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Abstract. The parallel chip-firing game is an automaton on graphs in
which vertices “fire” chips to their neighbors when they have enough
chips to do so. In this work we first characterize positions that repeat
every 2 turns. Using this we determine the eventual periods of games on
trees given only the total number of chips. We introduce the concepts of
motorized parallel chip-firing games and motor vertices, study the effects
of motors connected to a tree, and show that some motorized games can
be simulated by ordinary games. We end by proving the equivalence of
two conjectures: one restricts the firing pattern of a single vertex over
a period; the other restricts the set of vertices that fire at a single time
step. These conjectures, if shown to be true, would greatly simplify the
study of the parallel chip-firing game.

1. Introduction

Background. The parallel chip-firing game, also known as the candy-passing
game, is a solitaire game played on a graph in which vertices that have at
least as many chips as incident edges “fire” chips to their neighbors. It is
a specific case of the abelian sandpile model, which is a generalization of a
sandpile model introduced by Bak, Tang, and Weisenfeld [2, 3]. Bak, Tang,
and Weisenfeld’s model displays self-organized criticality : it is attracted to-
wards a critical state in which adding one grain of sand can cause large
avalanche-like reactions. The frequency of reactions of a given magnitude
is approximately inversely proportional to that magnitude (called a power
law), which gives the model scale-free properties. Self-organized critical-
ity is a property that appears in a wide variety of natural systems, from
earthquakes to traffic jams to the brain [1, 16].

The brain provides a particularly interesting example in that the mecha-
nism by which neurons fire bears some resemblance to the firing rule in the
abelian sandpile model. Neurons communicate by firing temporally-discrete
electrical impulses (“action potentials”) that are propagated to their neigh-
bors. The electrical firing of a neuron’s neighbors gradually increases the
electrical potential difference across the neuron’s membrane, until a thresh-
old membrane potential is exceeded, causing the neuron to fire [18]. Anal-
ogously, during each time step of the abelian sandpile model, a vertex that

1



2 ZIV SCULLY, YAN ZHANG, AND DAMIEN JIANG

has more particles than its critical threshold will “topple”, passing one par-
ticle to each of its neighbors. Both models appear to display self-organized
criticality [10, 16].

The graph of neuron connectivity displays the small world property: there
are many densely connected clusters of neurons, each cluster being sparsely
connected to other clusters [17]. In this paper we introduce a tool for an-
alyzing the parallel chip-firing game that, by simulating external signals,
may allow us to examine a game on a graph one cluster at a time, especially
when the connections between clusters are sparse.

The parallel chip-firing game has also been the object of study in computer
science; it is able to simulate any two-register machine and is thus universal
[7].

The Game. The parallel chip-firing game is played on a graph as follows:

• At first, a nonnegative integer number of chips is placed on each
vertex of the graph.
• The game then proceeds in discrete turns. Each turn, a vertex checks

to see if it has at least as many chips as incident edges.
– If so, that vertex fires.
– Otherwise, that vertex waits.

• To fire, a vertex passes one chip along each of its edges. All vertices
that fire in a particular turn do so in parallel.
• Immediately after firing or waiting, every vertex receives any chips

that were fired to it.

Here we will only consider games on finite, undirected, connected graphs,
though the definition of the game can be easily generalized for arbitrary
multidigraphs. An example game is illustrated in Figure 1. We represent a
parallel chip-firing game as σ, where the chip configuration at a particular
time t ∈ N is denoted σt.

2 02

0 4 0

2 21

1 1 1

0 22

0 3 1

1 30

0 3 1

1 01

0 4 2

n Waiting vertex
with n chips

n Firing vertex
with n chips

Edge

Taking a turn

Key

Figure 1. A parallel chip-firing game. From an initial po-
sition in the upper left the game eventually enters a period
of length 4.

The total number of chips on all vertices of the graph is constant through-
out a game, so there is a finite number of possible positions in every game.
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Therefore, every game eventually reaches a position σt that is identical to a
later position σt+p for some t, p ∈ N. (We write σt = σt+p.) The game is de-
terministic, so σt+n = σt+n+p for all n ∈ N. Thus, every parallel chip-firing
game is eventually periodic.

