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Abstract

Infinitesimal Cherednik algebras, first introduced in [EGG], are continuous analogues of
rational Cherednik algebras, and in the case of gln, are deformations of universal enveloping
algebras of the Lie algebras sln+1. Despite these connections, infinitesimal Cherednik al-
gebras are not widely-studied, and basic questions of intrinsic algebraic and representation
theoretical nature remain open. In the first half of this paper, we construct the complete
center of Hζ(gln) for the case of n = 2 and give one particular generator of the center, the
Casimir operator, for general n. We find the action of this Casimir operator on the highest
weight modules to prove the formula for the Shapovalov determinant, providing a crite-
rion for the irreducibility of Verma modules. We classify all irreducible finite dimensional
representations and compute their characters. In the second half, we investigate Poisson-
analogues of the infinitesimal Cherednik algebras and use them to gain insight on the center
of Hζ(gln). Finally, we investigate Hζ(sp2n) and extend various results from the theory of
Hζ(gln), such as a generalization of Kostant’s theorem.

Introduction

The main goal of this paper is to study the representation theory of the infinitesimal Cherednik
algebra Hζ(gln), a deformation of the representation theory of sln+1, with infinitely many defor-
mation parameters ζ = (ζ0, ζ1, ζ2, ..., ζm, ...). Namely, sln+1 can be represented as gln ⊕ V ⊕ V ∗,
where V,V ∗ are the natural representations of gln on vectors and covectors. In this represen-
tation of sln+1, the elements of V commute with each other, as do the elements of V ∗. The
commutation relations of gln with V,V ∗ are given by the usual action of matrices on vectors and
covectors, while commutators of V with V ∗ produce elements of gln. To pass to the deformation
Hζ(gln), one needs to change only the last relation: commutators of V and V ∗ will now be not
just elements of gln but rather some polynomial ζ0r0 + ζ1r1 + ⋯ of them, where ζi are the de-
formation parameters mentioned above and ri are basis polynomials introduced in [EGG]. This
deformation turns out to be very interesting, since it unifies the representation theory of sln+1

with that of degenerate affine Hecke algebras (introduced by Drinfeld and Lusztig in [D],[L])
and of symplectic reflection algebras ([EG]).

The main results of this paper are the following. In Section 2, we generalize a classical result
from the representation theory of Kac-Moody algebras by computing the determinant of the
contravariant (or Shapovalov) form, thus determining when the Verma module over Hζ(gln) is
irreducible. This proof requires knowledge of the quadratic central element and its action on
the Verma module. In Section 3, we find explicit formulas for all central elements of Hζ(gl2),
and in Section 4, we find the quadratic central element for all Hζ(gln). This extends the work
of Tikaradze [T], who proved using methods of homological algebra that the center of Hζ(gln) is
a polynomial algebra in n generators, but did not get any explicit formulas for these generators.
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In Section 5, we provide a complete classification and character formulas for finite dimensional
representations of Hζ(gln), generalizing Chmutova’s unpublished work. In Sections 6 to 8, we
introduce the Poisson analogue of the infinitesimal Cherednik algebras, compute their Poisson
center, and use it to give a second proof of the formula for the quadratic central element of
Hζ(gln). We also present some results on the central elements of the Poisson analogue of
Hζ(sp2n); hopefully, these results could be extended to the noncommutative algebra Hζ(sp2n).
Finally, in Sections 9 and 10, we investigate the Harish-Chandra mapping and an analogue of
Kostant’s theorem.

It would be interesting to find explicit formulas for all central elements, and we expect that
this can be done using the Duflo isomorphism. Other interesting problems include the study of
infinite dimensional irreducible representations in category O (and possibly an analogue of the
Kazhdan-Lusztig conjecture) and of the quantum analogues Hq

ζ (gln) and Hq
ζ (sp2n)

Acknowledgments: We would like to thank Pavel Etingof for suggesting this research
topic, for stimulating discussions, for helping us surmount various difficulties, and for reviewing
the rough draft of this paper. We would also like to thank the PRIMES program at MIT, where
this research was done.

1 Basic Definitions

Let us formally define the infinitesimal Cherednik algebras of gln, which we denote by Hζ(gln).
Let V = span(y1, . . . , yn) be the basic n-dimensional representation of gln and V ∗ = span(x1, . . . , xn)
be the dual representation. For any gln invariant pairing ζ ∶ V ×V ∗ → U(gln), define an algebra
Hζ(gln) as the quotient of the semi-direct product algebra U(gln)⋉T (V ⊕V ∗) by the relations
[y, x] = ζ(y, x) and [x,x′] = [y, y′] = 0 for all x,x′ ∈ V ∗ and y, y′ ∈ V .

Let us introduce an algebra filtration on Hζ(gln) by setting deg(x) = deg(y) = 1 for x ∈ V ∗,
y ∈ V , and deg(g) = 0 for g ∈ U(gln). We say that Hζ(gln) satisfies the PBW property
if the natural surjective map U(gln) ⋉ S(V ⊕ V ∗) ↠ grHζ(gln) is an isomorphism, where S
denotes the symmetric algebra; we call these Hζ(gln) the infinitesimal Cherednik algebras of
gln. In [EGG], it was shown that the pairings ζ satisfying the PBW property are given by
ζ = ∑kj=0 ζjrj where ζj ∈ C and rj is the symmetrization of the coefficient of τ j in the expansion

of (x, (1 − τA)−1y)det(1 − τA)−1.

Note that for ζ = ζ0r0 + ζ1r1 with ζ1 ≠ 0, there is an isomorphism φ ∶ Hζ(gln) → U(sln+1)
given by φ(α) = α for α ∈ sln, φ(yi) =

√
ζ1ei,n+1, φ(xi) =

√
ζ1 en+1,i, and

φ(Id) = 1

n + 1
(e11 +⋯ + enn − nen+1,n+1 − n

ζ0

ζ1
) .

This isomorphism allows us to view Hζ(gln) for general ζ as an interesting deformation of
U(sln+1), even though any formal deformation of U(sln+1) is trivial.

Example 1.1. The infinitesimal Cherednik algebras of gl1 are generated by elements e, f , and
h, satisfying the relations [h, e] = 2e, [h, f] = −2f , and [e, f] = φ(h) for some polynomial φ. In
literature, these algebras are known as generalized Weyl algebras ([S]).

Similarly as in the representation theory of sln+1, we define the Verma module of Hζ(gln)
as

M(λ) =Hζ(gln)/{Hζ(gln) ⋅ n+ +Hζ(gln)(h − λ(h))}h∈h
where the set of positive root elements n+ is spanned by the positive root elements of gln (i.e.,
matrix units eij with i < j) and elements of V ; the set of negative root elements n− is spanned
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by the negative root elements of gln (i.e., matrix units eij with i > j) and elements of V ∗; and
the Cartan subalgebra h is spanned by diagonal matrices. The highest weight, λ, is an element
of h∗.

Let us denote the set of positive roots by ∆+, so ∆+ = {e∗ii − e∗jj} ∪ {e∗ii} for 1 ≤ i < j ≤ n.
To denote the positive roots of gln, we use ∆+ (gln), and to denote the weights of yi, we use
∆+(V ). We define ρ = 1

2 ∑λ∈∆+ λ = (n
2 ,

n−2
2 , . . . ,−n−2

2
), a quasiroot to be an integral multiple

of an element in ∆+, and Q+ to be the set of linear combinations of positive roots with non-
negative integer coefficients. Finally, we denote the −ν weight-space of U(n−), where ν ∈ Q+,
by U(n−)ν .

2 Shapovalov Form

As in the classical representation theory of Lie algebras, the Shapovalov form can be used to
investigate the basic structure of Verma modules. Similarly to the classical case, M(λ) possesses
a maximal proper submodule M(λ) and has a unique irreducible quotient L(λ) =M(λ)/M(λ).
Define the Harish-Chandra projection HC ∶ Hζ(gln) → S(h) with respect to the decomposition
Hζ(gln) = (Hζ(gln)n++n−Hζ(gln))⊕U(h), and let σ ∶Hζ(gln) →Hζ(gln) be the anti-involution
that takes yi to xi and eij to eji.

Definition 2.1. The Shapovalov form S ∶ Hζ(gln) × Hζ(gln) → U(h) ≅ S(h) ≅ C[h∗] is a
bilinear form given by S(a, b) = HC(σ(a)b). The bilinear form S(λ) on the Verma module
M(λ) is defined by S(λ)(u1vλ, u2vλ) = S(u1, u2)(λ), for u1, u2 ∈ U(n−).

This definition is motivated by the following two properties (compare with [KK]):

Proposition 2.1. 1. S(U(n−)µ, U(n−)ν) = 0 for µ ≠ ν,
2. M(λ) = kerS(λ).

Statement 1 of Proposition 2.1 reduces S to its restriction to U(n−)ν × U(n−)ν , which we
will denote as Sν . Statement 2 of Proposition 2.1 gives a necessary and sufficient condition for
the Verma module M(λ) to be irreducible, namely that for any ν ∈ Q+, the bilinear form Sν(λ)
is non-degenerate, or equivalently, that detSν(λ) ≠ 0, where the determinant is computed in
any basis; note that this condition is independent of basis. For convenience, we choose the basis
{fm}, where m runs over all partitions of ν into a sum of positive roots and fm = ∏ fmα

α with
fα ∈ n− of weight −α. We will use the notation a⊢ b to mean that (a1, . . . , an) is a partition of
b into a sum of n nonnegative integers when b ∈ N, and m⊢ν to mean that m is a partition of
ν into a sum of elements of ∆+ when ν ∈ Q+. Then, the basis we will work with can be written
concisely as {fm}m⊢ ν .

Now, we will give a formula for the determinant of the Shapovalov form for Hζ(gln) that
generalizes the classical result presented in [KK]. This formula uses the following result proven
in Section 3.3 for Hζ(gl2) and in Section 4.2 for general Hζ(gln): if the deformation is given
by ζ = ζ0r0 + ζ1r1 + ⋯ + ζmrm, the action of the Casimir element t′1 (introduced in Sections
3 and 4) on the Verma module M(λ) can be written as P (λ) = ∑mj=0wjHj+1(λ + ρ), where
Hj(λ) = ∑p⊢ j∏1≤i≤n λ

pi
i are the complete symmetric functions. Note that each wj is a linear

combination of {ζ0, . . . , ζj} and (w0,w1, . . . ,wj) can equal any point in Cj+1; this observation
is key to the proof of the Shapovalov determinant formula.

Define the Kostant partition function τ as τ(ν) = dimU(n−)ν . Then:
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Theorem 2.1. Up to a nonzero constant factor, the Shapovalov determinant computed in basis
{fm}m⊢ ν is given by

detSν(λ) =
⎛
⎝ ∏
α∈∆+(V )

∞
∏
k=1

(P (λ) − P (λ − k α))τ(ν−kα)
⎞
⎠
⎛
⎝ ∏
α∈∆+(gln)

∞
∏
k=1

((λ + ρ,α) − k)τ(ν−kα)
⎞
⎠
.

Remark 2.1. For the case of ζ = ζ0r0 + ζ1r1 with ζ1 ≠ 0, we get the classical formula from [KK].

Proof. The proof of this theorem is quite similar to the classical case with a few technical details
and differences that will be explained below. We begin with the following lemma, which shows
that irreducible factors of detSν(λ) must divide P (λ) − P (λ − µ) for some µ ∈ Q+.

Lemma 2.1. Suppose detSν(λ) = 0. Then, there exists µ ∈ Q+/{0} such that P (λ)−P (λ−µ) = 0.

Proof. Note that detSν(λ) = 0 implies that the Verma module M(λ) has a highest weight
vector of weight λ − µ for some µ ∈ Q+ satisfying 0 < µ < ν. Thus, M(λ − µ) is embedded in
M(λ). Since t′1 acts by constants on both M(λ) and M(λ − µ), which can be considered as a
submodule of M(λ), P (λ) − P (λ − µ) = 0 as desired.

The top term of the Shapovalov determinant detSν(λ) in the basis {fm}m⊢ ν comes from
the product of diagonal elements; that is, the top term is given by ∏m⊢ ν∏[σ(fα), fα]mα(λ).
We already know that the top term of [eij , eji](λ) for i < j is λi − λj = (λ,α) where α is the
weight of eij . The following lemma gives the top term of [yj , xj](λ):
Lemma 2.2. The highest term of [yj , xj](λ) for ζ = ζ0r0 + ... + ζmrm is ζm∑p(pj + 1)∏λpii ,
where the sum is over all partitions p of m into n summands.

Proof. From [EGG] Theorem 4.2, we know that the top term of [yj , xj] for ζ = ζ0r0+ζ1r1+⋯+rm
is given by the coefficient of τm in det(1 − τA)−1(xj , (1 − τA)−1yj). Because the set of diago-
nalizable matrices is dense in gln, we can assume A is a diagonal matrix A = diag(λ1, λ2, ..., λn)
so that
det(1−τA)−1 = ∏ 1

1−τλi = ∑k∑p⊢k∏i λ
pi
i τ

k and xj(1−τA)−1yj = 1
1−τλj = 1+λjτ+⋯. Multiplying

these series gives the statement in the lemma.

Thus, we see that the top term of the determinant computed in the basis {fm}m⊢ ν , up to
a scalar multiple, is of the form

⎛
⎝ ∏
α∈∆+(gln)

(λ,α)∑m mα
⎞
⎠
⎛
⎜
⎝

∏
α=yj∈∆+(V )

⎛
⎝∑p

(pj + 1)∏λpii
⎞
⎠

∑m mα⎞
⎟
⎠
.

Since τ(µ) is the number of partitions of a weight µ, the sum ∑m mα over all partitions m of
ν with α fixed must equal ∑∞

k=1 τ(ν − kα), so the expression above simplifies to

⎛
⎝ ∏
α∈∆+(gln)

∞
∏
k=1

(λ,α)τ(ν−kα)
⎞
⎠
⎛
⎜
⎝

∏
α=yj∈∆+(V )

∞
∏
k=1

⎛
⎝ ∑p⊢m

(pj + 1)∏λpii
⎞
⎠

τ(ν−kα)⎞
⎟
⎠
.

