Modular representations of Cherednik algebras associated to symmetric groups

Sheela Devadas, Carl Lian, and Steven Sam

May 21, 2011

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Complex Reflection Groups and the Cherednik Algebra

Let \mathfrak{h} be an *n*-dimensional complex vector space. A *reflection* is a finite-order operator *s* on \mathfrak{h} such that rank $(s - I_n) = 1$. A finite subgroup of $GL(\mathfrak{h})$ is a *complex reflection group* if it is generated by reflections.

Definition

Pick a function $c: G \to \mathbb{C}$ that is invariant across the conjugacy classes of G, and let \hbar be a complex number. The Cherednik Algebra $H_{\hbar,c}(G,\mathfrak{h})$ is $T(\mathfrak{h} \oplus \mathfrak{h}^*) \rtimes \mathbb{C}[G]$, modulo the relations

$$\begin{split} & [x,x'] = 0, \quad [y,y'] = 0, \\ & [y,x] = \hbar \langle y,x \rangle - \sum_{s} c(s) \langle y,\alpha_{s} \rangle \langle \alpha_{s}^{\vee},x \rangle s, \forall x,x' \in \mathfrak{h}^{*}, y,y' \in \mathfrak{h}. \end{split}$$

We work with $G = S_n$, and we can carry over these definitions to an algebraically closed field of characteristic *p*.

Representations of Cherednik Algebras

- "Lowest weight" representations of the Cherednik Algebras *H*_{ħ,c}(*G*, ħ) are constructed from *Verma modules*, whose definition is motivated by the representation theory of Lie algebras.
- Let τ be a representation of G. We let Sym(h) act as 0 on τ and construct the Verma Module

$$M_c(G,\mathfrak{h},\tau)=H_{\hbar,c}(G,\mathfrak{h})\otimes_{\mathbb{C}[G]\ltimes \operatorname{Sym}(\mathfrak{h})}\tau.$$

- M_c has a unique maximal proper submodule J_c , and we can then construct $L_c = M_c/J_c$.
- We can study J_c as the kernel of a particular bilinear form β_c: M_c(G, 𝔥, τ) × M_c(G, 𝔥^{*}, τ^{*}) → C that has recursive properties.

• The Cherednik Algebra is \mathbb{Z} -graded, i.e.

$$H_{\hbar,c} = \cdots \oplus H_{-1} \oplus H_0 \oplus H_1 \oplus \cdots,$$

where when $x \in A_m, y \in A_n$, we have $xy \in A_{m+n}$.

• The modules M_c and L_c inherit the grading from the $H_{\hbar,c}$.

• The Hilbert series of
$$L_c$$
 is $\sum_{i=0}^{\infty} (\dim(L_c)_i) t^i$.

• The main goal of the project is to be able to compute Hilbert series for all $L_c(\tau)$.

- The positive characteristic case has not been well-studied, one of the reasons being the absence of general tools in dealing with it.
- As with Lie Algebras, over positive characteristic the center of a Cherednik Algebra becomes much larger. As a result, the algebra, which is very large, ends up with finite dimensional representations: $L_c(\tau)$ is finite dimensional and its Hilbert series is thus finite.
- The representation theory of S_n becomes more complicated in characteristic $p \le n$, making relating the Cherednik Algebras to the combinatorial structure of their associated representations a more interesting problem.

- Latour studied the Cherednik algebra for \mathbb{Z}/I when p does not divide I
- Katrina Evtimova studied the case when *p* does divide *l* under the direction of Emanuel Stoica.
- Martina Balagovic and Harrison Chen studied the Cherednik algebra for other groups such as GL_n(𝔽_q) and SL_n(𝔽_q) They determined the Hilbert series for GL_n(𝔽_q) for τ trivial and all q, n ≥ 2, also for GL₂(𝔽_q) and all τ
- Unlike these, we work with groups that are examples in char.
 0 reduced mod p and higher rank

Bezrukavnikov-Finkelberg-Ginzburg studied representations in the context of algebraic geometry in characteristic p > n and used the fact that there is a large center

Theorem (Gordon)

The Hilbert series for $L(S_{\lambda})$ when $\hbar = 0$ and p does not divide n!:

$$n! \prod_{s \in \lambda} \frac{1}{h(s)} \frac{1 - t^{h(s)}}{1 - t}$$

s ranges over boxes in the diagram of λ and h(s) is the hook length

However, this does not work in the modular case: Gordon relied on a certain algebraic variety being nonsingular, which fails for small p

Some of our Results

э

Theorem

For p > n, $\hbar = 1$, c generic, $G = (\mathbb{Z}/m)^n \rtimes S_n$, $\underline{\lambda}$ an m-tuple of partitions, the Hilbert series for $L(S_{\underline{\lambda}})$ is

n!
$$\prod_{s \in \underline{\lambda}} \frac{1}{h(s)} \frac{1 - t^{mph(s)}}{1 - t}$$

Theorem

For τ trivial, p divides n, $\hbar = 0$, Hilbert series is $\frac{1-t^p}{1-t}$ and generators of J are $x_1 - x_2, x_1 - x_3, \dots, x_1 - x_n, x_n^p$. For τ trivial, $\hbar = 1$, p = 2, and n even, Hilbert series is $(t+1)^n(t^2+1)$

n = 5 and p = 3 gives $1 + 4t + 9t^2 + 15t^3 + 16t^4 + 11t^5 + 4t^6$ (disproves conjecture that the quotients are always Gorenstein)

Some data

The data suggests the following formulas, which we are in the process of proving:

• For n odd, p = 2, $\hbar = 1$, c generic, the Hilbert series is

$$(t+1)^{n}(t^{6}+(n-1)t^{4}+(n-1)t^{2}+1)$$

For $\hbar = 0$, $t^3 + (n-1)t^2 + (n-1)t + 1$ • When $n = 2 \pmod{3}$, p = 3, and $\hbar = 0$ is $(1+t)(1+t+t^2)(1+(n-3)t+\binom{n-2}{2}t^2+(n-1)t^3)$

• When $n=1 \pmod{3}$, p=3, and $\hbar=0$ is

$$(t^{2}+t+1)(t^{2}+(n-2)t+1)$$

 These last three come from conjecture on subspace arrangements on next slide

Subspace arrangements

- Let X_i be the set of all (x₁,..., x_n) such that some n − i of the coordinates are equal.
- For n ≡ i (mod p) with 0 ≤ i ≤ p − 1 and ħ = 0, the data suggests that J_c is generated by symmetric functions and the ideal of X_i. L_c seems to be a complete intersection in X_i.
- We conjecture that X_i is a Cohen–Macaulay variety when i < p and can prove this when i = 1. (Cohen–Macaulayness fails in some cases when $p \le i$)
- We also see different subspace arrangements for the groups G(m, r, n). This is interesting because it means that the ideal J_c has alternative meaning which should be helpful.
- For the groups *G*(2, 2, *n*), we see coordinate subspaces, and Cohen–Macaulayness follows from Stanley–Reisner theory

- We are also working with special values of $c \in \mathbb{F}_p$ for $\hbar = 1$, in general we work with generic c
- We are beginning work on general G(m, r, n) (specifically G(2, 1, n) and G(2, 2, n)). Eventually we will work on exceptional groups.
- We also plan to work with nontrivial au

Thanks!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Thanks to PRIMES for providing this opportunity, Pavel Etingof for suggesting this problem, and our mentor Steven Sam.