This gives rise to two questions. Firstly, what characteristics of a game
and its underlying graph determine the length of a period? It is known
exactly what periods are possible on certain classes of graphs, such as trees
[5], simple cycles [9], the complete graph [15], and the complete bipartite
graph [12]. Kiwi et al. [13] constructed graphs on which the period of games
can grow exponentially with polynomial increase in the number of vertices.
There are also results regarding the total number of chips in a game. Komin-
ers and Kominers [14] showed that games with a very large density of chips
must have period 1. Dall’Asta [9] and Levine [15], in their respective char-
acterizations of periods on cycles and complete graphs, related the total
number of chips to a game’s activity, the fraction of turns during which a
vertex fires. The activity, in turn, is closely tied to the period, which must
be divisible by the denominator of the activity.

Secondly, we notice that some, but not all, positions σt are periodic, with
σt = σt+p for some p. What characterizes periodic positions? This problem
has not been as extensively studied. Dall’Asta [9] characterized the periodic
positions of games on cycles.

Our results advance the understanding of both of these questions. In
Section 2 we precisely define the parallel chip-firing game, and in Section 3
we collect previous results that are used later on. In Section 4 we characterize
2-periodic positions, i.e. when σt = σt+2. Surprisingly, this allows us to show
that the total number of chips alone determines the eventual period of games
on trees.

The remainder of the paper develops a new tool for studying the chip-
firing game: motors, vertices that fire with a regular pattern independently
of normal chip-firing rules. Games with motors are called motorized games.
Motors allow us to study the behavior of subgraphs in ordinary parallel chip-
firing games. In Section 5 we show that in motorized games on trees, vertices
are always “following” a motor. We also prove that motorized games are
a subset of ordinary games, provided that the firing pattern of each motor
occurs in an ordinary game. In Section 6 we define “clumpy” firing patterns
that we conjecture cannot occur in ordinary games and prove that this is the
case for a subset of these patterns. Finally, in Section 7 we use motors to
show that games in which both the set of firing vertices and the set of waiting
vertices have an interior at some turn (not necessarily simultaneously) exist
iff a clumpy firing pattern can occur in some game.

2. Preliminaries

Definitions. A parallel chip-firing game σ on a graph G = (V (G), E(G)) is
a sequence (σt)t∈N of ordered tuples with natural number elements indexed
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by V (G). Each tuple represents the chip configuration at a particular turn
and each element of the tuple is the number of chips on the vertex. We
define the following for all v ∈ V (G):

N(v) = {w ∈ V (G) | {v, w} ∈ E(G)}
σt(v) = number of chips on v in position σt

F σt (v) =

{
0 if σt(v) ≤ deg(v)− 1

1 if σt(v) ≥ deg(v)

Φσ
t (v) =

∑
w∈N(v)

F σt (w).

In a parallel chip-firing game, σt induces σt+1. For all v ∈ V (G),

σt+1(v) = σt(v) + Φσ
t (v)− F σt (v) deg(v),

so it suffices to define a game on a given graph by its initial position σ0.
When F σt (v) = 0, we say v waits at t, and when F σt (v) = 1, we say v fires
at t.

A position σt is called periodic iff there exists p ∈ N such that σt = σt+p.
The minimum such p for which this occurs is the period of σ and is denoted
p(σ). Abusing notation slightly, “a period” of a game σ can also refer to a
set of times {t, t+1, . . . , t+p−1} where σt is periodic. A periodic position σt
is also called n-periodic, where n = p(σ). Because the game is deterministic
and there are a finite number of possible positions with a given number of
chips, for any game σ there exists t0 ∈ N such that σt is periodic for all
t ≥ t0. If the initial position σ0 of game σ is periodic, we may also say that
σ is periodic.

Notation. We use the following notation throughout the paper. Precise
definitions for invented notation are given in the section indicated in the
last column.

Parallel Chip-Firing Defined in

σt(v) The number of chips on vertex v in position
σt.

Section 2

F σt (v) Indicates whether or not vertex v fires in σt. Section 2

Φσ
t (v) The number of chips vertex v will receive in

position σt.
Section 2

δσt (v) The net gain of chips on vertex v from σ0
to σt. In an ordinary game, this is equal to
σt(v)− σ0(v).