This highest term comes from the product of the highest terms of factors of P (λ)−P (λ−µ)
for various µ ∈ Q+. Let us now prove that P (λ) − P (λ − µ) is irreducible as a polynomial
in λ for all µ ≠ kα, α ∈ ∆+(gln). If this claim is true, then all µ contributing to the above
product should be quasiroots; if µ = kα for α ∈ ∆+(gln), the linear factor of P (λ) − P (λ − µ),
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(λ + ρ,α) − k, has highest term (λ,α), which appears in the highest term of the Shapovalov
determinant, while if µ ≠ kα for some α ∈ ∆+(gln), the highest term of the irreducible polynomial
P (λ)−P (λ−µ), ∑p⊢m∑j µj(pj +1)∏λpii , does not match any factor in the highest term of the

Shapovalov determinant unless µ is a V -quasiroot. Finally, since
P (λ)−P (λ−kα)

(λ+ρ,α)−k is irreducible for

α ∈ ∆+(gln), only the linear factor (λ+ ρ,α) − k of P (λ) −P (λ− kα) appears in the Shapovalov
determinant.

Now, let us prove the claim that P (λ)−P (λ−µ) is irreducible for µ ≠ kα (α ∈ ∆+(gln)). Con-
sider the parameters wi as formal variables. Then, we have P (λ) −P (λ−µ) = ∑i≥0wi(Hi+1(λ+
ρ) −Hi+1(λ + ρ − µ)). We can absorb the ρ vector into the λ vector. For this polynomial to be
reducible in wi and λj , the coefficient of w0 should be zero: H1(λ) −H1(λ − µ) = H1(µ) = 0.
Also, since the coefficient of w1 is linear in λj , it must divide the coefficients of every other wi.
In particular, the highest term of H2(λ) −H2(λ − µ) must divide that of H3(λ) −H3(λ − µ).
The highest term of H2(λ) −H2(λ − µ) is ∑i λi(µi + ∑j µj) = (λ,µ) and the highest term of
H3(λ) −H3(λ − µ) is given by H ′

3(λ)(µ), the evaluation of the gradient H ′
3(λ) at µ. Since this

term is quadratic and is divisible by (λ,µ), we can write H ′
3(λ)(µ) = (λ,µ)(λ, ξ) for some ξ ∈ h∗.

Now, let us match coefficients of λiλj for i ≠ j and of λ2
i on both sides of the equation. By

doing so (and using the fact that ∑µi = 0), we obtain µiξj +µjξi = µi +µj and µiξi = 2µi. Since
µ1+⋯+µn = 0 and µ ≠ 0, at least two of µi are nonzero, say µi1 and µi2 . From the two equations,
we obtain µi1 +µi2 = 0. If µi3 ≠ 0, then by similar arguments, µi1 +µi3 = µi2 +µi3 = µi1 +µi2 = 0,
which is impossible since µi1 , µi2 , µi3 ≠ 0. Thus, P (λ)−P (λ−µ) is reducible only if exactly two
of the µi are nonzero and opposite to each other—that is, µ = kα for α ∈ ∆+(gln). For such µ,

(λ+ρ,µ)−k, is the linear factor of P (λ)−P (λ−kα). Similar arguments show that
P (λ)−P (λ−kα)

(λ+ρ,α)−k
is irreducible for any α ∈ ∆+(gln), k ∈ N.

To prove the power of each factor in the determinant formula of Theorem 2.1 is correct,
we use an argument involving the Jantzen filtration, which we define as in [KK] page 101 (for
our purposes, we switch U(g) to Hζ(gln)). The Jantzen filtration is a technique to track the
order of zero of a bilinear form’s determinant. Instead of considering the complex numbers, we
consider the localized polynomials C⟨t⟩, defined as p(t)/q(t) with p(t), q(t) ∈ C[t] and q(0) ≠ 0.
A word-to-word generalization of Lemma 3.3 in [KK] to our setting proves that the power of
P (λ) − P (λ − kα) for α ∈ ∆+(V ) and (λ + ρ,α) − k for α ∈ ∆+(gln) is given by τ(ν − kα),
completing the proof of Theorem 2.1.

3 The Center of Hζ(gl2)
We first describe a basis for the center of U(gln). Let Q1,Q2,Q3, ...,Qn ∈ S(gl∗n) (which can be
identified as members of S(gln) under the trace-map) be defined by the power series det(tId −
X) = ∑nj=0 (−1)jtn−jQj(X), and let βi be the image of Qi under the symmetrization map from
S(gln) to U(gln). To reduce the number of subscripts, we will use β to refer to β1. The center
of U(gln) is a polynomial algebra generated by these βi. We write equations in this section in
terms of βi because their commutativity simplifies computations.

Let ti = ∑j xj[βi, yj]. In [T], it was shown that the center of H0(gln) is a polynomial algebra
in ti, 1 ≤ i ≤ n, and that there exist unique (up to a constant) ci ∈ z(U(gln)) such that the center
of Hζ(gln) is a polynomial algebra in t′i = ti + ci.
Definition 3.1. The Casimir element of Hζ(gln) is defined (up to a constant) as t′1.

In this section, we will make use of the anti-involution σ, defined in the beginning of Section
2. Instead of working with ti in this section, we shall work with t̃i = ∑j[βi, yj]xj instead for
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convenience. It is straightforward to see that z(H0(gln)) = C[t̃1, t̃2, . . . , t̃n] and that z(Hζ(gln)) =
C[t̃1 +C1, t̃2 +C2, . . . , t̃n +Cn] for some C1,C2, . . . ,Cn ∈ z(U(gln)). For gl2, t̃1 = y1x1 + y2x2 and
t̃2 = y1e22x1+y2e11x2−y2e12x1−y1e21x2− 1

2 (y1x1 + y2x2). Note (as in [T]) that t̃i and elements of
z(U(gl2)) are fixed by σ. Proofs involving technical computations are relegated to the Appendix.

3.1 Basis for PBW Deformations

We start by constructing an alternative basis sm for PBW deformations such that the Casimir
element’s action on the Verma module of Hsm(gl2) is given by

Hm+1(λ + ρ) = ∑m+1
i=0 (λ1 + 1)iλm+1−i

2 .

Let us define γ = 1 + β2 − 4β2 ∈ z(U(gl2)) and uk =
(1+√γ)k−(1−√γ)k

2
√
γ ∈ C[γ].

Definition 3.2. Define sm = Am(y, x) +Bmy ⊗ x with

Am = 1

2m+1

⌊m+2
2

⌋
∑
j=1

j−1

∑
k=0

4j −m − 1

2j + 1
(m + 2

2k + 1
)(m + 1 − 2k

2j − 2k − 1
)βm+2−2jγk,

Bm = 1

2m

⌊m+1
2

⌋
∑
j=1

j−1

∑
k=0

(m + 2

2j + 1
)( 2j

2k + 1
)βm+1−2jγk.

Theorem 3.1. The pairings sj constitute a basis for PBW deformations.

To prove Theorem 3.1 and other results of this section, we use the following lemma, which
reduces many statements in this section to technical computations.

Lemma 3.1.

[βmγn, xi] = [βmγn + (β + 1)m (βu2n − u2n+1)]xi − 2(β + 1)mu2n(e1ix1 + e2ix2).

This lemma can be proved by finding a recursion linking [βmγn, xi] to [βmγn−1, xi] and
solving it using the standard theory of linear recursions.

Proof of Theorem 3.1. In [EGG], it was shown that the PBW property is equivalent to the
Jacobi identity: for all v1, v2, v3 ∈ V ⊕ V ∗, [v1, [v2, v3]] + [v2, [v3, v1]] + [v3, [v1, v2]] = 0. Since
[x1, x2] = 0 for x1, x2 ∈ V ∗, it suffices to show that [x1, [x2, y2]] + [x2, [y2, x1]] + [y2, [x1, x2]] =
−[x1,Am+Bme22]+[x2,Bme21] = [Am, x1]+[Bme22, x1]+[x2,Bme21] = 0; the other cases would
follow because of the anti-involution σ.

Since [x2,Bme21] = −[Bm, x2]e21 +Bmx1 and [Bme22, x1] = [Bm, x1]e22, the Jacobi identity
becomes [Am, x1] + [Bm, x1]e22 − [Bm, x2]e21 +Bmx1 = 0.

Let us try to expand [Bm, x1]e22 − [Bm, x2]e21 first. Note that by Lemma 3.1,
[Bm, x1] =K1x1 +K2(e11x1 + e21x2) and [Bm, x2] =K1x2 +K2(e12x1 + e22x2) where K1 and K2

are given by:

K1 = 1

2m

⌊m+1
2

⌋

∑
j=1

j−1

∑
k=0

(m + 2

2j + 1
)( 2j

2k + 1
)(βm+1−2jγk + (β + 1)m+1−2j (βu2k − u2k+1)) ,

K2 = − 1

2m−1

⌊m+1
2

⌋

∑
j=1

j−1

∑
k=0

(m + 2

2j + 1
)( 2j

2k + 1
)(β + 1)m+1−2ju2k.
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By rearranging terms, we can then write

[K1x1 +K2(e11x1 + e21x2)] e22 − [K1x2 +K2(e12x1 + e22x2)] e21 =

−K1(e11x1 + e21x2) + [K1(β − 1) +K2 (
β2 + 1 − γ − 2β

4
)]x1.

We can evaluate [Am, x1] using Lemma 3.1. Substituting this and the above expression into
[Am, x1] + [Bm, x1]e22 − [Bm, x2]e21 +Bmx1 gives C(β, γ)x1 +D(β, γ)(e11x1 + e21x2), where

C = 1

2m+1

⌊m+2
2

⌋

∑
j=1

j−1

∑
k=0

(m + 2)!
(2j + 1)(2k + 1)!(2j − 2k − 1)!(m + 2 − 2j)!

×
⎛
⎝
(m + 3)(βm+2−2jγk + (β + 1)m+2−2jβu2k − (β + 1)m+2−2ju2k+1)

− 4(m + 2 − 2j)(β(β + 1)m+1−2ju2k − (β + 1)m+1−2ju2k+1)

− (m + 2 − 2j)(β + 1)m+1−2j((β − 1)2 − γ)u2k

⎞
⎠
,

D = − 1

2m

⌊m+2
2

⌋

∑
j=1

j−1

∑
k=0

(m + 2)!
(2j + 1)(2k + 1)!(2j − 2k − 1)!(m + 2 − 2j)!

×
⎛
⎝
(m + 2 − 2j)βm+1−2jγk

+ (2j + 1)(β + 1)m+2−2ju2k − (m + 2 − 2j)(β + 1)m+1−2j(u2k + u2k+1)
⎞
⎠
.

Lemma 3.2. C and D are identically 0.

The proof of this Lemma is given in the Appendix.

Thus, the Jacobi identity holds for ζ = sm for all m. Since deg sm = deg rm with respect to
the grading where deg eij = 1, sm constitute a basis for PBW pairings.

If ζ is a PBW deformation, we will use ζi to refer exclusively to the components of ζ in the
ri basis: ζ = ζ0r0 + ζ1r1 +⋯. We will denote the components of ζ in the si basis by wi instead:
ζ = w0s0 +w1s1 +⋯.

3.2 Center of Hζ(gl2)
We now give the following construction for the center of Hζ(gl2). First, define

C1(m) = 1

2m+1

⌊m+2
2

⌋
∑
j=0

j

∑
k=0

((m + 2

2j + 1
)(2j + 1

2k + 1
)βm+1−2jγk − (m + 2

2j
)( 2j

2k + 1
)βm+2−2jγk)

C2(m) = 1

2m+2

⌊m+1
2

⌋
∑
j=0

j

∑
k=0

⎛
⎝
m + 1 − 2j − 2k

m + 2 − 2j
(m + 2

2k + 1
)(m + 1 − 2k

2j − 2k
)βm+1−2jγk

− 2j + 2k −m
2j − 2k + 1

(m + 2

2k + 1
)(m + 1 − 2k

2j − 2k
)βm+2−2jγk

⎞
⎠
.
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Theorem 3.2. For a deformation ζ = ∑iwisi, the center is given by the polynomial algebra
z(Hζ(gl2)) = C [t̃1 +∑wiC1(i), t̃2 +∑wiC2(i)].

Proof. It suffices to consider the case ζ = sm.

Lemma 3.3. [x1, t̃1 +C1(m)] = [x1, t̃2 +C2(m)] = 0.

The proof of this Lemma is given in the Appendix.

Thus, by the transitivity of GL2 action on V ∗, [x, t̃1 + C1(m)] and [x, t̃2 + C2(m)] for all
x ∈ V ∗. It was shown in [T] that t̃1 and t̃2 commute with U(gl2) and since C1(m),C2(m) ∈
z(U(gl2)), t̃1 + C1(m) and t̃2 + C2(m) commute with U(gl2) also. Furthermore, by using the
anti-involution σ, we see that if [x, t̃1 +C1(m)] = 0 and [x, t̃2 +C2(m)] = 0 for all x ∈ V ∗, then
[y, t̃1 + C1(m)] = 0 and [y, t̃2 + C2(m)] = 0 for all y ∈ V . This shows that t̃′1 = t̃1 + C1(i) and
t̃′2 = t̃2 +C2(i).

3.3 Action of Center on Verma Module

In [T], it was proven that the leading term of the Casimir element’s action on the Verma module
M(λ) is given by P (λ) = Hm+1(λ) for a deformation ζ = rm. In the new basis {si} the action
of the center can be written explicitly. Namely:

Theorem 3.3. For a deformation ζ = ∑iwisi, the actions of t̃′1 and t̃′2 on M(λ) are given by
P (λ) = ∑iwiHi+1(λ+ρ) and ∑iwi (1

2Hi+1(λ + ρ) +Hi+2(λ + ρ) − (λ1 + 1)i+2 − λi+2
2 ) respectively.

