is trivial to note that rearranging h′ in w′ yields a
k-downed permutation. We need to show that any 123→ 321 rearrangement in w′ using the hit
g results in a k− 1-pdowned permutation. Assume inductively that the lemma holds for lower k,
with a trivial inductive base case of k = 0. Since w is k-pdowned, w with 1n slid to the right-
most position, yielding x, is k-pdowned as well. Note that x is also equal to w′ with 1n slid to the
right-most position. Since g cannot involve 1 or n, g is still a hit in x using the same letters as
in w′. Let x′ be x but with that hit rearranged. Since x is k-pdowned, x′ is k− 1-pdowned. Note
that x′ can be reached from w′ with g rearranged be sliding 1n to the end of w′ with g rearranged.
Therefore, by repeated applications of the inductive hypothesis, we see that w′ with g rearranged
is k−1-pdowned as well, and we are done. �

Proposition 3.81. Let d be a partially zipped permutation and w be a permutation equivalent to d
under the {123,321}{132,213}-equivalence. Of the transformations needed for d to be reached
from w in the fewest number of transformations possible, let k be the least number of necessary
transformations which are not 1n j→ j1n. Then, w is k-pdowned. Furthermore, w is 132 and 213
avoiding except for when 1 and n act as 1 and 3 respectively.

Proof. Let d and w be as stated. If 1 and n are adjacent in w, then by Lemma 3.80, we may assume
that w ends with 1n. We will assume inductively that the lemma holds for smaller k, with a trivial
base case of k = 0. Since w is reachable from d through a series of transformations, k of which
are not 1n j→ j1n, let us pick such a sequence of transformations and let r be w after the first
transformation which uses the hit h. If h is a 132 or 213 pattern that does not use 1 and n as
1 and 3, then r is a k− 1-pdowned permutation containing a 132 or 213 pattern of that form, a
contradiction. Note that h cannot be 1n j for any j since we already assumed that if 1 and n are
adjacent, they are at the end of w. If w is reached from r through a j1n→ 1n j transformation, then
by the inductive hypothesis, w is k−1-pdowned, a contradiction. If w is reached from r through a
123→ 321 transformation, then by the inductive hypothesis, w is k−2-pdowned, a contradiction.
Hence, w is reached from r through a 321→ 123 rearrangement and by the inductive hypothesis,
r is k−1-pdowned.

Since r is k− 1-pdowned and r is reached from w by a 123→ 321 rearrangement, by repeated
applications of Lemma 3.79 (noting that the lemma can be applied to any partially zipped permu-
tation), w must meet the requirements set by the lemma. As a consequence, w is 132 and 213
avoiding except for when 1 and n act as 1 and 3 respectively.

It remains to show that w is k-pdowned. Because of the inductive hypothesis, it is also sufficient
to show that any 123→ 321 or 1n j→ j1n transformation applied to w brings us to a permutation
r′ from which d can be reached through 1n j→ j1n and 123→ 321 transformations, k−1 of which
are 123→ 321. Recall that we already assumed no 1n j hit exists, so we do not need to consider
that case. Let r′ be a permutation reached from w through a single 123→ 321 rearrangement
using the hit h′. If h′ = h then r′ = r which is k− 1-pdowned. If h and h′ do not use any of
the same letters, then let x be the permutation reached from r by transforming h′ and from r′ by
transforming h; noting the inductive hypothesis, x is k− 2-pdowned. Hence, d is reachable from
r′ through 1n j→ j1n and 123→ 321 transformations, k−1 of which are 123→ 321. In the final
case, h and h′ share some but not all of their letters. Since, h and h′ share some letters, the letters
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surrounding h must form the permutation 1234 where h is the final or first three letters of the
permutation. In order for r to be 132 and 213 avoiding except for cases where 1 and n play the role
of 1 and 3, 1 and n must play the role of 1 and 4 in the 1234. Hence, in order for h′ to exist in w,
it must contain the other of either the first three or final three letters in the 1234. Let x be w except
with the 1234 rearranged as 3214. Either r is x or r with a 1n j→ j1n rearrangement is x. Hence,
x is k−1-pdowned. Either r′ is x or r′ with a 1n j→ j1n rearrangement is x. Hence, d is reachable
from r′ through 1n j→ j1n and 123→ 321 transformations, k−1 of which are 123→ 321 and we
are done. �

Proposition 3.82. Let f (n) be the number of classes created in Sn under the {123,321}{132,213}-
equivalence. Then,

f (n) =
(

n
bn/2c

)
+
(

n−2
b(n−2)/2c

)
+3.