Section 5
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T σf (v) The set of times for which a vertex v waits in
game σ (if f = 0) or the set of times for which
it fires (if f = 1).

Section 3

p(σ) The period of σ. Section 2

c(σ) The total number of chips in σ. Section 4

M(σ) The set of vertices that are motors in game σ.
(Motors are defined later.)

Section 5

Graphs

V (G), E(G) Vertex set and edge set of graph G, respec-
tively.

N(v) The neighbors of vertex v.

deg(v), degG(v) The degree of a vertex in graph G, which is
not indicated in the subscript if there is no
ambiguity.

Other

[a, b] The integer interval {a, a+ 1, . . . , b}.

3. Known Properties

Let σ be a game on graph G. We define T σf (v) = {t ∈ N | F σt (v) = f} for

all v ∈ V (G) and t ∈ N. For f = 0 this is the set of times at which v waits,
and for f = 1 this is the set of times at which v fires.

Lemma 3.1 ([12, Proposition 2.5]). During a period in a game on a con-
nected graph, every vertex fires the same number of times.

Lemma 3.2 ([5, Lemma 1]). Let σ be a game on G. For all v ∈ V (G)
and f = 0 or 1, if [a, b] ∈ T σf (v), then there exists w ∈ N(v) such that

[a− 1, b− 1] ∈ T σf (w).

Lemma 3.3 ([12, Lemma 2.3]). Let σ and σ be games on G. If σ0(v) =
2 deg(v)− 1− σ0(v) for all v ∈ V (G), then σt(v) = 2 deg(v)− 1− σt(v) for
all v ∈ V (G) and t ∈ N.

4. 2-Periodic Positions

Lemma 4.1. A position σ0 on graph G is 2-periodic iff for all v ∈ V (G),

deg(v) ≤ σ0(v) + Φσ
0 (v) ≤ 2 deg(v)− 1.
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Proof. Suppose the inequality is true for all v ∈ V (G). Choose any v ∈
V (G). If v waits on turn 0, then

σ1(v) = σ0(v) + Φσ
0 (v) ≥ deg(v),

so v fires on turn 1. If v instead fires on turn 0, then

σ1(v) = σ0(v) + Φσ
0 (v)− deg(v) ≤ deg(v)− 1,

so v waits on turn 1. Thus, each vertex fires exactly once during the first
two turns, so σ0 = σ2.

Suppose σ0 is 2-periodic and there exists v ∈ V (G) with σ0(v) + Φσ
0 (v) ≤

deg(v)− 1. We have σ0(v) ≤ deg(v)− 1 because Φσ
0 (v) ≥ 0, so

σ1(v) = σ0(v) + Φσ
0 (v) ≤ deg(v)− 1.

Therefore, v waits on turns 0 and 1. By Lemma 3.1, all vertices wait on
turns 0 and 1 as well, but then σ0 is 1-periodic, a contradiction.

Suppose σ0 is 2-perioidc and there exists v ∈ V (G) with σ0(v) + Φσ
0 (v) ≥

2 deg(v). We have σ0(v) ≥ deg(v) because Φσ
0 (v) ≤ deg(v), so

σ1(v) = σ0(v) + Φσ
0 (v)− deg(v) ≥ deg(v).

Therefore, v fires on turns 0 and 1 and σ0 is 1-periodic, a contradiction. �

Noting that a 1-periodic position can only occur if every vertex is waiting
or every vertex is firing and that the only periods possible in games on
trees are 1 and 2 [5], Lemma 4.1 completes the characterization of periodic
positions on trees.

Let c(σ) =
∑

v∈V (G) σt(v) for some t ∈ N be the total number of chips in

a game σ on G. Note that the choice of t is irrelevant because no chips are
ever gained or lost.

Lemma 4.2. Let σ be a game on G. If p(σ) = 1, then

c(σ) ≤ 2|E(G)| − |V (G)| or c(σ) ≥ 2|E(G)|.

