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Complex Reflection Groups and the Cherednik Algebra

Let h be an n-dimensional complex vector space. A reflection is a
finite-order operator s on h such that rank(s − In) = 1. A finite
subgroup of GL(h) is a complex reflection group if it is generated
by reflections.

Definition

Pick a function c : G → C that is invariant across the conjugacy
classes of G , and let ~ be a complex number. The Cherednik
Algebra H~,c(G , h) is T (h⊕ h∗)⋊C[G ], modulo the relations

[x , x ′] = 0, [y , y ′] = 0,

[y , x ] = ~〈y , x〉 −
∑

s

c(s)〈y , αs〉〈α
∨

s , x〉s, ∀x , x
′ ∈ h∗, y , y ′ ∈ h.

We work with G = Sn, and we can carry over these definitions to
an algebraically closed field of characteristic p.



Representations of Cherednik Algebras

• “Lowest weight” representations of the Cherednik Algebras
H~,c(G , h) are constructed from Verma modules, whose
definition is motivated by the representation theory of Lie
algebras.

• Let τ be a representation of G . We let Sym(h) act as 0 on τ
and construct the Verma Module

Mc(G , h, τ) = H~,c(G , h)⊗C[G ]⋉Sym(h) τ.

• Mc has a unique maximal proper submodule Jc , and we can
then construct Lc = Mc/Jc .

• We can study Jc as the kernel of a particular bilinear form
βc : Mc(G , h, τ)×Mc(G , h∗, τ∗) → C that has recursive
properties.



Hilbert series

• The Cherednik Algebra is Z-graded, i.e.

H~,c = · · · ⊕ H−1 ⊕ H0 ⊕ H1 ⊕ · · · ,

where when x ∈ Am, y ∈ An, we have xy ∈ Am+n.

• The modules Mc and Lc inherit the grading from the H~,c .

• The Hilbert series of Lc is

∞
∑

i=0

(dim(Lc)i )t
i .

• The main goal of the project is to be able to compute Hilbert
series for all Lc(τ).



Why Positive Characteristic?

• The positive characteristic case has not been well-studied, one
of the reasons being the absence of general tools in dealing
with it.

• As with Lie Algebras, over positive characteristic the center of
a Cherednik Algebra becomes much larger. As a result, the
algebra, which is very large, ends up with finite dimensional
representations: Lc(τ) is finite dimensional and its Hilbert
series is thus finite.

• The representation theory of Sn becomes more complicated in
characteristic p ≤ n, making relating the Cherednik Algebras
to the combinatorial structure of their associated
representations a more interesting problem.



Previous Results

• Latour studied the Cherednik algebra for Z/l when p does not
divide l

• Katrina Evtimova studied the case when p does divide l under
the direction of Emanuel Stoica.

• Martina Balagovic and Harrison Chen studied the Cherednik
algebra for other groups such as GLn(Fq) and SLn(Fq)
They determined the Hilbert series for GLn(Fq) for τ trivial
and all q, n ≥ 2, also for GL2(Fq) and all τ

• Unlike these, we work with groups that are examples in char.
0 reduced mod p and higher rank



More Previous Results

Bezrukavnikov-Finkelberg-Ginzburg studied representations in the
context of algebraic geometry in characteristic p > n and used the
fact that there is a large center

Theorem (Gordon)

The Hilbert series for L(Sλ) when ~ = 0 and p does not divide n!:

n!
∏

s∈λ

1

h(s)

1− th(s)

1− t

s ranges over boxes in the diagram of λ and h(s) is the hook length

However, this does not work in the modular case: Gordon relied on
a certain algebraic variety being nonsingular, which fails for small p



Some of our Results

Theorem

For p > n, ~ = 1, c generic, G = (Z/m)n ⋊ Sn, λ an m-tuple of

partitions, the Hilbert series for L(Sλ) is

n!
∏

s∈λ

1

h(s)

1− tmph(s)

1− t

Theorem

For τ trivial, p divides n, ~ = 0, Hilbert series is 1−tp

1−t
and

generators of J are x1 − x2, x1 − x3, . . . , x1 − xn, x
p
n .

For τ trivial, ~ = 1, p = 2, and n even, Hilbert series is

(t + 1)n(t2 + 1)

n = 5 and p = 3 gives 1 + 4t + 9t2 + 15t3 + 16t4 + 11t5 + 4t6

(disproves conjecture that the quotients are always Gorenstein)



Some data

The data suggests the following formulas, which we are in the
process of proving:

• For n odd, p = 2, ~ = 1, c generic, the Hilbert series is

(t + 1)n(t6 + (n − 1)t4 + (n − 1)t2 + 1)

For ~ = 0,
t3 + (n − 1)t2 + (n − 1)t + 1

• When n = 2 (mod 3), p = 3, and ~ = 0 is

(1 + t)(1 + t + t2)(1 + (n − 3)t +

(

n − 2

2

)

t2 + (n − 1)t3)

• When n = 1 (mod 3), p = 3, and ~ = 0 is

(t2 + t + 1)(t2 + (n − 2)t + 1)

• These last three come from conjecture on subspace
arrangements on next slide



Subspace arrangements

• Let Xi be the set of all (x1, . . . , xn) such that some n − i of
the coordinates are equal.

• For n ≡ i (mod p) with 0 ≤ i ≤ p − 1 and ~ = 0, the data
suggests that Jc is generated by symmetric functions and the
ideal of Xi . Lc seems to be a complete intersection in Xi .

• We conjecture that Xi is a Cohen–Macaulay variety when
i < p and can prove this when i = 1. (Cohen–Macaulayness
fails in some cases when p ≤ i)

• We also see different subspace arrangements for the groups
G (m, r , n). This is interesting because it means that the ideal
Jc has alternative meaning which should be helpful.

• For the groups G (2, 2, n), we see coordinate subspaces, and
Cohen–Macaulayness follows from Stanley–Reisner theory



Further Research

• We are also working with special values of c ∈ Fp for ~ = 1,
in general we work with generic c

• We are beginning work on general G (m, r , n) (specifically
G (2, 1, n) and G (2, 2, n)). Eventually we will work on
exceptional groups.

• We also plan to work with nontrivial τ
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