The proof of this theorem is given in the Appendix.

4 The Casimir Element of Hζ(gln)
In this section, we construct the Casimir element of Hζ(gln) and prove that its action on the
Verma module M(λ) is given by P (λ) = ∑mj=0wjHj+1(λ + ρ).

4.1 Center

Let us switch to the approach elaborated in [EGG] Section 4, where all deformations satisfying
the PBW property were determined. Define δ(m) = (i∂)mδ with δ being a standard delta-
function at 0, i.e., ∫ δ(θ)φ(θ)dθ = φ(0). Let f(z) be a polynomial satisfying f(z) − f(z − 1) =
∂n(znζ(z)), where ζ(z) is the generating series of the deformation parameters: ζ(z) = ζ0+ζ1z+
ζ2z

2 +⋯. Recall from [EGG], Section 4.2, that for f̂(θ) = ∑m≥0 fmδ
(m)(θ),

[y, x] = 1

2πn
∫
v∈Cn∶∣v∣=1

(x, (v ⊗ v̄)y)∫
π

−π
(1 − e−iθ) f̂(θ)eiθ(v⊗v̄) dθ dv.

Theorem 4.1. Let g(z) = ∑ gmzm = ∑ fm
(m+1)(m+2)⋯(m+n−1)z

m. The Casimir element of Hζ(gln)
is given by t′1 = ∑xiyi +Resz=0g(z−1)det (1 − zA)−1 dz/z.
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Proof. Define C ′ = Resz=0g(z−1)det (1 − zA)−1 dz/z. Let us compute [y, t1 +C ′]. Then,
[y, t1 +C ′] = ∑i[y, xi]yi + [y,C ′]. Let us rewrite the first sum:

∑
i

[y, xi]yi = 1

2πn
∑
i
∫
v∈Cn∶∣v∣=1

∫
π

−π
(1 − e−iθ)f̂(θ)eiθ(v⊗v̄)(xi, (v ⊗ v̄)y)yi dθ dv

= 1

2πn
∫∣v∣=1

∫
π

−π
(1 − e−iθ)f̂(θ)eiθ(v⊗v̄) ⊗ (v ⊗ v̄)y dθ dv.

We define Fm(A) = ∫∣v∣=1⟨Av, v⟩m+1 dv = ∫∣v∣=1(v ⊗ v̄)m+1 dv as in [EGG] Section 4.2; it was

shown there that ∑m fmFm−1(A) = 2πnResz=0g(z−1)det(1− zA)−1z−1dz = 2πnC ′. Thus, we can
write

C ′ = 1

2πn
∑
m

fm∫∣v∣=1
(v ⊗ v̄)mdv = 1

2πn
∫∣v∣=1

∫
π

−π
f̂(θ)eiθ(v⊗v̄) dθ dv,

so that [y,C ′] = 1
2πn ∫∣v∣=1 ∫

π
−π f̂(θ)[y, eiθ(v⊗v̄)]dθ dv. Since

e−iθ(v⊗v̄)[y, eiθ(v⊗v̄)] = e−iθ(v⊗v̄)yeiθ(v⊗v̄) − y = e−iθad(v⊗v̄)y − y = (e−iθ − 1)(v ⊗ v̄)y,

we get [y,C ′] = 1
2πn ∫∣v∣=1 ∫

π
−π f̂(θ)eiθ(v⊗v̄)(e−iθ − 1)(v ⊗ v̄)y dθ dv, so ∑i[y, xi]yi + [y,C ′] = 0 as

desired. By using the anti-involution σ, this implies [x, t1 + C ′] = 0 for any x ∈ V ∗, while
[eij , t1 +C ′] = 0 by [T], and hence, t′1 = t1 +C ′.

4.2 Action of Casimir Element on Verma Module

In this section, we justify our claim that the action of the Casimir element t′1 is given by
P (λ) = ∑mj=0wjHj+1(λ + ρ). Obviously, t′1 acts by a scalar on M(λ − ρ), which we will denote

by t′1(λ). Since t′1 = ∑xiyi +C ′, C ′ ∈ z(U(g)) ≅ S(g)G, we see that t′1(λ) = C ′(λ) where C ′(λ)
denotes the constant by which C ′ acts on M(λ − ρ).

Theorem 4.2. Let w(z) = ∑wpzp = z1−n ( 1
2 sinh(∂/2))

n−1
f(z). Then, t′1(λ) = ∑wpHp(λ).

Proof. Instead of considering the Verma module M(λ − ρ) of Hζ(gln), we can use a finite-
dimensional representation of U(gln) in the proof since C ′(λ) is a polynomial in λ. For a
dominant weight λ − ρ (so that the highest weight gln-module Vλ−ρ is finite dimensional) we
define the normalized trace T (λ, θ) = trVλ−ρ(eiθ(v⊗v̄))/dimVλ−ρ for any v satisfying ∣v∣ = 1 (note
that T (λ, θ) does not depend on v). To compute T (λ, θ), we will use the Weyl Character

formula (see [Ful]): χλ−ρ = ∑w∈W (−1)wewλ
∑w∈W (−1)wewρ where W denotes the Weyl group (which is Sn for

gln). However, direct substitution of eiθ(v⊗v̄) into this formula gives zero in the denominator,
and thus, we compute the limit limε→0 χλ−ρ(eiθ(v⊗v̄)+εµ) for a general diagonal matrix µ.

Without loss of generality, we may suppose v = y1, so

v ⊗ v̄ = w1 =
⎛
⎜⎜⎜
⎝

1 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

⎞
⎟⎟⎟
⎠
.
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Then,

lim
ε→0

χλ−ρ(eiθ(v⊗v̄)+εµ) = lim
ε→0

∑w∈Sn(−1)we⟨wλ,iθw1+εµ⟩

∑w∈Sn(−1)we⟨wρ,iθw1+εµ⟩

= lim
ε→0

∑w∈Sn(−1)we⟨wλ,iθw1+εµ⟩

∏α∈∆+(gln)(e⟨α/2,iθw1+εµ⟩ − e−⟨α/2,iθw1+εµ⟩)

(recall that ∆+(gln) is defined as the set of positive roots of gln, given by ∆+(gln) = {e∗ii − e∗jj ∶
1 ≤ i < j ≤ n}).

We first compute the denominator. Partition ∆+(gln) into ∆1 ⊔∆2 = ∆+(gln), where ∆1 =
{e∗11 − e∗jj ∶ 1 < j ≤ n} and ∆2 = ∆+(gln)/∆1. For α ∈ ∆1,

lim
ε→0

(e⟨α/2,iθw1+εµ⟩ − e−⟨α/2,iθw1+εµ⟩) = eiθ/2 − e−iθ/2 = 2i sin(θ
2
) ,

so limε→0∏α∈∆1
(e⟨α/2,iθw1+εµ⟩ − e−⟨α/2,iθw1+εµ⟩)−1 = (2i sin ( θ

2
))1−n

.

Next, we compute the numerator. We can divide Sn = ⊔1≤j≤nBj , where Bj = {w ∈ Sn∣w(j) =
1}. Note that Bj = σj ⋅ Sn−1, where σj = (1,2, . . . , j) and Sn−1 denotes the subgroup of Sn
corresponding to permutations of {1,2, . . . , j − 1, j + 1, . . . , n}. We can then write

∑
w∈Bj

(−1)we⟨wλ,iθw1+εµ⟩ = ∑
σ∈Sn−1

(−1)σj(−1)σeiθλjeε⟨σj○σ(λ),µ⟩

= (−1)j−1eiθλjeελjµ1 ∑
σ∈Sn−1

(−1)σeε⟨σ(λ̃j),µ̃⟩

where λ̃j = (λ1, . . . , λj−1, λj+1, . . . , λn) and µ̃ = (µ2, . . . , µn).
Combining the results of the last two paragraphs,

lim
ε→0

∑w∈Sn(−1)we⟨wλ,iθw1+εµ⟩

∏α∈∆+(gln)(e⟨α/2,iθw1+εµ⟩ − e−⟨α/2,iθw1+εµ⟩)

= lim
ε→0

∑
1≤j≤n

(−1)j−1 eiθλj+ελjµ1

(2i sin θ
2)n−1

∑σ∈Sn−1(−1)σeε⟨σ(λ̃j),µ̃⟩

∏α∈∆2
(e⟨α/2,iθw1+εµ⟩ − e−⟨α/2,iθw1+εµ⟩)

.

Using the Weyl character formula again, we see that

∑σ∈Sn−1(−1)σeε⟨σ(λ̃j),µ̃⟩

∏α∈∆2
(e⟨α/2,εµ⟩ − e−⟨α/2,εµ⟩)

= trVλ̃j−ρ̃
(eεµ̃)

where ρ̃ is half the sum of all positive roots of gln−1. Thus,

lim
ε→0

∑σ∈Sn−1(−1)σeε⟨σ(λ̃j),µ̃⟩

∏α∈∆2
(e⟨α/2,iθw1+εµ⟩ − e−⟨α/2,iθw1+εµ⟩)

= trVλ̃j−ρ̃
(1) = dimVλ̃j−ρ̃.

We substitute to obtain

trVλ−ρ(eiθ(v⊗v̄)) = ∑
1≤j≤n

(−1)j−1
eiθλj dimVλ̃j−ρ̃

(2i sin θ
2)n−1

.
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Our original goal was to calculate T (λ, θ) = trVλ−ρ(eiθ(v⊗v̄))/dimVλ−ρ. We obtain

T (λ, θ) = ∑
1≤j≤n

(−1)j−1
eiθλj dimVλ̃j−ρ̃

(2i sin θ
2)n−1 dimVλ−ρ

.

We can use the following dimension formula from [Ful]:

dimVλ−ρ = ∏
1≤i<j≤n

λi − λj
j − i

where Vλ−ρ is a gln-module. Hence, T (λ, θ) = (2i sin(θ/2))1−n(n − 1)!∑nj=1
eiλjθ

∏k≠j(λj−λk)
. Since

one can prove by induction that ∑nj=1

xmj
∏k≠j(xj−xk)

=Hm−n+1(x1, ..., xn), we get

T (λ, θ) = (2i sin(θ/2))1−n(n − 1)!∑p≥0
Hp(λ)(iθ)p+n−1

(p+n−1)! .

Thus we get,

t′1(λ) = C ′(λ) = ( 1

2πn
∫∣v∣=1

∫
π

−π
f̂(θ)eiθ(v⊗v̄)dθdv) (λ) = 1

(n − 1)! ∫
π

−π
f̂(θ)T (λ, θ)dθ

= ∫
π

−π
f̂(θ)(2i sin(θ/2))1−n∑

p≥0

Hp(λ)(iθ)p+n−1

(p + n − 1)! dθ = ∑
p≥0

w′
pHp(λ),

where w′
p = ∫

π
−π f̂(θ)(2i sin(θ/2))1−n (iθ)p+n−1

(p+n−1)! dθ. Let w′(z) = ∑w′
pz
p. Note that

(e∂/2 − e−∂/2)
n−1
zn−1w′(z) = ∫

π

−π
f̂(θ)∑

p≥0

(2i sin(θ/2))1−n(e∂/2 − e−∂/2)
n−1 (izθ)p+n−1

(p + n − 1)! dθ

= ∫
π

−π
f̂(θ)(2i sin(θ/2))1−n(e∂/2 − e−∂/2)

n−1
eizθ dθ

= ∫
π

−π
f̂(θ)(2i sin(θ/2))1−n(eiθ/2 − e−iθ/2)

n−1
eizθ dθ

= ∫
π

−π
f̂(θ)eizθ dθ = f(z).

Hence, w′(z) = z1−n ( 1
2 sinh(∂/2))

n−1
f(z) = w(z) and w′

p = wp as claimed.

5 Finite Dimensional Representations

In this section, we investigate when the irreducible Hζ(gln) representation L(λ) is finite dimen-
sional. As in the case for classical Lie algebras, this representation is a quotient of a Verma
module M(λ). In Section 5.1, we show that the finite dimensional L(λ) must be rectangular
and have characters (with respect to h) of the form

∑
0≤λ−λ′<ν

∑w∈Sn(−1)wew(λ′+ρ′)

∑w∈Sn(−1)wewρ′

where the summation is over all dominant gln weights λ′, and ν ∈ Nn is a parameter depending
on ζ and λ. In Section 5.2, we show the existence of deformations ζ such that the representation
L(λ) of Hζ(gln) has the above character.
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5.1 Rectangular Nature of Irreducible Representations

Theorem 5.1. All finite-dimensional irreducible representations of Hζ(gln) must be of the form

L(λ) = M(λ)/ {∑n−1
i=1 e

λi−λi+1+1
i+1,i M(λ) +∑ni=1 x

νi
i M(λ)}, where ν = (ν1, . . . , νn) ∈ Nn, and λ − ν′

are dominant gln-weights for all 0 ≤ ν′ ≤ ν.

Proof. Let L′(λ) =M(λ)/ {∑n−1
i=1 e

λi−λi+1+1
i+1,i M(λ) +∑ni=1 x

b′i
i M(λ)} be a quotient (not necessarily

irreducible) of M(λ) for some integers b′i. Since any finite dimensional representation is a
quotient of some L′(λ) (for some sufficiently large b′i), it suffices to show that the maximal

proper submodule of L′(λ) is of form ∑xlii L′(λ), in which case the irreducible representation

L′(λ)/L′(λ) is of the form described in Theorem 5.1.