Proof. For n < 5, this can be shown computationally. Let n be ≥ 5. By Proposition 3.75 and
Proposition 3.81, zipped and partially zipped permutations are each in their own classes. This
accounts for the first two terms of the formula. We will show that the remaining permutations fall
into 3 classes.

There must be at least three remaining classes because the number of inversions in a permu-
tation modulo 3 is an invariant in the relation considered. We will now show that all permuta-
tions in the remaining classes (for n≥ 5) are equivalent to one of 12543678 . . ., 21435678 . . ., and
12435678 . . .. It is not hard to see that these permutations have 3, 2, and 1 inversions respectively,
putting them into each of the three prospective classes. Our reason for choosing them is because
each has a 132 hit starting in the second position. This will be useful to us shortly.

Let w be a permutation not equivalent to a zipped or partially zipped permutation. Through
repeated applications of 123 → 321, one can reach a 123 avoiding permutation. Because the
permutation is not zipped or partially zipped, it must contain a 132 or 213 pattern. If 1 and n are
in the said pattern, we can slide them to the right-most positions and repeat the process on the
remaining letters, bringing us to a permutation which contains a 132 or 213 pattern which does not
use both 1 and n. Hence w is equivalent to some w′ which contains a 132 or 213 pattern not using
1 and n as the letters 1 and 3.

If w′ has a 132 or 213 hit in the first n−1 letters such that it does not use both the smallest and
largest of the n− 1 letters or in the final n− 1 letters such that it does not use both the smallest
and largest of the n− 1 letters, we define w′′ as w. Otherwise, if w′ has only one 132 or 213 hit
which does not use both n and 1, the said hit is in the right-most position and contains both 1 and
n, n is in the first position of w′, then arranging the hit as 132, we reach a w′ such that its first
n−1 letters form a permutation containing a 213 hit that does not use both the highest and lowest
letter. Similarly, if 1 is in the final position of w′ and the only 132 or 213 hit not using 1 and n in
w′ instead uses n and 2 and is in the final three positions, then arranging the hit as 213, we reach a
w′′ such that the final n−1 letters contain a 132 pattern does not use both the highest and smallest
letter of those n−1 letters.

If w′ has a 132 or 213 hit in the first n−1 letters such that it does not use both the smallest and
largest of the n− 1 letters or in the final n− 1 letters such that it does not use both the smallest
and largest of the n−1 letters, we define w′′ as w′. Otherwise, (noting symmetry) w′ either begins
with 1 and ends with 2 jn or j2n or ends with 1 and begins with 2 jn or j2n for 2 < j < n. In
each of these cases, if we were not able to already define w′′ simply as w, it is not hard to see that a
rearrangement of the hit creates a new 132 or 213 hit either starting with the second letter or ending
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with the second to final letter of the new permutation. This yields a w′′ which has a 132 or 213 hit
in the first n−1 letters such that it does not use both the smallest and largest of the n−1 letters or
in the final n−1 letters such that it does not use both the smallest and largest of the n−1 letters.