Proof. The period of σ is 1 iff there is some t for which σt is 1-periodic,
which is the case iff all or none of the vertices are firing at t. In the first
case, σt(v) ≤ deg(v) for all v ∈ V (G). Summing these inequalities over all
vertices, we get ∑

v∈V (G)

σt(v) ≤
∑

v∈V (G)

(deg(v)− 1),

or c(σ) ≤ 2|E(G)| − |V (G)|. In the second case, σt(v) ≥ deg(v), and sum-
ming this over v ∈ V (G) gives us c(σ) ≥ 2|E(G)|. �

Lemma 4.3. Let σ be a game on G. If p(σ) = 2, then

|E(G)| ≤ c(σ) ≤ 3|E(G)| − |V (G)|.
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Proof. The approach is similar to that of Lemma 4.2. The period of σ is 2
iff there is some t for which σt is 2-periodic. By Lemma 4.1, a position σt
is 2-periodic only if deg(v) ≤ σt(v) + Φσ

t (v) ≤ 2 deg(v)− 1 for all v ∈ V (G).
Summing over all vertices gives us

2|E(G)| ≤ c(σ) +
∑

v∈V (G)

Φσ
t (v) ≤ 4|E(G)| − |V (G)|.

Note that σt+1 is also 2-periodic, which means

2|E(G)| ≤ c(σ) +
∑

v∈V (G)

Φσ
t+1(v) ≤ 4|E(G)| − |V (G)|.

Every vertex fires at exactly one of steps t and t+ 1, so Φσ
t (v) + Φσ

t+1(v) =
deg(v) for all v ∈ V (G). Adding the above inequalities yields

4|E(G)| ≤ 2c(σ) + 2|E(G)| ≤ 8|E(G)| − 2|V (G)|,

or |E(G)| ≤ c(σ) ≤ 3|E(G)| − |V (G)|. �

Theorem 4.4. Let σ be a game on a tree T . Then p(σ) = 2 iff

|E(T )| ≤ c(σ) ≤ 2|E(T )| − 1.

Proof. We apply Lemmas 4.2 and 4.3 to T . Note that |V (T )| = |E(T )|+ 1,
so the necessary conditions for having period 1 exactly complement the
necessary conditions for having period 2. Games on trees can only have
those period lengths [5], so the conditions are also sufficient.1 �

5. Motors

Let G be a graph. Suppose we wish to study the periodic behavior of
games on G, focusing on a particular subgraph H ⊆ G. Consider

X = {v ∈ V (G) \ V (H) | N(v) ∩ V (H) 6= ∅},

the set of vertices “just outside” of H. Knowing the initial chip configuration
on V (H) ∪ X is in general not enough to determine all subsequent config-
urations because vertices in X may have interactions with vertices outside
of V (H) ∪ X. However, we do know that every vertex assumes a pattern
of firing and waiting that repeats periodically as soon as a game reaches
a periodic position. Therefore, we can simulate the presence of the rest of
G by having each vertex in X fire with a regular pattern regardless of the
number of chips it receives.

1We are aware of an alternative proof that makes use of [6, Lemma 2.3], which states that
a chip-firing game on G terminates (i.e. no vertex can fire) if it has less than E(G) chips.
By applying Lemma 3.3 we find that the period of a game is 1 with every vertex firing if
it has more than 3E(G) − V (G) chips. It was shown in [14] that if σt0(v) ≥ 2 deg(v) for
some t0 ∈ N, then σt(v) ≥ 2 deg(v) for all t ∈ [0, t0 − 1], so this is also the case if using
Lemma 3.3 is impossible. From these facts Theorem 4.4 follows easily. However, we think
the argument given may be useful in other contexts.
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Let σ be a game on G. We define δσt (v) =
∑t−1

i=0(Φσ
i (v) − F σi (v) deg(v))

for all v ∈ V (G) and t ∈ N to be the net flux of chips into v over the time
interval [0, t− 1].

A periodic firing pattern of v ∈ V (G) is a sequence (F σt (v))t∈[t0,∞) such
that F σt (v) = F σt+p(σ)(v) for all t ∈ [t0,∞). (For brevity, the “periodic” is

often omitted.)
A motorized game on G is a game σ with a non-empty set M(σ) ⊆ V (G).