Regard L′(λ) as a representation of gln. Since the decomposition of any positive weight of
gln into the sum of positive roots does not include weights of V , there exists a finite-dimensional
irreducible gln submodule Vλ ⊂ L′(λ) that contains only the vectors generated by the action
of gln on the highest weight vector of L′(λ). If we let Sk = Symk(x1, x2, ..., xn), then L′(λ)
decomposes as L′(λ) = Vλ ⊕ (Vλ ⊗ S1) ⊕ (Vλ ⊗ S2) ⊕⋯. We can further decompose each Vλ ⊗ Si
into irreducible modules of gln; once we do so, we find that L′(λ) has a simple gln spectrum.
Note that Vµ⊗S1 can be decomposed as Vµ−e∗11⊕Vµ−e∗22⊕⋯⊕Vµ−e∗nn for αi = e∗ii (taking Vµ−e∗ii = {0}
if µ − e∗ii is not dominant). We can thus associate each Vµ for µ = λ − a1e

∗
11 − . . . − ane∗nn in the

decomposition of L′(λ) with a lattice point Pµ = (−a1,−a2,⋯,−an) ∈ Zn. We draw a directed
edge from Pµ to Pµ′ if Vµ′ is in the decomposition of Vµ ⊗ S1, and we call the Pµ′ smaller than
the Pµ. A key property of this graph is that any Hζ(gln)-submodule of L′(λ) intersecting the
module Vµ must necessarily contain Vµ and all Vµ′ such that Pµ′ is reachable from Pµ by a walk
along directed edges.

Now suppose that L′(λ) has a proper maximal submodule L′′µ (over Hζ(gln)) with highest
weight vector vµ of weight µ associated with Pµ = (−a1, . . . ,−an) (we are not assuming, however,
that this submodule is generated by vµ). Then, because the quotient module L′(λ)/L′′µ is finite

dimensional and irreducible, it must have a lowest weight λ̃ from which all other points in the
subgraph associated with L′(λ)/L′′µ can be reached by walking along reverse edges. Without
loss of generality, suppose a1 and a2 are nonzero. Then, consider the two points Pµ+e∗11 and
Pµ+e∗22 . Both points are larger than µ and less than or equal to the origin Pλ, and so both
points lie in the subgraph associated with L′(λ)/L′′µ. However, since we can walk along reverse

edges from the point corresponding to the lowest weight λ̃ to µ + e∗11 and µ + e∗22, we can also
walk along reverse edges to µ, implying that λ̃ ∈ L′′µ, a contradiction. We conclude that any
maximum submodule of L′(λ) must be of the form given in Theorem 5.1.

From the proof, we get a decomposition of L(λ) into the sum of gln modules Vλ′ for all
dominant gln weights λ′ satisfying 0 ≤ λ−λ′ < ν, where ν ∈ Nn is some parameter depending on
ζ and λ (using notations from the proof, ν = λ − λ̃ + (1,1, . . . ,1)). By the results of Section 2,
we find that ν = (ν1, ν2, . . . , νn), where each νi is the smallest positive integer such that

P (λ) − P (λ − (0, . . . , νi®
i-th

,0, . . . ,0)) = 0;

if the Hζ(gln)-module L(λ) is finite dimensional, ν necessarily exists.
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Figure 1: In this diagram, we use a graph to represent the three dimensional rectangular prism
corresponding to a finite dimensional representation L((5,3,0)) of Hζ(gl3), with the highest
weight of each gl3 module indicated. Notice that an arrow points from a module of weight µ to
one of weight µ − e∗ii for some i. The rectangular nature of the representation is clear.

The decomposition of L(λ) as a gln module provides the character formula for L(λ) as the
sum of the characters of the gln modules:

χλ;ζ = ∑
0≤λ−λ′<ν

∑w∈Sn(−1)wew(λ′+ρ′)

∑w∈Sn(−1)wewρ′ (*)

where ρ′ is half the sum of positive roots of gln. As in the classical theory, the character allows
us to calculate the decomposition of finite dimensional representations into irreducible ones.

Example 5.1. For Hζ(gl1), the irreducible finite dimensional representation L(λ), for λ ∈ C,

has character χλ,ζ = ∑ν−1
ν′=0 e

λ−ν′ , where ν is some positive integer. If we describe Hζ(gl1) as in
Example 1.1, we can easily calculate the Casimir element to be fe + g(h), where g satisfies the
equation g(x)−g(x−1) = φ(x). Then, ν is the smallest positive integer such that g(λ)−g(λ−ν) =
0,

For Hζ(gl2), the irreducible finite dimensional representations are of the form L(λ), with
λ = (λ2 +m,λ2) ∈ C2 for some nonnegative integer m. The character of L(λ) is of the form

χλ;ζ = ∑
(0,0)≤(ν′

1
,ν′

2
)<ν

ν′1−ν′2≤m

e(λ2+m−ν
′
1,λ2−ν′2) − e(λ2−ν′2−1,λ2+m−ν′1+1)

1 − e(−1,1) .
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for the minimal element ν ∈ N2 such that f1(λ, ν1) = P (λ2+m+1, λ2)−P (λ2+m+1−ν1, λ2) = 0
and f2(λ, ν2) = P (λ2+m+1, λ2)−P (λ2+m+1, λ2−ν2) = 0. For instance, if ζ = ζ0r0 with ζ0 ≠ 0,
then f1 and f2 are linear in ν1 and ν2, and so the only solution to the equations f1(λ, ν1) =
0 and f2(λ, ν2) = 0 is ν1 = ν2 = 0. Thus, Hζ0r0(gl2) has no finite dimensional irreducible
representations. If ζ = ζ0r0+ζ1r1 with ζ1 ≠ 0, P (λ) = ζ0(λ1+1+λ2)+ζ1((λ1+1)2+(λ1+1)λ2+λ2

2),
so f1(λ, ν1) = ζ1ν1 ( ζ0ζ1 + λ2 + 2λ1 + 2 − ν1) and f2(λ, ν2) = ζ1ν2 ( ζ0ζ1 + λ1 + 1 + 2λ2 − ν2). Thus,

L(λ) is finite dimensional if and only if ζ0ζ1 +λ2+2λ1+2 and ζ0
ζ1
+λ1+2λ2+1 are positive integers;

moreover, since ζ0
ζ1
+ λ2 + 2λ1 + 2 = ( ζ0ζ1 + λ1 + 2λ2 + 1) + λ1 + 1 − λ2 and λ1 + 1 − λ2 is a positive

integer, it suffices to show that ζ0
ζ1
+ λ1 + 2λ2 + 1 is a positive integer.

Now, we will illustrate the decomposition of L(λ) in the proof of Theorem 5.1; for clarity,
we will work with sl2 representations instead of gl2 representations. Using the notations of the
proof, Sk = Sk(x1, x2) ≅ Vk, where we used the fact that V ∗ ≅ V as sl2 representations. We then
have, by the Clebsch-Gordon formula,

Vm ⊗ Vk ≅ Vm+k ⊕ Vm+k−2 ⊕⋯⊕ Vm+k−2 min(k,m).

We can use the above formula to draw the graph, shown below, representing the decom-
position of L((3,0)), with ν = (1,4), into sl2 modules. This representation is the quotient of
M(3,0)/e3

21M(3,0) by the submodules represented by the red and blue areas of the diagram,
and we can write L((3,0)) ≅ V3 ⊕ V4 ⊕ V5 ⊕ V6 as sl2 modules.

5.2 Existence of L(λ) with given shape

Theorem 5.2. For all gln-weights λ and ν ∈ Nn such that λ − ν′ is dominant for all 0 ≤ ν′ ≤ ν,
there exists a deformation ζ, such that the irreducible representation L(λ) of Hζ(gln) is finite
dimensional and its character is given by (*).

Proof. Let λ′ = λ + ρ. We can write λ′i = λ′n + ki for k1 > k2 > k3 > . . . > kn−1 > kn = 0 (we have
strict inequalities because of the shift by ρ). Recall that P (λ) = ∑wmHm+1(λ′) for wi defined
as in Theorem 4.2. Let µi = (0, . . . , νi,0, . . . ,0). We will find wi such that P (λ′)−P (λ′−µi) = 0,
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while for all 0 < µ′i < µi, P (λ′) − P (λ′ − µ′i) ≠ 0. This implies that M(λ′)/∑iM(λ′ − µi) is
irreducible.

We first define Pmj = P (λ′) − P (λ′ − µ) for µ = (0, . . . ,m,0, . . . ,0) with the m at the j-th
location. We must prove that there exist w such that Pν11 = . . . = Pνnn = 0 and Pν′11, . . . , Pν′nn ≠ 0

for all 0 < ν′i < νi. We can write Pmj = ∑i≥0wiR
i
mj , where

RNmj = ∑
i1+...+in=N+1

(λ′n+k1)i1⋯(λ′n+kj−1)ij−1((λ′n+kj)ij−(λ′n+kj−m)ij)(λ′n+kj+1)ij+1⋯(λ′n+kn)in .

Note that the condition Pkj = 0 determines a hyperplane Πkj in the space (w0,w1, . . .) (Πkj

might in fact be the entire space, but the following argument would be unaffacted). Hence,
the intersection ⋂Πνjj belongs to the union ⋃j,0<ν′j<νj Πν′j ,j if and only if it belongs to some

Πν′j ,j . Thus, if we show that {Pν11, . . . , Pνnn, Pν′ll} are linearly independent as functions of wi,

then there exist deformations w that belong to all the hyperplanes Πνjj but not to Πν′
l
l for all

1 ≤ l ≤ n and 0 < ν′l < νl. This condition of linear independence is satisfied if

det

⎛
⎜⎜⎜⎜⎜⎜
⎝

R0
ν11 R1

ν11 ⋯ Rnν11

R0
ν22 R1

ν22 ⋯ Rnν22

⋮ ⋮ ⋱ ⋮
R0
νnn R1

νnn ⋯ Rnνnn
R0
ν′
l
l R1

ν′
l
l ⋯ Rnν′

l
l

⎞
⎟⎟⎟⎟⎟⎟
⎠

≠ 0.

Now we shall prove that using column transformations, we can reduce the above matrix to
its evaluation at λ′n = 0. We proceed by induction on the column number. The elements of the
first column, R0

mj , are of degree zero with respect to λ′n, so R0
mj = R0

mj(0). Suppose that using
column transformations, all columns before column p are reduced to their constant terms. Now,
we note that

∂Rpmj

∂λ′n
= ∂

∂λ′n

⎛
⎝ ∑
i1+...+in=p+1

(λ′n + k1)i1⋯((λ′n + kj)ij − (λ′n + kj −m)ij)⋯λ′inn
⎞
⎠

= ∑
i1+...+in=p

(i1 + i2 + . . . + in + n)(λ′n + k1)i1⋯((λ′n + kj)ij − (λ′n + kj −m)ij)⋯λ′inn

= (p + n)Rp−1
mj .

Thus, we see that Rpmj − R
p
mj(0) ia a linear combination of Rp−imj (0), the entries of the other

columns:

Rpmj = ∑
i

1

i!
λ′in

∂iRpmj

∂λ′in

RRRRRRRRRRRλ′n=0

= ∑
i

(p + n)⋯(p + n − i + 1)
i!

λ′inR
p−i
mj (0) = ∑

i

(p + n
i

)Rp−imj (0)λ
′i
n.

By selecting pivots of (p+n
i
)λ′in, we can eliminate every term except Rpmj(0). By repeating this

step, we reduce the matrix to its evaluation at λ′n = 0:

det

⎛
⎜⎜⎜⎜⎜⎜
⎝

R0
ν11(λ′) R1

ν11(λ′) ⋯ Rnν11(λ′)
R0
ν22(λ′) R1

ν22(λ′) ⋯ Rnν22(λ′)
⋮ ⋮ ⋱ ⋮

R0
νnn(λ′) R1

νnn(λ′) ⋯ Rnνnn(λ′)
R0
ν′
l
l(λ′) R1

ν′
l
l(λ′) ⋯ Rnν′

l
l(λ′)

⎞
⎟⎟⎟⎟⎟⎟
⎠

= det

⎛
⎜⎜⎜⎜⎜⎜
⎝

R0
ν11(0) R1

ν11(0) ⋯ Rnν11(0)
R0
ν22(0) R1

ν22(0) ⋯ Rnν22(0)
⋮ ⋮ ⋱ ⋮

R0
νnn(0) R1

νnn(0) ⋯ Rnνnn(0)
R0
ν′
l
l(0) R1

ν′
l
l(0) ⋯ Rnν′

l
l(0)

⎞
⎟⎟⎟⎟⎟⎟
⎠

.
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Let us now rewrite RNmj(0):

RNmj(0) = ∑
i1+...+in=N+1

ki11 ⋯k
ij−1
j−1 (kijj − (kj −m)ij)kij+1j+1 ⋯k

in
n =

N

∑
i=0

H ′
N−i (ki+1

j − (kj −m)i+1)

=
N

∑
i=0

HN−i (ki+1
j − (kj −m)i+1 − kj(kij − (kj −m)i)) =

N

∑
i=0

HN−i (m(kj −m)i)

where HN−i = ∑i1+...+in=N−i k
i1
1 ⋯kinn and H ′

N−i = ∑i1+...+îj+...+in=N−i k
i1
1 ⋯k̂

ij
j ⋯kinn . The third

equality is because H ′
N−i =HN−i − kjHN−i−1. It is now easy to see that the determinant can be

reduced further to

det

⎛
⎜⎜⎜⎜⎜⎜
⎝

ν1 ν1(k1 − ν1) ⋯ ν1(k1 − ν1)n
ν2 ν2(k2 − ν2) ⋯ ν2(k2 − ν2)n
⋮ ⋮ ⋱ ⋯
νn νn(kn − νn) ⋯ νn(kn − νn)n
ν′l ν′l(kl − ν′l) ⋯ ν′l(kl − ν′l)n

⎞
⎟⎟⎟⎟⎟⎟
⎠

= ν1ν2⋯νnν′l det

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 k1 − ν1 ⋯ (k1 − ν1)n
1 k2 − ν2 ⋯ (k2 − ν2)n
⋮ ⋮ ⋱ ⋯
1 kn − νn ⋯ (kn − νn)n
1 kl − ν′l ⋯ (kl − ν′l)n

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

which equals ν1 . . . νnν
′
l ∏n

i=1(kl − ki + νi − ν′l)∏1≤i<j≤n(kj − ki + νi − νj) by the Vandermonde
determinant formula. Now, recall the condition that λ− ν is dominant integral, or λ′n + ki − νi >
λ′n + kj − νj for i < j (we have strict inequality because λ′ is the weight shifted by ρ). Thus,

∏1≤i<j≤n(kj − ki + νi − νj) is nonzero. Also, since λ − µ is dominant for all 0 < µ < ν, if we let
µ = (ν1, ν2, . . . , ν

′
l , . . . , νn), then we see that λ′n + ki − νi ≠ λ′n + kl − ν′l . Thus, the dominance

of λ − ν′ for 0 ≤ ν′ < ν ensures the determinant is nonzero, and so {Pν1,1, . . . , Pνn,n, Pν′l ,l} are
linearly independent as desired.