Assume as an inductive hypothesis for the rest of the proof, that any permutation containing a
132 or 213 pattern not using both 1 and n in Sk for k < n is equivalent to one of 12543678 . . .,
21435678 . . ., and 12435678 . . .. The base cases of k = 5 and k = 6 for this induction are easy to
check computationally. We will now show that w′′ is equivalent to one of 12543678 . . ., 21435678 . . .,
and 12435678 . . ., completing the proof. If w′′ has a hit in the first n−1 letters not using the highest
and smallest letter of those first n−1 letters, we apply the inductive hypothesis to them, reaching
x. Because of the hit that x has in the final n− 1 letters (starting with the second letter), we can
apply the inductive hypothesis to the final n−1 letters to reach x′ which has n in the final position.
Finally, applying the inductive hypothesis to the first n−1 letters (using the hit starting in the third
position), we are done. If instead, w′′ initially has a 132 or 213 pattern in the final n− 1 letters
not using both of the highest and lowest letters in the final n−1 letters, we can apply the inductive
hypothesis to the final n−1 letters to reach an instance of the case we have already covered. �

3.13. {123,231}{213,312}-Equivalence. We will first count the number of classes which con-
tain only 123 and 231 avoiding permutations.

Definition 3.83. A peak in a word is a letter that is greater than each of its adjacent letters in the
word. A dip in a word is a letter that is less than each of its adjacent letters in the word.

Definition 3.84. The 321-leading subword of a permutation w is the factor containing the letters
before the first occurrence of 321 in w as well as the first letter of that occurrence. If there is no
occurrence, then it is simply w.

Definition 3.85. We consider the k-length of a permutation to be the number of peaks in its 321-
leading subword.

Definition 3.86. We define the 321-leading segments of a permutation w to be the factors beginning
with the final two letters of a 321 hit and going to the first letter of the next 321 hit. The 321-
leading subword as well as the factor going from the second letter of the final 321 hit to the end of
a permutation are considered 321-leading segments as well.

Definition 3.87. The k-length of a 321-leading segment is the number of peaks in the 321-leading
segment.

Definition 3.88. We say that a permutation is compact if it satisfies one of the following two
conditions.

• (condition 1) w begins with a decrease. The 321-leading subword of w is decreasing in the
odd positions and increasing in the even positions from left to right. The letters in the odd
positions of the 321-leading subword of w are the largest letters in w. Also, The portion of
w not included in the 321-leading subword, w′ either satisfies this condition (recursively)
or is of length 0. Finally, if it is not of length 0, then where k is the k-length of w, k′ is the
k-length of w′, and j is the value of the letter in the final dip of 321-leading subword of w,
we have k + k′ ≤ n− j.
• (condition 2) w begins with an increase. The final n− 1 letters of w form a permutation

satisfying condition 1.
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Proposition 3.89. Each compact permutation is only equivalent to permutations avoiding both
123 and 231 under the {123,231}{213,312}-equivalence. Each class containing only 123 and
231 avoiding permutations contains exactly one compact permutation.

Proof. We will first show that each compact permutation determines a unique class containing only
123 and 231 avoiding permutations. We claim that the class containing a compact permutation w
contains exactly the permutations which are w except with the peaks in each 321-leading segment
rearranged arbitrarily. Assume as the inductive hypothesis that the claim holds for permutations
with r or less 321-leading segments (with the base cases of r = 1 and r = 0 being fairly obvious).

Let w be a compact permutation with r +1 321-leading segments. Let w′ be w except excluding
the 321-leading subword. Let l be the 321-leading subword of w and l′ be the 321-leading subword
of w′. Let k be the k-length of w, k′ be the k-length of w′, and j be the value of final dip l (if it does
not exist, then the 321-leading subword of w is of size 1 and the claim easily falls from the inductive
hypothesis). Note that l ends with a peak since otherwise, there would be a 321-leading subword
prior to the first one in w. Recall that w is compact. Since all of the dips in l are less than or equal
to j, all of the peaks in l are among the greatest k letters of w, all of the peaks of l′ are among the
greatest k′ letters of w′, and k + k′ ≤ n− j, each peak in l′ is greater than j (observation 1). By the
inductive hypothesis, the permutations contained in the equivalence class of w′ are simply copies
of w′ where the peaks in each 321-leading segment are possibly scrambled (observation 2). Also,
by the inductive hypothesis, the permutations contained in the equivalence class of l are simply
copies of l except with its peaks arbitrarily scrambled (observation 3). By observations 1, 2, and 3,
for any permutation x reachable from w by rearrangements of hits in l and rearrangements of hits
in w′, the letter immediately following l is a peak in w′ which is greater than j. We also know the
said letter is less than the peak immediately following j. Hence, j and the two letters following it
form a 132 pattern in x. Since the three letters following j form a 321 pattern in x, there is no hit
in x containing both letters from l and w′. Therefore, the class containing w contains only versions
of w where the peaks within each 321-leading segment have been scrambled arbitrarily and only
permutations avoiding 123 and 231. Thus, w uniquely determines such a class.