Call each m ∈M(σ) a motor. We associate a periodic firing pattern starting
from t0 = 0 with each motor, which the motor follows without regard to
normal chip-firing rules. Motors have no chip count; they destroy all chips
they receive and create new chips whenever they fire. See Figure 2 for an
example. Motorized games σ on G have the requirement that {δσt (v) | t ∈ N}
be bounded for all v ∈ V (G). The values c(σ) and σt(m) are undefined for
motorized games σ for all m ∈M(σ) and t ∈ N. The term “ordinary game”
refers to a game with no motors when there is ambiguity.

2
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Figure 2. A motorized parallel chip-firing game. The motor
has firing pattern (1, 0, 0, 0, 0, 1, 0, 0, 0, 0, . . . ).

Call an interval [a, b] with a < b a clump of v ∈ V (G) iff for f = 0 or 1,
[a, b] ∈ T σf (v) and F σa−1(v) = F σb+1(v) = 1 − f . Given v ∈ V (G), we can
express N as the union of clumps of v and times during which v alternates
between firing and waiting.

In the following two theorems we consider periodic motorized games on
trees. In particular, this means that we may go arbitrarily far back in time
because given a periodic position there is a unique periodic position that
can precede it.
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Theorem 5.1. Let σ be a periodic motorized game on tree T . For all
v ∈ V (T ), if [a, b] ∈ T σf (v) and a < b, then [a− d, b− d] ∈ T σf (m) for some

m ∈M(σ), where d is the distance from m to v.

Proof. Let v0 = v and let [a0, b0] ⊇ [a, b] be a clump of v0. By Lemma
3.2, given a vertex vi−1 6∈ M(σ) with [ai−1, bi−1] ∈ T σf (vi−1), we can pick a

vertex vi ∈ N(vi−1) and integers ai and bi such that [ai, bi] is a clump of vi
and [ai−1−1, bi−1−1] ⊆ [ai, bi] ⊆ T σf (vi). If there is a maximum i for which

such a vi exists, that vi must be a motor, which would mean [a− d, b− d] ⊆
[ad, bd] ⊆ T σf (m), where d is the maximum i and m = vd ∈ M(σ). Thus, it
suffices to show that there are finitely many vi.

Suppose that vi = vi−2. Then [ai, bi] ∪ [ai−2, bi−2] ⊆ T σf (vi). But [ai−2 −
2, bi−2 − 2] ⊆ [ai, bi], so [ai−2 − 2, bi−2] ⊆ T σf (vi). Therefore, [ai−2, bi−2] is
not a clump, a contradiction, so vi 6= vi−2 for all i. Because T has no cycles,
the vi are distinct, so there are finitely many vi. �

Call a firing pattern clumpy if it contains two consecutive 0s and two
consecutive 1s; otherwise, call it nonclumpy.

Corollary 5.2. Let σ be a periodic motorized game on tree t with M(σ) =
{m}. If m has a nonclumpy firing pattern but has at least one clump, then
F σt+d(v) = F σt (m) for all v ∈ V (T ) and t ∈ N, where d is the distance from
v to m.

Proof. Let v ∈ V (T ). By Theorem 5.1, v has a nonclumpy firing pattern
because m does. By Lemma 3.1, v must have at least one clump, again
because m does. For every clump [a, b] ⊆ T σf (v), [a−d, b−d] ⊆ T σf (m), where
f = 0 or 1. The non-clump intervals of v’s firing pattern are alternations
between 0 and 1, starting and ending with 1− f . The same must be true of
m because it is nonclumpy and fires the same number of times each period
as v. �

We call a firing pattern (ft)t∈[t0,∞) possible if there exists an ordinary
periodic game σ on some graph G such that F σt (v) = ft0+t for all t ∈ N. Our
next theorem states that we can simulate motorized games with ordinary
games as long as every motor’s firing pattern is possible. Figure 3 shows an
example.

Theorem 5.3. Let σ be a motorized game on G with σ0 periodic. If every
motor’s firing pattern is possible, then there exists an ordinary game σ′ on
graph H ⊇ G such that degH(u) = degG(u) for all u ∈ V (G) \M(σ) and

F σ
′

t (v) = F σt (v) for all t ∈ N and v ∈ V (G). In addition, H contains no
paths between distinct vertices of G that are not also in G.