6 Poisson Infinitesimal Cherednik Algebras

Now we will introduce a new way to study infinitesimal Cherednik algebras by using Poisson
analogues. The Poisson infinitesimal Cherednik algebras are as natural as Hζ(gln), and their
theory goes along the same lines with some simplifications. Although these algebras have not
been defined before in the literature, the authors of [EGG] were aware of them, and technical
calculations with these algebras are similar to those made in [T]. Using the Poisson infinitesimal
Cherednik algebra, we will get a new proof of Theorem 4.1, which provides the formula for the
Casimir element.

Let ζ be a deformation parameter, ζ ∶ V ×V ∗ → S(gln). The Poisson infinitesimal Cherednik
algebra H ′

ζ(gln) is defined to be the algebra Sgln ⋉ S(V ⊕ V ∗) with a bracket defined on the
generators by:

{a, b} = [a, b] for a, b ∈ gln
{g, v} = g(v) for g ∈ gln, v ∈ V ⊕ V ∗

{y, y′} = {x,x′} = 0 for y, y′ ∈ V,x, x′ ∈ V ∗

{y, x} = ζ(y, x) for y ∈ V,x ∈ V ∗.

This bracket extends to a Poisson bracket onH ′
ζ(gln) if and only if the Jacobi identity {{x, y}, z}+

{{y, z}, x} + {{z, x}, y} = 0 holds for any x, y, z ∈ gln ⋉ (V ⊕ V ∗). As can be verified by doing
analogous computations as in [EGG], the pairings ζ satisfying the PBW property are given by
ζ = ∑kj=0 ζjrj where ζj ∈ C and rj is the coefficient of τ j in the expansion of (x, (1−τA)−1y)det(1−
τA)−1. Actually, we can consider the specialized infinitesimal Cherednik algebra as a quantiza-
tion of H ′

ζ(gln).
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Remark 6.1 (Due to Pavel Etingof). Note that

{yi, xj} = ∑ ζlrl(yi, xj) = ∑ ζl
∂ tr(Sl+1A)

∂eij
;

this follows from
∂

∂B
(det(1 − τA)−1) = tr(τB(1 − τA)−1)

det(1 − τA)
when B = yi ⊗ xj . In fact, if {yi, xj} = Fij(A), the Jacobi identity implies that Fij(A) = ∂F

∂A
for some GL(n) invariant function F , and that Λ2DA(F ) = 0, where DA is the matrix with
(DA)ij = ∂

∂eij
. One can then show that the only GL(n) invariant functions F satisfying this

partial differential equation are linear combinations of tr(SlA).

Our main goal is to compute the Poisson center of the algebra H ′
ζ(gln). As before, we set

βk as the coefficient of (−t)k in the expansion of det(1− tA) and τk = ∑ni=1 xi{βk, yi}. It follows
from [T] that τk ∈ zPois(H ′

0(gln)).

Theorem 6.1. The Poisson center zPois(H ′
ζ(gln)) = C[τ1+c1, τ2+c2, . . . , τn+cn], where (−1)ici

is the coefficient of ti in the series

c(t) = Resz=0 ζ(z−1) det(1 − tA)
det(1 − zA)

1

1 − t−1z

dz

z
.

Proof. Because tk lies in the center of H0(gln), τk ∈ zPois(H ′
0(gln)). All Poisson-central elements

of H ′
0(gln) belong to C[τ1, . . . , τn] because of the structure of the coadjoint action of the Lie

group corresponding to the Lie algebra gln ⋉ (V ⊕ V ∗) (for a detailed explanation, refer to the
proof of Theorem 2 in [T]).

We wish to prove that the Poisson center of H ′
0(gln) can be lifted to the Poisson center

of H ′
ζ(gln), with τk being lifted to τk + ck. In [T], this was done using methods of homolog-

ical algebra for noncommutative infinitesimal Cherednik algebras, but the proof did not yield
formulas for ck. We will take a more direct approach by deriving a formula for ck. Since
τk ∈ zPois(H0(gln)), τk + ck Poisson-commutes with elements of S(gln) for any ck ∈ zPois(S(gln)).
We can define an anti-involution on H ′

ζ(gln) that acts on basis elements by taking eij to eji and
yi to xi. By using the arguments explained in the proof of Theorem 2 in [T], we can show that τk
is fixed by this anti-involution, while ck is also fixed since it lies in zPois(S(gln)). Applying this
anti-involution, we see that if τk + ck commutes with elements of V , then τk + ck also commutes
with elements of V ∗. Thus, it suffices to find ck such that {τk + ck, y} = 0 for all y ∈ V .

First, notice that if g ∈ S(gln), then {g, y} = ∑ni,j=1
∂g
∂eij

{eij , y}. Second, notice that {{βk, yi}, y} =
0 (see the proof of Lemma 2.1 in [T]), so that

{τk, y} = {∑
i=1

xi{βk, yi}, y} = ∑
i=1

{xi, y}{βk, yi} = −∑
i=1

(Resz=0 ζ(z−1)tr(xi(1 − zA)−1y)
z det(1 − zA) dz){βk, yi}.

Thus, we have

{τk + ck, y} =
n

∑
i,j=1

∂ck
∂eij

{eij , y} −∑
i=1

(Resz=0 ζ(z−1)tr(xi(1 − zA)−1y)
z det(1 − zA) dz){βk, yi}.

We get a system of partial differential equations for ck:

n

∑
i,j=1

∂ck
∂eij

{eij , y} = ∑
i=1

(Resz=0 ζ(z−1)tr(xi(1 − zA)−1y)
z det(1 − zA) dz){βk, yi}.
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Multiplying both sides by (−t)k and summing over k = 1, . . . , n, we obtain an equivalent single
equation

n

∑
i,j=1

∂c(t)
∂eij

{eij , y} = ∑
i=1

(Resz=0 ζ(z−1)tr(xi(1 − zA)−1y)
z det(1 − zA) dz){det(1 − tA), yi},

where c(t) = ∑nk=1 ck(−t)k is the generating function for the ck.

Since all terms above are GL(n) invariant and diagonalizable matrices are dense in gln, we
can set A as a diagonal matrix, A = diag(a1, . . . , an). Furthermore, we substitute y = yl. Using
this simplification, we obtain

∂c(t)
∂al

yl = (Resz=0
ζ(z−1)

z(1 − zal)det(1 − zA)dz){det(1 − tA), yl}

= (Resz=0
ζ(z−1)

z(1 − zal)det(1 − zA)dz)
∂ det(1 − tA)

∂al
yl

= −(Resz=0
ζ(z−1)

z(1 − zal)det(1 − zA)dz)
tdet(1 − tA)

1 − tal
yl

= ∂

∂al
(Resz=0 ζ(z−1) det(1 − tA)

det(1 − zA)
1

1 − t−1z

dz

z
) yl,

providing the formula for ci.

Example 6.1. By taking the coefficient of t in the above formula, we get

c1 =
k

∑
i=0

ζi trS
i+1A,

where ζ(z) = ζ0 + . . . + ζkzk.
Remark 6.2. Another way of writing the formula for ck is

ck = Resz=0 ζ(z−1)Fk(z)
dz

z2
,

where Fk(z) = ∑ zmym,k(A) and ym,k(A) = χ (m,1, . . . ,1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k

, the character of an irreducible gln

module corresponding to a hook Young diagram. This rewriting of the formula gives better
insight for the quantization construction.

7 Passing from Commutative to Noncommutative Algebras

Note that {g, y} ∈ S(gln)⊗V for g ∈ S(gln) and y ∈ V ; we can thus identify {g, y} = ∑ni=1 hi⊗yi ∈
H ′
ζ(gln) with the element ∑ni=1 Sym(hi)yi ∈Hζ(gln).

Lemma 7.1.

[trSk+1A,y] =
⎧⎪⎪⎨⎪⎪⎩

k

∑
j=0

(−1)j
k + n + 1

(k + n + 1

j + 1
) trSk+1−jA,y

⎫⎪⎪⎬⎪⎪⎭
.
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Proof. It is enough to consider the case y = y1. Recall that trSk+1(A) can be written as a sum of
degree k+1 monomials of form e1,i1⋯e1,is1

e2,is1+1⋯e2,is1+s2⋯en,is1+⋯+sn where s1+⋯+sn = k+1 and
the sequence ik is a permutation of the sequence of s1 ones, s2 twos, and so forth; for conciseness,
we will denote the above monomial by e1,i1⋯en,ik+1 . The only terms of trSk+1A that contribute
to [trSk+1A,y1] and to {trSk+1A,y1} have s1 ≥ 1. Since to compute [trSk+1A,y1] we first
symmetrize trSk+1A, we will compute [Sym(e1,i1⋯en,ik+1), y1] − {Sym(e1,i1⋯en,ik+1), y1}. For
both the Lie bracket and the Poisson bracket, we use Leibniz’s rule to compute the bracket, but
whereas in the Poisson case we can transfer the resulting elements of V to the right since the
Poisson algebra is commutative, in the Lie case when we do so extra terms appear.

Consider a typical term that may appear after we use Leibniz’s rule to compute [trSk+1A,y1]:

⋯yj0⋯ej1j0⋯ej2j1⋯ejN jN−1⋯

When we move yj0 to the right, we get, besides ⋯ej1j0⋯ej2j1⋯ejN jN−1⋯yj0 , additional residual
terms like −⋯ej2j1⋯ejN jN−1⋯yj1 and ⋯ej3j2⋯ejN jN−1⋯yj2 , up to (−1)N⋯yjN . Without loss of
generality, we can consider only the last expression, since the others will appear in the smaller
chains

⋯yj0⋯ej1j0⋯êj2j1⋯êj3j2⋯êjN jN−1

and
⋯yj0⋯ej1j0⋯ej2j1⋯êj3j2⋯êjN jN−1

and so forth with the same coefficients. For notation, we let z1 denote the coefficient of yjN
in the residual term, i.e., the term represented by the ellipsis: (−1)N ⋯®

z1

yjN . Then, z1yjN is a

term in the expression (−1)N{z1ejN1, y1}, which appears in (−1)N{trSk+1−NA,y1}. Thus, we
can write

[trSk+1A,y1] = {
k+1

∑
N=0

(−1)NCN trSk+1−NA,y1}

for some coefficients CN .

Next, we compute CN . We first count how many times z1yjN appears in {trSk+1−NA,y1}.
Notice that since z1 is the product of k−N ejl’s, we can insert ejN1 in k−N +1 places to obtain
z2 such that {z2, y1} contains z1yjN .

Now we compute the coefficient of z2 in trSk+1−NA. As noted before, trSk+1−N(A) can be
written as a sum of degree k + 1 −N monomials of form e1,i1⋯e1,is1

e2,is1+1⋯e2,is1+s2⋯en,ik+1−N .
Any term that is a permutation of those k + 1 − N unit matrices will appear in the sym-
metrization of trSk+1−NA. We count the number of sequences i1, . . . , ik+1−N such that z2 is
the product of the elements e1,i1 , . . . , en,ik+1−N (in some order); this tells us the multiplicity of
z2 in the symmetrization of trSk+1−NA. Suppose z2 = e1,i1⋯en,ik+1−N for a certain sequence
i1, . . . , ik+1−N . Then, z2 = e1,i′1⋯en,i′k+1−N if and only if i′s1+⋯+sj−1+1, . . . , i

′
s1+⋯+sj is a permutation

of is1+⋯+sj−1+1, . . . , is1+⋯+sj for all j. Thus, z2 appears s1!s2!⋯sn! times in trSk+1−NA. Since

each term has coefficient 1
(k−N+1)! in the symmetrization, z2 appears with coefficient

s1!s2!⋯sn!

(k −N + 1)!

in the symmetrization of trSk+1−NA. In conjunction with the previous paragraph, we see that
z1yjN appears

s1!s2!⋯sn!

(k −N + 1)! × (k −N + 1) = s1!s2!⋯sn!

(k −N)!
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times in {trSk+1−NA,y1}.

It remains to calculate how many times z1yjN appears in [trSk+1A,y1]. Recall that z1 is
obtained from a term like:

⋯ej01⋯ej1j0⋯ej2j1⋯ejN jN−1⋯
where the ordered union of the ellipsis equals z1. Thus, z1 comes from terms of the following
form: we choose arbitrary numbers j0, . . . , jN−1, and insert ej01, ej1j0 , . . . ejN jN−1 into z1. There
are

(k + 1)(k)⋯(k + 1 −N)
(N + 1)!

ways for this choice for any fixed j0, . . . , jN−1. Any such term z3 appears in trSk+1A with
coefficient

s′1!⋯s′n!

(k + 1)!
where s′l is the total number eli’s (for some i) in z3, i.e., sl+number of ji’s with ji = l, 0 ≤ i < N .

Combining the results of the last two paragraphs, we see that {trSk+1−NA,y1} must appear
with coefficient

((k + 1)(k)⋯(k + 1 −N)
(N + 1)! ∑

s′1!⋯s′n!

(k + 1)!) /s1!s2!⋯sn!