We will now show that every class C containing only 123 and 231 avoiding permutations con-
tains a compact permutation w, thus completing the proof. Let x be a permutation in such a class
C. Applying repeated 213→ 312 rearrangements to x, we reach a permutation w consisting only
of 321,132, and 312 patterns. We will prove that this permutation either meets condition 1 or
condition 2. Assume as the inductive hypothesis that this claim is true if w were to have m or less
321-leading segments (with a base case of m = 0). Assume w has m + 1 321-leading segments.
The 321-leading subword of w is alternating, has peaks decreasing from left to right, and dips in-
creasing from left to right. The peaks of the 321-leading subword of w must be the largest letters
in the w because otherwise a 123 or 213 would occur somewhere. By the inductive hypothesis,
the portion of w not included in its 321-leading subword satisfies condition 1. Finally, if there are
more than one 321-leading segments in w, then where k is the k-length of w, k′ is the number of
peaks in the second to left-most 321-leading segment in w, and j is the value of the final dip in the
321-leading subword of x, k + k′ ≤ n− j. This inequality must hold because otherwise a peak in
the second 321-leading segment in w which has value less than j could be moved to the position
two to the right of j, forming a 231 pattern, a contradiction. Thus, w is compact. �

Proposition 3.90. Let g(n,k) count the number of permutations meeting condition 1 for compact-
ness and with a 321-leading subword containing k−1 dips and k peaks. We assume that k is such
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that at least one such permutation exists. Then,

g(n,k) =



1, if n = 1 or n−2k +1 = 0
b(n−1)/2c

∑
j=1

g(n−1, j), if k = 1

n−k
∑

x=k−1

n−k−x
∑
j=1

(x−1
k−2

)
·g(n−2k +1, j), otherwise.

Proof. If n = 1, then it is trivial that k = 1 and g(n,k) = 1. If n−2k+1 = 0, then there is only one
permutation which g(n,k) counts, having peaks in decreasing order and containing the larger half
of the letters, and the dips increasing from left to right and containing the remaining letters.

Otherwise, if k = 1, then we need the number of possible permutations of size n−1 satisfying
condition 1. (We know n− 1 > 0; we can simply append n to each of these permutations.) We
define j as the number of peaks in the 321-leading subword of a permutation in Sn−1. Then, j can
be anywhere from 1 to b(n−1)/2c. So,

g(n,k) =
b(n−1)/2c

∑
j=1

g(n−1, j).

Otherwise, we know that n > 1, k > 1, and n−2k−1 6= 0. Let w be a permutation counted by
g(n,k) in this case. We define x to be the value of the final dip in the 321-leading subword of w.
Because the dips in the 321-leading subword increase from left to right, x is at least k−1. Because
the largest k letters in w are used in peaks of the 321-leading subword, x is at most n−k. However,
x can be any value in-between inclusive. We define j to be the number of peaks in the second
321-leading segment of w. Note that j can be anywhere between 1 and n− k− x inclusive (by the
inequality in condition 1). Now, given x and j, we choose k−2 dips in the 321-leading segment of
w (x is already chosen). They can have any values less than x. So, there are

(x−1
k−2

)
choices. Then,

we choose w′, the permutation created by the letters to the right of the 321-leading subword of w.
There are g(n−2k +1, j) choices for w′. So, we get

g(n,k) =
n−k

∑
x=k−1

n−k−x

∑
j=1

(
x−1
k−2

)
·g(n−2k +1, j).