Proof. For each m ∈M(σ), let Am be a graph such that there exists a game
σm and some vertex um ∈ V (Am) such that for all t, F σ

m

t (um) = F σt (m). Let
am and bm be the minimum and maximum respectively of {δσt (m) | t ∈ N}.
Let km = bm− am + 1. Let H be the union of G and km copies of each Am,
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G

Figure 3. The motor in motorized game (b) has firing pat-
tern (0, 0, 0, 0, 1, 0, 0, 0, . . . ). This firing pattern is possible
because it occurs in ordinary game (a). By using sufficiently
many copies of (a) and carefully choosing n, we construct
(c). The behavior of G in (c) is identical to the behavior of
G in (b).

with G and the Am copies disjoint except for m = um for each m ∈ M(σ).
It is clear by construction that H contains no new paths between distinct
vertices of G and that

• degH(m) = km degAm
(m) + degG(m) for all m ∈M(σ).

• degH(u) = degAm
(u) for all u ∈ V (Am) \ {m}.

• degH(v) = degG(v) for all v ∈ V (G) \M(σ).

Suppose that for some t ∈ N, σ′t satisfies the following:

(1) σ′t(m) = kmσ
m
t (m) + degG(m) + δσt (m)− am for all m ∈M(σ).

(2) σ′t(u) = σmt (u) for all u ∈ V (Am) \ {m}.
(3) σ′t(v) = σt(v) for all v ∈ V (G) \M(σ).

We will show that σ′t+1 satisfies the above as well. We have degH(v) =

degG(v) for all v ∈ V (G) \M(σ), so F σ
′

t (v) = F σt (v). Similarly, F σ
′

t (u) =
F σ

m

t (u) for all u ∈ V (Am) \ {m} for some m ∈ M(σ). Finally, for all
m ∈M(σ),

F σ
m

t (m) = 0 =⇒
σ′t(m) ≤ km(degAm

(m)− 1) + degG(m) + δσt (m)− am
= km degAm

(m) + degG(m) + δσt (m)− bm − 1

≤ degH(m)− 1,
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and

F σ
m

t (m) = 1 =⇒
σ′t(m) ≥ km degAm

(m) + degG(m) + δσt (m)− am
≥ degH(m),

so F σ
′

t (m) = F σ
m

t (m) = F σt (m).

We know F σ
′

t (v) = F σt (v) for all v ∈ V (H), so clearly σ′t+1(v) = σt+1(v)
for all v ∈ V (G) \M(σ) and σ′t+1(u) = σmt+1(u) for all u ∈ V (Am) \ {m} for
all m ∈M(σ). We have

σ′t+1(m) = kmσ
m
t (m) + degG(m) + δσt (m)− am + Φσ′

t (v)− F σ′
t (v) degH(v)

= kmσ
m
t (m) + degG(m) + δσt (m)− am + Φσ

t (v)− F σt (v) degG(v) +

kmΦσm

t (v)− kmF σ
m

t (v) degAm
(v)

= km(σmt (m) + Φσm

t (v)− F σ′
t (v) degAm

(v)) + degG(m) +

(δσt (m) + Φσ
t (v)− F σt (v) degG(v))− am

= kmσ
m
t+1(m) + degG(m) + δσt+1(m)− am.

for all m ∈M(σ).
We construct σ′0 such that it satisfies (1), (2), and (3). By induction, for

all t ∈ N, σ′t also satisfies (1), (2), and (3), which means that F σ
′

t (v) = F σt (v)
for all v ∈ V (G). �

6. Clumpy Firing Patterns

In this section we take 0 and 1 to represent the boolean values false and
true, respectively. If B is a boolean value, then “B = 1”, “B is true”, and
simply “B” are equivalent, as are “B = 0”, “B is false”, and “not B”.

Recall that a firing pattern is clumpy iff it contains two consecutive 0s
and two consecutive 1s.

Conjecture 6.1 (Nonclumpiness conjecture). No vertex can have a clumpy
periodic firing pattern in an ordinary parallel chip-firing game.