(k −N)! = 1

(N + 1)! ∑
s′1!⋯s′n!

s1!s2!⋯sn!
,

where the summation is over all length-N sequences {jl} of integers from 1 to n. We claim that

∑ s′1!⋯s′n!

s1!⋯sn!
= (k + n)⋯(k + n −N + 1).

To see this, notice that ∑
s′1!⋯s′n!
s1!⋯sn! is the coefficient of tN in the expression

N !
n

∏
i=1

(1 + (si + 1)t + (si + 1)(si + 2)
2!

t2 +⋯) .

The above generating function equals N !∏n
i=1(1 − t)−(si+1) = N !(1 − t)−(k+1−N+n), and the coef-

ficient of tN in this expression is (k + n)⋯(k + n −N + 1).
Finally, we arrive at the simplified coefficient of {trSk+1−NA,y1}:

CN = 1

(N + 1)! ∑
s′1!⋯s′n!

s1!s2!⋯sn!
= (k + n)⋯(k + n −N + 1)

(N + 1)! ,

as desired.

Now we will give an alternative proof of Theorem 4.1.

Proof. Let f(z) be the polynomial satisfying f(z)−f(z−1) = ∂n(znζ(z)) and g(z) = z1−n 1
∂n−1 f(z)

(in the expression for g(z), we discard any negative powers of z). Note that if g(z) = gk+1z
k+1 +

. . . + g1z,

ζ(z) =
k+1

∑
j=1

j−1

∑
i=0

1

j + n(j + n
i + 1

)(−1)igjzj−1−i,

so

ζj−1 =
k−j+1

∑
i=0

1

j + i + n(j + n + i
i + 1

)(−1)igj+i.
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Lemma 7.1 allows us to write

⎡⎢⎢⎢⎢⎣

k+1

∑
j=1

gj trSjA,y

⎤⎥⎥⎥⎥⎦
=
⎧⎪⎪⎨⎪⎪⎩

k+1

∑
j=1

j−1

∑
i=0

1

j + n(j + n
i + 1

)(−1)igj trSj−iA,y
⎫⎪⎪⎬⎪⎪⎭

=
⎧⎪⎪⎨⎪⎪⎩

k+1

∑
j=1

k−j+1

∑
i=0

1

j + i + n(j + i + n
i + 1

)(−1)igj+i trSjA,y
⎫⎪⎪⎬⎪⎪⎭

=
⎧⎪⎪⎨⎪⎪⎩

k+1

∑
j=1

ζj−1 trSjA,y

⎫⎪⎪⎬⎪⎪⎭
.

Hence,

[t1, y] =
n

∑
i=1

[xi, y]yi =
n

∑
i=1

{xi, y}yi = −
⎧⎪⎪⎨⎪⎪⎩

k+1

∑
j=1

ζj−1 trSjA,y

⎫⎪⎪⎬⎪⎪⎭
= −

⎡⎢⎢⎢⎢⎣

k+1

∑
j=1

gj trSjA,y

⎤⎥⎥⎥⎥⎦
,

where the third equality follows from the fact that τ1 + ∑k+1
j=1 ζj−1 trSjA is Poisson-central in

H ′
ζ(gln) (see Example 6.1). Thus, we get t′1 = t1 +C ′, where

C ′ =
k+1

∑
j=1

gj trSjA = Resz=0 g(z−1)det(1 − zA)−1z−1dz.

We expect a similar approach to work for determining the other central elements of Hζ(gln).

8 Cherednik Algebras of sp2n

Let V be the standard 2n-dimensional representation of sp2n with symplectic form ω, and let
ζ ∶ V × V → U(sp2n) be an sp2n-invariant bilinear form. The infinitesimal Cherednik algebra
Hζ(sp2n) is defined as the quotient of U(sp2n) ⋉ T (V ) by the relation [x, y] = ζ(x, y) for all
x, y ∈ V , such that Hζ(sp2n) satisfies the PBW property. In [EGG], it was shown that Hζ(sp2n)
satisfies the PBW property if and only if ζ = ∑kj=0 ζ2jr2j where rj is the coefficient of zj in the
expansion of

ω(x, (1 − z2A2)−1y)det(1 − zA)−1 = r0(x, y) + r2(x, y)z2 +⋯.

Note that since A ∈ sp2n, the expansion det(1 − zA)−1 only contains even powers of z. There
is an isomorphism between Hζ0r0(sp2n) for nonzero ζ0 and U(sp2n) ⋉An, where An is the n-th
Weyl algebra (see [EGG]); thus, we can regard Hζ(sp2n) as a deformation of U(sp2n) ⋉An.

Remark 8.1. It would be desirable to develop the representation theory of Hζ(sp2n) analogously
to how we developed the theory for Hζ(gln), but while Hζ(gln) has a natural triangular de-
composition (with V assigned positive weights and V ∗ assigned negative weights), there is no
natural way to assign elements of V positive or negative weights for Hζ(sp2n) when n > 1. The
reason is that the set of positive elements A+ of Hζ(sp2n) form a subalgebra, and for linearly
independent v1, v2 ∈ A+ ∩ V (which could be found if n > 1), [v1, v2] lies in U(sp2n) but not
U(sp2n)+, contradicting the fact that A+ is a subalgebra. Thus, a reasonable category O cannot
be defined for Hζ(sp2n), and so a different approach must be taken to study the representations
of Hζ(sp2n). Another way to see that O cannot be defined reasonably is the fact that Hζ(gln)
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is a deformation of U(sln+1), which has a category O, whereas Hζ(sp2n) is a deformation of
U(sp2n)⋉An, which does not have a reasonable category O. Note however that when n = 1 the
above arguments are not valid, and a corresponding theory of the category O of H ′

ζ(sp2n) has
been elaborated in [KT].

Choose a basis vj of V , so that
ω(x, y) = xTJy,

with

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 ⋯ 0 0
−1 0 0 0 ⋯ 0 0
0 0 0 1 ⋯ 0 0
0 0 −1 0 ⋱ ⋮ ⋮
⋮ ⋮ ⋮ ⋱ ⋱ ⋮ ⋮
0 0 0 0 ⋯ 0 1
0 0 0 0 ⋯ −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

As before, we study the noncommutative infinitesimal Cherednik algebra Hζ(sp2n) by consid-
ering its Poisson analogue H ′

ζ(sp2n). We define ∑ni=1 βiz
2i = det(1 − zA) and

τi = (−1)i−1
2n

∑
j=1

{βi, vj}v∗j ,

where v∗j denotes the element of V that satisfies ω(vi, v∗j ) = δij . Note that

τi = −
i−1

∑
j=0

βjω(A2i−1−2jv, v),

(where β0 = 1) so τi is sp2n-invariant and independent of the choice of basis for V .

Proposition 8.1. The Poisson center of H ′
0(sp2n) is C[τ1, . . . ,τn].

Proof. We will follow a similar approach as in the proof of Theorem 2.1 in [T]. Let L be the
Lie algebra sp2n ⋉ V and S be the Lie group of L. We need to verify that C[τ1, . . . ,τn] =
zPois(H ′

0(sp2n)), with the latter being identified with C[L∗]S . Let M be the 2n-dimensional
subspace of L containing all elements of the form

y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 y12 0 ⋯ 0 0
y21 ⋱ ⋱ ⋱ ⋮ ⋮
0 ⋱ 0 y2n−3,2n−2 0 0
0 0 y2n−2,2n−3 0 0 0
0 ⋯ 0 0 0 y2n−1,2n

0 ⋯ 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
⋮
0
0
y2n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where all the y’s belong to C. In what follows, we identify L∗ and L via the non-degenerate
pairing, so that the coadjoint action of S is on L. We use the following two facts proved in [K]:
first, that the orbit of M under the coadjoint action of S on L∗ is dense in L∗; and second, that
C[L∗]S ≅ C[f1, . . . , fn], where

fi(y) = σi−1(y2,1y1,2, y3,2y2,3, . . . , y2n−2,2n−3y2n−3,2n−2)y2n−1,2ny
2
2n

and σj is the j-th elementary symmetric function. It is straightforward to see that τi∣M = fi,
and so C[L∗]S ≅ C[τ1, . . . ,τn] as desired.
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Theorem 8.1. The Poisson center zPois(H ′
ζ(sp2n)) = C[τ1 + c1,τ2 + c2, . . . ,τn + cn], where

(−1)i−1ci is the coefficient of t2i in the series

c(t) = 2 Resz=0 ζ(z−1) det(1 − tA)
det(1 − zA)

z−1

1 − z2t−2
dz.

Proof. We first note that ci ∈ zPois(S(sp2n)). Since {τi + ci, g} = 0 for any g ∈ S(sp2n), we just
need to find ci satisfying {τi + ci, v} = 0 for all v ∈ V . By the Jacobi rule,

{τi, v} = (−1)i−1∑
j

{βi, vj}{v∗j , v} + (−1)i−1∑
j

{{βi, vj}, v}v∗j .

Thus,

0 = {τi + ci, v} = (−1)i−1∑
j

{βi, vj}{v∗j , v} + (−1)i−1∑
j

{{βi, vj}, v}v∗j + {ci, v}. (1)

In the case of H ′
ζ(gln), ∑j{{βi, yj}, y}xj = 0 by straightforward application of properties of the

determinant; however, for H ′
ζ(sp2n), ∑j{{βi, vj}, v}v∗j ≠ 0. To calculate this sum, let B be a

basis for sp2n (the basis elements are given in Appendix A.4, but for the purposes of this section,
the specific elements are not needed). Write

∑
j

{{βi, vj}, v}v∗j = ∑
j

{∑
e∈B

∂βi
∂e

e(vj), v} v∗j = ∑
j

(∑
e∈B

∂βi
∂e

{e(vj), v}v∗j + {∂βi
∂e

, v} e(vj)v∗j ) .

Lemma 8.1.

∑
j
∑
e∈B

{∂βi
∂e

, v} e(vj)v∗j = 0.

The proof of this Lemma is given in the Appendix.

Using the fact that ∑j{{βi, vj}, v}v∗j = ∑j∑e∈B ∂βi
∂e {e(vj), v}v

∗
j , we can restrict (1) to di-

agonal matrices, which are spanned by elements ei = diag(0, . . . ,1,−1,0, . . . ,0) with 1 at the
2i − 1-th coordinate. We get:

0 = (−1)i−1∑
j
∑
k

∂βi
∂ek

{ek, vj}{v∗j , v} + (−1)i−1∑
k

(∂βi
∂ek

{v2k−1, v}v2k +
∂βi
∂ek

{v2k, v}v2k−1) +∑
k

∂ci
∂ek

{ek, v}

= 2(−1)i−1∑
k

∂βi
∂ek

(v2k−1{v2k, v} + v2k{v2k−1, v}) +∑
k

∂ci
∂ek

{ek, v}.

Multiplying by (−1)i−1t2i and summing over i for i = 1, . . . , n, we get

0 = 2∑
k

∂ det(1 − tA)
∂ek

(v2k−1{v2k, v} + v2k{v2k−1, v}) +∑
k

∂c(t)
∂ek

{ek, v}.

Now, we can alternatively set v = v2s−1 and v = v2s to get

0 = 2∑
k

∂ det(1 − tA)
∂ek

(v2k−1{v2k, v2s−1} + v2k{v2k−1, v2s−1}) +
∂c(t)
∂es

v2s−1

and

0 = 2∑
k

∂ det(1 − tA)
∂ek

(v2k−1{v2k, v2s} + v2k{v2k−1, v2s}) −
∂c(t)
∂es

v2s.
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These last two formulas both reduce to

∂c(t)
∂es

= −2
∂ det(1 − tA)

∂es
{v2s, v2s−1}.

We now recall that

{v2s, v2s−1} = Resz=0 ζ(z−1)ω(v2s, (1 − z2A2)−1v2s−1)det(1 − zA)−1z−1dz

= −Resz=0 ζ(z−1) 1

1 − z2λ2
s

det(1 − zA)−1z−1dz,

so integrating, we get

c(t) = 2 Resz=0 ζ(z−1) det(1 − tA)
det(1 − zA)

z−1

1 − z2t−2
dz.

We now briefly consider the center of Hζ(sp2n). Let

ti = (−1)i−1
2n

∑
j=1

[βi, vj]v∗j ,

where βi ∈ U(sp2n) is the symmetrization of the coefficient of z2i in the series ∑ni=1 βiz
2i =

det(1 − zA). Clearly, ti is independent of the choice of basis {vj}, and it is straightforward to
see that it is sp2n-invariant.

Conjecture 8.1. For any deformation ζ there exist ci ∈ z(U(sp2n)) that are unique up to a
constant, such that z(Hζ(sp2n)) = C[t1 + c1, . . . , tn + cn].

9 Harish-Chandra Map

Recall that the Harish-Chandra map is defined asHC ∶ Cn → Cn, withHC(λ) = (t′1(λ), t′2(λ), . . . , t′n(λ)).
The HC-map is of degree (m+1)(m+2)⋯(m+n), where m is the largest index with ζm ≠ 0. In
this section, we will examine the fibers of the HC-map. We will always shift λ by ρ to simplify
the formulas.

9.1 gl2

We first consider the case ofHζ(gl2) with ζ = w0s0+w1s1+⋯+wmsm. We know that t′1(λ) = P1(λ)
and t′2(λ) = P2(λ) as defined in Section 3.3.

Note that σ ∶ λ = (λ1, λ2) ↦ (λ2, λ1) preserves both t′1(λ) and t′2(λ) by symmetry. Suppose
P1(λ1, λ

′
2) = P1(λ1, λ2). Since P2(λ) = 1

2P1(λ) + λ1P1(λ) − ∑0≤i≤m aiλ
i+2
1 , a transformation

(λ1, λ2) → (λ1, λ
′
2) that fixes P1 will also fix P2. The polynomial P1(λ1, λ

′
2) − P1(λ1, λ2) = 0 is

of degree m + 1 in λ′2, and for generic λ, it has m + 1 pairwise distinct roots. We let τ be the
multivalued transformation taking (λ1, λ2) to any (λ1, λ

′
2) with P1(λ1, λ

′
2) = P1(λ1, λ2).