�

Proposition 3.91. Let the function g be defined as in the previous proposition. Let f (n) be the
number of classes in Sn under the {123,231}{213,312}-equivalence. Then,

f (n) =
bn/2+1c

∑
k=1

g(n+1,k)+n−2.

Proof. First, we calculate the number of classes containing only 123 and 231 avoiding permuta-
tions. The number of these containing permutations starting with a decrease is

b(n−1)/2c

∑
k=1

g(n+1,k).

This is also the same as the number of such classes in Sn+1 containing only permutations starting
with a 321 pattern (we create a bijection by just appending n +1 to the left). The number of such
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classes Sn that contain permutations starting with an increase is the same as the number of such
classes in Sn+1 containing permutations starting with a decrease but not with a 321. This falls from
the definition of condition 2. Adding these together, we get that the number of such classes in Sn is
the number of such classes in Sn+1 starting with a 321 added to the number of such classes in Sn+1
starting with a decrease but not a 321, which is just the number of classes containing only 123 and

231 avoiding permutations starting with a decrease in Sn+1. We know that this is
bn/2+1c

∑
k=1

g(n+1,k).

Now, will calculate the number of classes containing at least one permutation which contains a
123 or 231 pattern. First we note an invariant. Let w be a permutation in Sn. If 1 and 2 are of the
same position parity as each other and 1 is to the left of 2, then they cannot be involved in a hit
with each other until one of them changes position parity under the transformations considered.
However, unless they are in the same hit, they always both act as 1 in any hit, thus maintaining
their position parity. So, in this case, 1 and 2 can never swap relative order and can never change
position parity under the transformations considered. Then, if 3 is to the right of 2 and of the same
position parity, then 3 and 2 can never swap relative order or change position parity. Similarly, if
the k smallest letters are ordered increasing from left to right and are of the same position parity,
then none of their position parities can ever change and none of them can ever swap relative order.
So, the highest k for which this is true and the parity of the lowest k letters for a permutation
does not change under the transformations considered. Let k be that highest such k for a given
permutation w in Sn. If 1 has an odd position, k can have any of dn/2e values. If 1 has an even
position, k can have any of bn/2c values. However, in the case where every odd position is less
than every even position or vice versa, w is in one of the 123 and 231 avoiding classes. Hence,
there are at least n−2 classes which contain a permutation containing 123 or 231 patterns fall into.

We will now show that permutations containing a 123 or 231 fall into exactly n−2 classes. Let
w ∈ Sn contain either a 123 or 231 pattern. Let k be the largest k such that the lowest k letters
are in increasing order from left to right and each of the same position parity in w. Let p be the
position parity of 1 in w. We will show that w is equivalent to w′, the permutation which increases
from left to right except with 1 inserted in the left-most position with parity p and the next k− 1
letters in value inserted every two positions to its right. (e.g., if k = 3, n = 8, and 1 is of odd
position parity, then w′ = 14253678.) Assume as an inductive hypothesis that this claim holds in
Sn−1 (with the base cases of n≤ 5 easy to check). Note that all such w′ have their final three letters
in increasing order because we are not considering the cases where all the letters of one position
parity are greater than those of the other.

If a 123 or 231 pattern occurs only in the final three letters of w, then applying the inductive
hypothesis to the final n− 1 letters, we reach a permutation where that is not the case. Hence,
we may assume that w has a 123 or 231 pattern in its first n− 1 letters. We apply the inductive
hypothesis to them, reaching a permutation x which has the three letters preceding its final letter
in increasing order. If 1 is in the first position of x, then we apply the inductive hypothesis to the
right-most n− 1 letters of x and reach w′. If 1 is in the second position in x, then we apply the
inductive hypothesis to the right-most n−1 letters of x to reach x′ which has its final three letters
in increasing order. If x′ is not w′, then through an application of 312→ 213, we place the first
letter in w′ in the first position in x′ (note that this letter was previously in the third position in
x′). Then, applying the inductive hypothesis to the right-most n−1 letters, we reach w′. If 1 is in
the final position of x, then we apply the inductive hypothesis to the final n−1 letters, reaching a
permutation which starts with some letter t and increases afterwards, m. Applying the inductive
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hypothesis to the first n−1 letters of m and then the to the final n−1 letters, we are done (and we
reach the identity). Hence, w and w′ are always equivalent and the proposition holds. �

3.14. {132,231}{213,312}-Equivalence experimental data. Figure 2 provides computational
data for the number of classes created in Sn by the {132,231}{213,312}-equivalence for n ≤ 12.
This equivalence is the only replacement partition of S3 with two nontrivial parts, each of size two,
which has yet to be enumerated.

FIGURE 2. The number of classes created in Sn by the {132,231}{213,312}-equivalence.
n 3 4 5 6 7 8 9 10 11 12
# classes 4 10 26 76 234 782 2804 10972 47246 224648

4. CONNECTING PATTERN-AVOIDANCE AND THE ENUMERATION OF EQUIVALENCE CLASSES

In this section, we study the connection between pattern-avoidance and the enumeration of
equivalence classes.

Let P be a partition of Sc such that for each part of P, there is a permutation in the part with less
inversions than every other permutation in the part. Let D be the set of permutations which have
less inversions than every other permutation in their part. Let U = Sc \D.

We define Nn as the number of classes in Sn under the P-equivalence. We define An as the
number of permutations in Sn which avoid each permutation in U .

In Theorem 4.7, we show that for any k ≥ 2c− 1, Nk = Ak =⇒ Nn = An for all n ≥ k. Al-
though the result is quite simple, its effects are wide-ranging. In fact, it can be used to provide
an alternative proof for the number of classes created by both the {123,132,231}-equivalence and
the {123,132}{213,231}-equivalence which we previously enumerated. [LPRW] studied pattern-
replacement equivalences where one does not require that letters in patterns be consecutive in a
permutation; this modified concept of an equivalence was referred to as P · ·· · -equivalence for the
replacement partition P. It is trivial to modify the proof of Theorem 4.7 so that it holds for these
equivalence relations as well9. Thus, the result can also be used to provide an alternative proof of
the enumeration of the classes for each of the {123,132} · ·· · -equivalence and the {123,132,213} · ·· · -
equivalence. Although the theorem serves as an alternative proof for each of these results, one
should not consider it to substitute their proofs; each of the already known proofs provide insight
into the characterization of the equivalence classes in Sn, while the theorem does little more than
to enumerate them.

Definition 4.1. We say that a rearrangement of a hit from U to be a hit from D is a down jump.

Definition 4.2. We call w an avoider if w avoids each permutation in U.

Note that this notion of an avoider is slightly different from the one used in the other sections of
the paper.

Definition 4.3. We say that the height of a permutation w is the largest k such that through k down
jumps, we may go from w to an avoider (Lemma 4.6 shows that such a k exists).

9For the sake of brevity, we do not provide the modified proof here. However, one only needs to redefine Nn as
the number of classes in Sn under the P · ·· · -equivalence, redefine the notion of avoidance to not require that letters in
patterns be adjacent, and to redefine f in the proof of Theorem 4.7 as a subword rather than a factor.
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Definition 4.4. We say that a permutation is secure if after repeatedly performing down jumps to
it, we always reach the same avoider.

Definition 4.5. A pair of permutations is matched if each permutation in the pair is secure, and
repeated down jumps applied to one of the permutations in the pair brings us to the same avoider
as repeated down jumps applied to the other.

Lemma 4.6. Let w ∈ Sn. If we repeatedly perform down jumps on w, we will eventually reach an
avoider.

Proof. Each down jump brings us to a permutation with fewer inversions. Since there are a finite
number of permutations in Sn, repeated down jumps must always eventually bring us to an avoider.

�

Theorem 4.7. Let k ≥ 2c−1. If Nk = Ak, then Nn = An for all n≥ k.

Proof. Since Nk = Ak, we may conclude that each class in Sk contains exactly one avoider (by
Lemma 4.6). Hence, each permutation in Sk is secure.