In particular, it appears that vertices with clumpy periodic firing patterns
need more “support” from some of their neighbors than they are able to
supply to their other neighbors. The following lemma demonstrates why
this would make clumpy periodic firing patterns impossible.

Lemma 6.2. Let G be a graph, P : V (G) → {0, 1} be a property, and
Q : V (G)2 → {0, 1} and R : V (G)2 → {0, 1} be relations such that:

(1) For all {v, w} ∈ E(G), P (v) ∧ P (w) ∧Q(v, w) =⇒ R(w, v).
(2) For all v ∈ V (G),

P (v) =⇒ |{w ∈ N(v) | P (w)∧Q(v, w)}| > |{w ∈ N(v) | P (w)∧R(v, w)}|.

Then P (v) is false for all v ∈ V (G).
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Proof. Let S = {v ∈ V (G) | P (v)} and S(v) = S ∩N(v). Consider

n =
∑
v∈S

∑
w∈S(v)

(Q(v, w)−R(v, w)).

By (1), n ≤ 0, but by (2), n > 0 if S is nonempty, so P (v) is false for all
v ∈ V (G). �

We can think of Q(v, w) as meaning “w helps v satisfy P” and R(v, w)
as meaning “w hurts v in satisfying P”. From Lemma 6.2 we can prove a
special case of the nonclumpiness conjecture.

Theorem 6.3. Given game σ on G, all v ∈ V (G) there are no t, k ∈ N such
that σt is periodic, 1 ≤ k ≤ p(σ)− 1, and T σ0 (v)∩ [t, t+ p(σ)− 1] = [t, t+ k].

Proof. Without loss of generality, let σ0 be periodic. Let

Zv(t, k) =

{
1 if 1 ≤ k ≤ p(σ)− 3 and T σ0 (v) ∩ [t, t+ p(σ)− 1] = [t, t+ k]

0 otherwise

P (v) =

{
1 if there exist t, k ∈ N such that Zv(t, k) is true

0 otherwise

Q(v, w) =

{
1 if

∑p(σ)−1
i=0 F σi (w)(1− F σi+1(v)) = 0

0 otherwise

R(v, w) =

{
1 if

∑p(σ)−1
i=0 F σi (w)(1− F σi+1(v)) ≥ 2

0 otherwise.

Suppose that for some v, w ∈ V (G), P (v), P (w), and Q(v, w) are true.
This is the case iff there exist t, k ∈ N such that Zv(t+1, k+1) and Zw(t, k)
are true. Therefore, F σt−1(v) = F σt (v) = 1 and F σt (w) = F σt+1(v) = 0, so

F σt−1(v)(1− F σt (w)) + F σt (v)(1− F σt+1(w)) = 2,

which implies R(w, v). (Note σt−1 is well defined as the unique periodic
position that leads to σt.)

Suppose that Zv(t, k) is true for some v ∈ V (G) and t, k ∈ N. We know

deg(v)− 1 ≥ σt+k(v)

= σt−1(v)− F σt−1(v) deg(v) +
t+k−1∑
i=t−1

Φσ
i (v)

≥
t+k−1∑
i=t−1

Φσ
i (v).
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Let ni = |{w ∈ N(v) | |T σ1 (w) ∩ [t− 1, t+ k − 1]| = i}| for all i ∈ N. Then

∞∑
i=0

ni − 1 = deg(v)− 1 ≥
t+k−1∑
i=t−1

Φσ
i (v) =

∞∑
i=0

ini

|{w ∈ N(v) | Q(v, w)}| = n0 >
∞∑
i=2

(i− 1)ni ≥ |{w ∈ N(v) | R(v, w)}|.

Because Zv(t, k) ∧Q(v, w) =⇒ Zw(t− 1, k) for all w ∈ V (G), we have

|{w ∈ N(v) | P (w) ∧Q(v, w)}| > |{w ∈ N(v) | P (w) ∧R(v, w)}|.
By Lemma 6.2, P (v) is false for all v ∈ V (G). �

7. Interior of Firing and Waiting Sets of Vertices

Let G be a graph and U ⊆ V (G). The set {v ∈ U | N(v) ⊆ U} is the
interior of U .