Proposition 9.1. The fiber of HC over µ = HC(λ) for a generic λ can be written as the
disjoint union

{τλ} ⊔ {τστλ}.
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Proof. It is straightforward to check that both sets are disjoint and that the elements in both
sets are pairwise distinct for generic λ. Moreover, since ∣{τλ}∣ =m + 1 and ∣{τστλ}∣ = (m + 1)2,
∣{τλ}⊔{τστλ}∣ = (m+1)(m+2) = degHC, so in fact, we have found all points in the fiber over
µ =HC(λ).

9.2 gln

Although we do not yet know the formulas for t′i, we know their highest terms from Section 6,
and so we can consider the highest term Qi(λ) of their action on a Verma module M(λ − ρ).
Let the deformation ζ be of degree m with the leading coefficient equal to 1. Then, it follows
from Theorem 6.1 that Qi(λ) is the coefficient of tizm in

(−1)i (1 − tλ1)⋯(1 − tλn)
(1 − zλ1)⋯(1 − zλn)

1

1 − t−1z
.

Proposition 9.2. For any 1 ≤ k ≤ n and deformation ζ = rm + ζj−1rj−1 +⋯ + ζ0r0,

λn−1
k Q1 − λn−2

k Q2 +⋯ + (−1)n−1λ0
kQn = λm+nk .

Proof. Let σj and Hj be given by the following two equations:

n

∏
j=1

(1 − λjt) =
n

∑
j=0

(−1)jσjtj

n

∏
j=1

(1 − λjt)−1 =
∞
∑
j=0

Hjt
j .

We shall prove this proposition for λ1 as the statement is totally symmetric in k.

We have Qi(λ) = ∑nj=i(−1)i+jσjHm+i−j . This proposition is equivalent to the equation

λ−1
1 (σ1Hm − σ2Hm−1 +⋯) + λ−2

1 (−σ2Hm +⋯) +⋯ = λm1 .

Now, notice that

(−1)l−1λ−l1 (σlHm − σl+1Hm−1 +⋯) = ∑
d1+⋯+dn=m,

d1≥−l, d2,...,dn≥0

Cl(d1, . . . , dn)λd11 ⋯λdnn

where

Cl(d1, . . . , dn) =
n−l
∑
i=0

(−1)l+i+1∣{(j1 < j2 < ⋯ < jl+i)∣ djι > −lδ1,jι∀ι}∣

Thus, the proposition reduces to showing that

C1(d1, . . . , dn) +C2(d1, . . . , dn) +⋯ +Cn(d1, . . . , dn) = 0

for all (d1, . . . , dn) ≠ (m,0 . . . ,0) and C1(m,0, . . . ,0) +C2(m,0, . . . ,0) +⋯ +Cn(m,0, . . . ,0) = 1.
This can be done using counting arguments.

Define R(t) ∈ C(Q1, . . . ,Qn)[t] as

R(t) = tn+m − tn−1Q1 + tn−2Q2 −⋯ + (−1)nQn.

Proposition 9.2 states that λj is a root of R(t) for all j. We naturally consider the field extension
K ⊂ L, with K = C(Q1, . . . ,Qn) and L = C(λ1, . . . , λn), where we treat Q1, . . . ,Qn as formal
variables.
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Theorem 9.1. Let L̃ be the splitting field of R(t) ∈ K[t], so that we have a tower of fields
K ⊂ L ⊂ L̃. Then, Gal(L̃ ∶K) ≅ Sn+m for n ≥ 2, and Gal(L̃ ∶K) ≅ Z/(m + 1)Z for n = 1.

Corollary 9.1. If n > 1, the subgroup of Gal(L̃ ∶ K) that fixes L is Sm. If n = 1, the stabilizer
of L is trivial, so L = L̃.

Thus, a generic fiber will contain
(m+n)!
m! points, and we should be able to decompose this

fiber similarly as in the case of gl2.

Proof. If n = 1, we get R(t) = tm+1 −Q1 = 0, and so Gal(L̃ ∶ K) ≅ Z/(m + 1)Z. Now, suppose
n ≥ 2. Let us specialize Q1 = Q2 = ⋯ = Qn−2 = 0 and set a = (−1)nQn−1 and b = (−1)n+1Qn.
Then, R(t) specializes to tn+m − at − b, whose splitting field over C(a, b) is well known to have
Galois group Sm+n. The statement that the Galois group in the specialized case is Sn+m is
equivalent to the assertion that

{zν11 z
ν2
2 ⋯zνn+mn+m ∣0 ≤ ν1 < n +m,0 ≤ ν2 < n +m − 1, . . . ,0 ≤ νn+m < 1},

where {zi} are the roots of R(t), are linearly independent over C(Qn−1,Qn) after specialization.
Label the elements of the above set by γ. If

α1γ1 +⋯ + αlγl = 0, αi ∈ C[Q1, . . . ,Qn]

in the unspecialized case, we can divide by the largest factor of Q1 that divides all αi and
specialize Q1 = 0, and then repeat this process for Q2, . . . ,Qn−2, to obtain, in the end, a linear
combination with non-zero coefficients from C(Qn−1,Qn) that equals zero, contradicting the
above result. Thus, the Galois group in the unspecialized case must also be Sn+m.

Now, we will prove an analogous theorem for Hζ(sp2n). Though we do not yet know the
existence of ci for Hζ(sp2n), we can consider the highest term of ci computed in Section 8 and
label by Qi the evaluation of ci at the diagonal matrix diag(λ1,−λ1, . . . , λn,−λn). We define
HC ∶ Cn → Cn by HC(λ) = (Q1(λ),Q2(λ), . . . ,Qn(λ)).

Let R(t) = t2n+2m − Q1

2 t
2n−2 + Q2

2 t
2n−4 −⋯ + (−1)nQn2 .

Proposition 9.3. R(±λk) = 0 for all 1 ≤ k ≤ n.

Because the formula for the top term of ci in the sp2n case is very similar to the formula
in the gln case, the proof of this proposition follows exactly the same lines as the proof of
Proposition 9.2.

As before, define L = C(λ1, . . . , λn) and K = C(Q1, . . . ,Qn).

Theorem 9.2. Let L̃ be the splitting field of R(t) ∈ K[t], so that we have a tower of fields
K ⊂ L ⊂ L̃. Then, Gal(L̃ ∶K) ≅ Sn+m ⋉ (Z/2Z)n+m for n ≥ 2, and Gal(L̃ ∶K) ≅ Z/(2m+ 2)Z for
n = 1.

Corollary 9.2. The subgroup of Gal(L̃ ∶K) that fixes L is Sm ⋉ (Z/2Z)m for n > 1 and trivial
for n = 1.

Proof. When n = 1, R(t) = t2m+2 − Q1

2 , so Gal(L̃ ∶K) ≅ Z/(2m + 2)Z.

Now assume n > 1. Label the roots of R(t) by γ1, γ2, . . . , γ2m+2n. If γ is a root of R(t),
then −γ is also a root, so without loss of generality, assume γ2i = −γ2i−1. Let N ≅ (Z/2Z)n+m
be the subgroup of Gal(L̃ ∶ K) consisting of automorphisms that send each γi to ±γi. Then,
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L̃N =K(γ2
2 , γ

2
4 . . . , γ

2
2m+2n), which is the splitting field of tn+m − Q1

2 t
n−1 + Q2

2 t
n−2 −⋯+ (−1)nQn2 .

Thus, N is a normal subgroup of Gal(L̃ ∶ K). Using the same reasoning underlying the proof
of Theorem 9.1, the Galois group of L̃N over K is isomorphic to Sm+n. Now, it is clear that
Gal(L̃ ∶K) ≅ Sn+m ⋉ (Z/2Z)n+m.

Thus, for µ =HC(λ), the HC fiber HC−1(µ) can be noncanonically identified with (Sn+m⋉
(Z/2Z)n+m)/(Sm ⋉ (Z/2Z)m) for n > 1 and with Z/(2m + 2)Z for n = 1.

10 Kostant’s Theorem

Recall Kostant’s theorem in the classical case ([BL]):

Theorem. Let g be a reductive Lie algebra with adjoint-type Lie group G, and let J be the ideal
in C[g∗] generated by the homogeneous elements of C[g∗]G of positive degree. Then,

1. U(g) is a free module over its center z(U(g));

2. the subscheme of g defined by J is a normal reduced irreducible subvariety that corresponds
to the set of nilpotent elements in g.

In [T2], Kostant’s theorem was generalized to Hζ(gln). In this section, we will prove
Kostant’s theorem for Hζ(sp2n) assuming Conjecture 8.1: z(Hζ(sp2n)) = C[t1 + c1, . . . , tn + cn].

Introduce a filtration on Hζ(sp2n) with deg g = 1 for all g ∈ sp2n and deg v = m + 1
2 for all

v ∈ V . Let

Bm = S(V ⊕ sp2n)/
⎛
⎝∑j

{βi, vj}v∗j + c
top,m
i

⎞
⎠

1≤i≤n

where ctop,m
i are the generators of the Poisson-center given in Theorem 8.1; if Conjecture 8.1 is

true, ctop,m
i is also the highest term of ci.

Theorem 10.1. 1. Assuming that Conjecture 8.1 is true, Hζ(sp2n) is a free module over its
center.

2. Bm is a normal complete-intersection integral domain.

Proof. Introduce a filtration on Bm with deg g = 1 for g ∈ sp2n and deg v = 0 for v ∈ V . Define

B
(1)
m by B

(1)
m = grBm = S(V ⊕ sp2n)/(ctop,m

i )1≤i≤n. To show that S(V ⊕ sp2n) is free over

C[∑j{β1, vj}v∗j + c
top,m
1 , . . . ,∑j{βn, vj}v∗j + c

top,m
n ], it suffices to show that S(V ⊕ sp2n) is free

over C[ctop,m
1 , . . . , ctop,m

n ].
From the formulas for ci, we see that C[λ1, . . . , λn] is a free and finite module over C[gr c1, . . . ,gr cn],

so C[h]W is finite and free over C[c1, . . . , cn]. Since S(sp2n) is free over C[h]W by the classical
Kostant’s theorem, we conclude that S(sp2n), and hence S(sp2n)⊗SV , is free over C[c1, . . . , cn].

To show that Bm is a normal integral domain, it suffices to show that the smooth locus of
the zero set of t′1, t

′
2, . . . , t

′
n has codimension 2 and is irreducible. Let Z = Spec(Bm) be a closed

subscheme of V ⊕ sp2n defined by gr t′i = 0, and let

U ∶= Z/Zsm = {(v,A) ∈ V ⊕ sp2n∣(v,A) ∈ Z and rank(Jac) < n},
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where Jac is the Jacobi matrix of t′1, t
′
2, . . . , t

′
n at (v,A) with respect to some basis of V and

sp2n. We need to show that U is a codimension 2 subvariety of Z and that Z is irreducible.

Now, recall that

∑{βi, vj}v∗j = −(ω(A2i−1v, v) + β1ω(A2i−3v, v) + β2ω(A2i−5v, v) +⋯).

Thus, the ideal (∑{βi, vj}v∗j + (ctop,m
i )1≤i≤n) is equal to (Si)1≤i≤n for

Si = (ω(A2i−1v, v) − (ctop,m
i − β1c

top,m
i−1 − β2c

top,m
i−2 −⋯));

we can and will use the Jacobian of Si instead of t′i to describe U . We can calculate the
differentials of ω(A2i−1v, v) with respect to yj ∈ V and γ ∈ sp2n:

∂

∂yj
(ω(A2i−1v, v)) = 2ω(A2i−1v, yj)

∂

∂γ
(ω(A2i−1v, v)) = ω(A2i−2γv +A2i−3γAv +⋯ + γA2i−2v, v).

Thus, if
µ1grad(S1) + µ2grad(S2) +⋯ + µngrad(Sn) = 0

for some µ1, µ2, . . . , µn ∈ C, then

ω(µ1Av, yj) + ω(µ2A
3v, yj) +⋯ + ω(µnA2n−1v, yj) = 0

for all 1 ≤ j ≤ 2n. Equivalently, (µ1A + µ2A
3 +⋯ + µnA2n−1)v = 0.

Now we will consider the situation in B
(1)
m = grBm. We know that dimZ = dim Z̃, where

Z̃ = V ×N and N is the nilpotent cone of sp2n. Since V and N are irreducible, Z̃, and hence
Z, is irreducible. Recall that U was defined as the locus of points (v,A) ∈ Z ⊂ V ⊕ sp2n

such that rank(Jac) < n, or in other words, all n × n minors of the Jacobian matrix have
determinant 0. Since each of those determinants is homogeneous with respect to our second
filtration, it is natural to define Ũ ⊂ Z̃ as a locus of points where rank(Jac) < n. Then,
dimU ≤ dim Ũ . Note that Ũ = Ũ1 ⊔ Ũ2, where Ũ1 = Ũ ∩ {(v,A)∣A is regular nilpotent} and
Ũ2 = Ũ ∩{(v,A)∣A is non-regular nilpotent}. The codimension of a regular nilpotent’s orbit is 2,
so codimZ̃(Ũ2) ≥ 2. It suffices to show that codimZ̃(Ũ1) ≥ 2 as well. We shall do this by showing

that given a regular nilpotent A, dim(VA,sing) ≤ 2n − 2 in V , where VA,sing = {v ∈ V ∣(v,A) ∈ Ũ}.