Assume that each of the permutations in Sn≥k of height≤ h−1 are secure. We will show that so
are each of the permutations in Sn of height h. The base case for this induction of h = 0 is trivial.

Let w be a permutation in Sn of height h. Let a and b be permutations which can be reached
from w through a down jump using hits x and y respectively. By the inductive hypothesis, a and b
are secure. By showing that a and b are matched, we will establish that w is secure.

If x and y are the same, then a = b and a and b are trivially matched.
If x and y are disjoint, then let w′ be w except with each hit x and y rearranged in the same

manner as in a and b respectively. Then, w′ is matched to each of a and b since it can be reached
from either by a down jump and because of the inductive hypothesis. Hence, a and b are matched.

If x and y overlap but are not equal, then we consider a factor10 f of w containing both x and
y which is of size k. We define f ′ as the avoider reached from f through repeated down jumps.
( f is secure since it is in Sk.) Rearranging f as f ′ in w, we reach a secure permutation w′ by the
inductive hypothesis. Furthermore, since f is secure, f ′ and f with either of x or y rearranged in a
down jump are matched. This implies that a is matched to w′ and b is matched to w′. Hence, a and
b are matched.

Thus, each permutation in Sn>k is secure. Hence, no two avoiders in Sn are equivalent. Since
every permutation in Sn is equivalent to an avoider (Lemma 4.6), Nn = An. �

5. CONCLUSION AND FUTURE WORK

In our study of pattern-replacement relations, several new recurring ideas came to light. First, in
proofs by induction, we found that modified versions of stooge sort could often be used. Second,
we found that sometimes it is easier to treat nontrivial and trivial classes separately. In addition,
several previously known tools played an important role in our research, for example the search
for invariants and systems of representatives (sets of permutations such that each class has exactly
one element of the set).

While the proofs of our results use a common set of tools, they are creatures of different ilks:
they vary in difficulty and structure. This makes it all the more surprising that the results show
some unexpected similarities, like the 2n−1 occurring four times in our enumerations of the classes

10As noted previously, to modify the proof to hold for the P · ·· · -equivalence, we simply consider a subword rather than
a factor.
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in Sn (and the multiset of class sizes in Sn being the same in two cases). If our results are combined
with those of previous works, [PRW] and [LPRW], even more similarities occur. Analyzing the
sources of these similarities, as well as viewing our equivalence relations from the more advanced
viewpoint of algebra, is a promising direction for future study. It would be interesting to find for-
mulas for the number of classes created by several replacement partitions not yet well-understood,
specifically {132,231}{213,312}. In addition, there are the following directions of future work:

(1) In Section 3, we only provide the size of the class containing the identity for relations when
the result is convenient. Future authors might further study the sizes of the classes created
under those relations.

(2) Are there connections between equivalence relations having the same number of classes.
Is there a reason why the enumerations for each of the Knuth relation and the forgotten
relation show up again in our study of the {123,132}{213,312}-equivalence and
{123,231}{213,132}-equivalence respectively?

(3) [LPRW] deals with relations that allow re-ordering only adjacently valued letters or, alter-
natively, re-ordering any subword (rather than only a contiguous set of adjacent letters).
This is an important direction of research to continue.

(4) Some equivalence classes have additional structure. Can one classify permutations in a
given equivalence class based on characteristics such as inversions, length (number of in-
versions), the locations of hits, ascents, Major index, etc.?

(5) We can consider the K-equivalence not only on permutations, but on arbitrary words (cf.
the Knuth relations). By linearization, this corresponds to studying binomial ideals in
noncommutative polynomial rings, and the quotient rings modulo these ideals. These have
revealed interesting properties in the cases of the Knuth and forgotten relations. Do similar
properties arise in the relations that we have studied?

I would like to thank Professor Richard Stanley as well as the MIT PRIMES program for pro-
viding me with this research project. I would like to thank Sergei Bernstein, Darij Grinberg, and
Ziling Zhou for many useful conversations throughout the research, as well as for helping with the
editing process of this paper.
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