Let us switch to a basis of sp2n where

J =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 ⋯ 0 0 −1
0 ⋯ 0 1 0
0 ⋯ −1 0 0
⋮ ⋰ ⋮ ⋮ ⋮
1 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

If we define

A =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋯ ⋱ 0
0 0 0 ⋯ 1
0 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

,
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then AJ + JAT = 0 so A ∈ sp2n. Now, suppose that ∑1≤j≤n µjgrad(Sj) = 0 at (A,v), for

v = (a1, . . . , a2n). By examining the ∂
∂yj

components of grad(Sj), we get a2n = 0; moreover,

either a2n−1 = 0, or µ1 = ⋯ = µn−1 = 0. The conditions a2n = a2n−1 = 0 define a codimension
two subspace as desired. We thus need to show that if a2n = 0 and µ1 = ⋯ = µn−1 = 0, then

∑1≤j≤n µjgrad(Sj) = 0 implies a non-trivial condition on v. To find such a condition, note that

∂

∂γ
(ω(A2n−1v, v)) = ω(A2n−2γv, v) + ω(A2n−3γAv, v) +⋯ + ω(γA2n−2v, v),

and that ∂
∂γ (c

top,m
n − β1c

top,m
n−1 − ⋯) does not depend on v and is just a number for a fixed A.

Now, let us take γ = e2n,1; we can verify that e2n,1J + JeT2n,1 = 0, so e2n,1 ∈ sp2n. We note that

e2n,1A
2n−2 = e2n,2n−1, Ae2n,1A

2n−3 = e2n−1,2n−2, A2e2n,1A
2n−4 = e2n−2,2n−3 and so forth. Thus,

∂
∂γ (ω(A

2n−1v, v)) = ω(AT v, v). However, if v = (a1, . . . , a2n−1,0),

ω(AT v, v) = ω((0, a1, . . . , a2n−1), (a1, . . . , a2n−1,0)),

is a nontrivial degree two polynomial in a1, . . . , a2n−1 that should equal the number ∂
∂γ (c

top,m
n −

β1c
top,m
n−1 −⋯)(A). This gives the other codimension 1 condition, and so Ũ1 is at least codimension

2 as desired.

A Appendix

In the appendix, we give examples of the technical computations from the main body of the
paper.

A.1 Proof of Lemma 3.2

We shall present the proof that D = 0; the proof that C = 0 goes along exactly analogous lines.

Let us write D = −D1 −D2 +D3, where

D1 =
1

2m

⌊m+1
2

⌋

∑
j=1

j−1

∑
k=0

(m + 2)!
(2j + 1)(2k + 1)!(2j − 2k − 1)!(m + 1 − 2j)!β

m+1−2jγk,

D2 =
1

2m

⌊m+2
2

⌋

∑
j=1

j−1

∑
k=0

(m + 2)!
(2k + 1)!(2j − 2k − 1)!(m + 2 − 2j)!(β + 1)m+2−2ju2k,

and

D3 =
1

2m

⌊m+1
2

⌋

∑
j=1

j−1

∑
k=0

(m + 2)!
(2j + 1)(2k + 1)!(2j − 2k − 1)!(m + 1 − 2j)!(β + 1)m+1−2j(u2k + u2k+1),

Using the binomial theorem, we find that

D1 = F1(
√
γ) + F1(−

√
γ)

D2 = F2(
√
γ) + F2(−

√
γ)

D3 = F3(
√
γ) + F3(−

√
γ),
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where

F1(
√
γ) = 1

4
√
γ(1 +√

γ)
((β + 1 +√

γ)m+2 − (β − 1 −√
γ)m+2)

F2(
√
γ) = 1

8
√
γ(1 +√

γ)
⎛
⎝
(β + 3 +√

γ)m+2 − (β − 1 −√
γ)m+2

+
2 +√

γ
√
γ

((β + 2 +√
γ)m+2 − (β + 1 −√

γ)m+2)
⎞
⎠

F3(
√
γ) = 1

8
√
γ(1 +√

γ)
((β + 3 +√

γ)m+2 − (β + 1 −√
γ)m+2 + (β − 1 −√

γ)m+2 − (β + 1 +√
γ)m+2) .

Then, D = F (√γ) + F (−√γ), where

F (√γ) = −F1(
√
γ) − F2(

√
γ) + F3(

√
γ)

= 1

4γ
((β + 1 −√

γ)m+2 − (β + 1 +√
γ)m+2) .

Since F is an odd function in
√
γ, D = 0 as desired.

A.2 Proof of Lemma 3.3

We show that [y1x1 + y2x2 +C1(m), x1] = 0 in Hsm(gl2). Using Theorem 3.1, we get

[y1x1 + y2x2, x1] =
⎛
⎜
⎝

1

2m+1

⌊m+2
2

⌋
∑
j=1

j−1

∑
k=0

4j −m − 1

2j + 1
(m + 2

2k + 1
)(m + 1 − 2k

2j − 2k − 1
)βm+2−2jγk

⎞
⎟
⎠
x1

+
⎛
⎜
⎝

1

2m

⌊m+2
2

⌋
∑
j=1

j−1

∑
k=0

(m + 2

2j + 1
)( 2j

2k + 1
)βm+1−2jγk

⎞
⎟
⎠
(e11x1 + e21x1).

Using Lemma 3.1, we get

[C1(m), x1] =
1

2m+1

⌊m+2
2

⌋
∑
j=0

j

∑
k=0

⎛
⎝
(m + 2

2j + 1
)(2j + 1

2k + 1
)(βm+1−2jγk + (β + 1)m+1−2j(βu2k − u2k+1))

− (m + 2

2j
)( 2j

2k + 1
)(βm+2−2jγk + (β + 1)m+2−2j(βu2k − u2k+1))

⎞
⎠
x1

+ 1

2m

⌊m+2
2

⌋
∑
j=0

j

∑
k=0

((m + 2

2j + 1
)(2j + 1

2k + 1
) + (m + 2

2j
)( 2j

2k + 1
)(β + 1)u2k) (β + 1)m+1−2ju2k×

(e11x1 + e21x1).

We shall prove that the coefficient of x1 in [y1x1 + y2x2 +C1(m), x1] vanishes. This coefficient
simplifies to

1

2m+1

⌊m+2
2

⌋
∑
j=0

j

∑
k=0

⎛
⎝
−(m + 2

2j + 1
)( 2j

2k + 1
)βm+2−2jγk + (m + 2

2j + 1
)(2j + 1

2k + 1
)βm+1−2jγk

+ (m + 2

2j + 1
)(2j + 1

2k + 1
)(β + 1)m+1−2j(βu2k − u2k+1) − (m + 2

2j
)( 2j

2k + 1
)(β + 1)m+2−2j(βu2k − u2k+1)

⎞
⎠
.
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As in A.1, we can find closed form expressions for the above quantity:

1

2m+1

⌊m+2
2

⌋
∑
j=0

j

∑
k=0

(−(m + 2

2j + 1
)( 2j

2k + 1
)βm+2−2jγk) = F1(

√
γ) + F1(−

√
γ)

1

2m+1

⌊m+2
2

⌋
∑
j=0

j

∑
k=0

((m + 2

2j + 1
)(2j + 1

2k + 1
)βm+1−2jγk) = F2(

√
γ) + F2(−

√
γ)

1

2m+1

⌊m+2
2

⌋
∑
j=0

j

∑
k=0

((m + 2

2j + 1
)(2j + 1

2k + 1
)(β + 1)m+1−2jβu2k) = F3(

√
γ) + F3(−

√
γ)

1

2m+1

⌊m+2
2

⌋
∑
j=0

j

∑
k=0

(−(m + 2

2j + 1
)(2j + 1

2k + 1
)(β + 1)m+1−2ju2k+1) = F4(

√
γ) + F4(−

√
γ)

1

2m+1

⌊m+2
2

⌋
∑
j=0

j

∑
k=0

(−(m + 2

2j
)( 2j

2k + 1
)(β + 1)m+2−2jβu2k) = F5(

√
γ) + F5(−

√
γ)

1

2m+1

⌊m+2
2

⌋
∑
j=0

j

∑
k=0

((m + 2

2j
)( 2j

2k + 1
)(β + 1)m+2−2ju2k+1) = F6(

√
γ) + F6(−

√
γ).

Then, some elementary algebra will show that F1(γ)+F2(γ)+F3(γ)+F4(γ)+F5(γ)+F6(γ) = 0.

A.3 Proof of Theorem 3.3

The trick, once again, is to find the closed form expressions for C1(i) and C2(i). We shall
demonstrate by computing the action of t̃′1 on M(λ) for the deformation ζ = sm.

Note that t̃′1 = x1y1+x2y2+[y1, x1]+[y2, x2]+C1(m), so t̃′1(λ) = ([y1, x1]+[y2, x2]+C1(m))(λ).
Using Theorem 3.1 and 3.2, we can write t̃′1(λ) = (2Am + βBm +C1(m))(λ), so after some easy
simplifications, we get

t̃′1(λ) =
1

2m+1

⌊m+2
2

⌋
∑
j=0

j

∑
k=0

((m + 2

2j + 1
)(2j + 1

2k + 1
)βm+1−2jγk + (m + 2

2j
)( 2j

2k + 1
)βm+2−2jγk) (λ).

We can write

⌊m+2
2

⌋
∑
j=0

j

∑
k=0

((m + 2

2j + 1
)(2j + 1

2k + 1
)βm+1−2jγk)

= 1

4
√
γ
((β + 1 +√

γ)m+2 − (β − 1 −√
γ)m+2 − (β + 1 −√

γ)m+2 + (β − 1 +√
γ)m+2)

and

⌊m+2
2

⌋
∑
j=0

j

∑
k=0

((m + 2

2j
)( 2j

2k + 1
)βm+2−2jγk)

= 1

4
√
γ
((β + 1 +√

γ)m+2 + (β − 1 −√
γ)m+2 − (β + 1 −√

γ)m+2 − (β − 1 +√
γ)m+2) .

Thus,

t̃′1(λ) =
1

2m+2√γ
((β + 1 +√

γ)m+2 − (β + 1 −√
γ)m+2) (λ) = (2λ1 + 2)m+2 − (2λ2)m+2

2m+2(λ1 − λ2 + 1) =Hm+1(λ)

as desired.
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A.4 Proof of Lemma 8.1

In this section, we will outline the proof of Lemma 8.1, which states:

2n

∑
j=1
∑
e∈B

{∂βi
∂e

, v} e(vj)v∗j = 0. (2)

We use the basis for V defined in Section 8, in which ω is represented by the matrix J .

Let us multiply (2) by t2i and sum over i to get the equivalent assertion that

∑
j
∑
e∈B

{∂ det(1 − tA)
∂e

, v} e(vj)v∗j = 0.

Since the whole sum is sp2n-invariant (even though each term considered separately is not), we
can look at the restriction of the sum to h. Thus, this sum equals zero if and only if

∑
j
∑
e∈B

{∂ det(1 − tA)
∂e

, v} e(vj)v∗j
RRRRRRRRRRRh
= 0.

We choose the following basis B for sp2n: e2j−1,2j , e2j,2j−1, e2j−1,2j−1−e2j,2j , for all 1 ≤ j ≤ n,
and for all 1 ≤ k < l ≤ n, the elements e2l+1,2k + e2k−1,2l+2, e2l,2k − e2k−1,2l−1, e2l+1,2k−1 − e2k,2l+2,
and e2l,2k−1+e2k,2l−1. We observe that for any 1 ≤ j, j′ ≤ 2n, there exists a unique basis vector in
B that takes vj to ±vj′ ; we shall denote this element by vj′,j ∈ sp2n. These vj′,j are not pairwise
distinct since there are basis vectors with two nonzero entries.

Since Sp2n acts transitively on V , we can assume v = v1. Together with our choice of basis,
we can then write

∑
j
∑
e∈B

{∂ det(1 − tA)
∂e

, v1} e(vj)v∗j = ∑
j,j′,k

∂2 det(1 − tA)
∂vk,1∂vj′,j

vj′vkv
∗
j (−1)ιjj′ ,

where

ιjj′ = { 1 if j ≡ j′ mod 2 and j′ < j, or if j′ = j and j is even,
0 otherwise.

We now restrict to h and only keep track of the non-zero terms. We have
∂2 det(1−tA)
∂vk,1∂vj′,j

∣
h
≠ 0 only

when the matrices for vk,1 and vj′,j have nonzero entries on the diagonal, or if vk,1 and vj′,j
have nonzero entries at the i-th row j-th column and j-th row i-th column respectively. This
can only happen when vj′vkv

∗
j = v1vav

∗
a for some a. We can list all the ways this can happen

for a = 2b or a = 2b − 1 with b ≠ 1 (keeping in mind that v∗2b−1 = v2b and v∗2b = −v2b−1):

1.
∂2 det(1−tA)

∂v1,1∂v2b−1,2b−1
v1v2b−1v2b,

2.
∂2 det(1−tA)
∂v1,1∂v2b,2b

v2bv1v2b−1,

3.
∂2 det(1−tA)

∂v2b−1,1∂v1,2b−1
(−v1v2b−1v2b),

4.
∂2 det(1−tA)
∂v2b,1∂v1,2b

(−v1v2bv2b−1),

5.
∂2 det(1−tA)
∂v2b,1∂v2b−1,2

(−v2b−1v2bv1),
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6.
∂2 det(1−tA)
∂v2b−1,1∂v2b,2

(−v2b−1v2bv1).

To calculate the derivatives, let A1 be the copy of sp4 formed by the intersections of the first,
second, 2k − 1-th, and 2k-th rows and columns of 1 − tA, and let A2 be what remains after we
throw out those rows and columns. Then, note that all the above derivatives evaluate to the
same polynomial in the Cartan of A2 times the corresponding derivative in sp4; for instance,
∂2 det(1−tA)

∂v1,1∂v2b−1,2b−1
= h ∂2 detA1

∂v′1,1∂v
′
3,3

with v′1,1, v
′
3,3 ∈ sp4 and h ∈ S(h(A2)). Thus, we can reduce our

problem to sp4, and straightforward computation can show that (2) is true for sp4. Similarly,
when b = 1 (that is, when the term is of form v1v1v2), all computations will reduce to analogous
ones in sp2.
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