Conjecture 7.1 (Single interior conjecture). Given game σ on G with pe-

riodic σ0, for all t ∈ N and f = 0 or 1 let W f
t = {v ∈ V (G) | F σt (v) = f}.

There exists f = 0 or 1 such that the interior of W f
t is empty for all t ∈ N.

Theorem 7.2. The nonclumpiness conjecture (Conjecture 6.1) is equivalent
to the single interior conjecture (Conjecture 7.1).

Proof. Suppose that the single interior conjecture is false. Then there exist
v0, v1 ∈ V (G) and t0, t1 ∈ N such that

F σt0(v0) = 0 F σt1(v1) = 1

Φσ
t0(v0) = 0 Φσ

t1(v1) = deg(v1).

This means that v0 will wait twice in a row and v1 will fire twice in a row.
By Lemma 3.1, either v0 fires at least half the time or v1 waits at least half
the time, so at least one of v0 and v1 will both wait twice in a row and fire
twice in a row, a counterexample to the nonclumpiness conjecture.

Suppose that the nonclumpiness conjecture is false. Consider a motorized
game σ on the two-vertex path graph G = ({l,m}, {{l,m}}) with M(σ) =
{m}. Suppose further that m has a clumpy periodic firing pattern. For all
t ∈ N and f = 0 or 1, if F σt (m) = F σt+1(m) = f then F σt+1(l) = f , so l is in
the interior of either the waiting or firing vertex set. By Theorem 5.3, there
is a supergraph of G which preserves the degree of l such that this situation
occurs in an ordinary game, which is a counterexample to the single interior
conjecture. �

8. Discussion and Directions for Future Work

We have characterized 2-periodic positions and applied the characteriza-
tion to prove that the total number of chips in a game on a tree determines
the eventual period. We have introduced motors, studied motorized games
on trees, and shown that motor-like behavior can be constructed in ordinary
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games. Finally, we have proposed the nonclumpiness conjecture, proven a
special case of it, and shown it to be equivalent to another conjecture.

Motors allow the simulation of some aspects of the dollar game, a variant
of the general chip-firing game discussed by Biggs [4]. In the dollar game,
exactly one vertex, the “government”, may have a negative number of chips
and fires iff no other vertices can fire. We can construct a corresponding
motorized parallel chip-firing game in which we replace the government with
a motor that waits a sufficiently large number of steps between each firing
such that it never fires in the same step as another vertex. Biggs showed that
every dollar game tends towards a critical position regardless of the order of
vertex firings; therefore, this particular motorized parallel chip-firing game
also tends towards the same critical position. Motors may help reveal the
extent to which the parallel chip-firing game can simulate additional aspects
of the dollar game and other general chip-firing games.

The nonclumpiness conjecture will be the focus of further research. If
it remains unproven, it may be helpful to study its implications or study a
modified parallel chip-firing game in which clumpy firing patterns are simply
disallowed. Corollary 5.2 would likely restrict without loss of generality the
graphs necessary to consider when studying such games to those with no
leaves.

The primary attraction of the nonclumpiness conjecture is its potential to
reduce the game to one of interacting “gliders”. For example, consider the
situation in Corollary 5.2. (See Figure 4.) Intuitively, we can think of this
corollary as stating that whenever a sparse motor attached to a tree fires in
a periodic position, it creates a wave of gliders that travels away from the
motor. Each glider in this example consists of a head vertex h with deg(h)
chips and a tail vertex with 0 chips. Every non-glider vertex v has deg(v)−1
chips. The fact that the gliders have to be synchronized in terms of their
distances from the motor characterizes the possible periodic positions on a
motorized tree, provided the motor is sparse. However, when a motor with
a clumpy periodic firing pattern is permitted, gliders no longer suffice to
describe the dynamics.

There is certainly a duality between firing patterns (which are cross sec-
tions of an entire game in space) and positions (which are cross sections in
time), if only because the game is deterministic. Theorem 7.1 is perhaps a
step towards characterizing that duality; the situation described in the sin-
gle interior conjecture can be thought of as “spatially clumpy”. A specific
case of this duality was investigated by Dall’Asta, who showed that every
period of length greater than 2 on a cycle can be described by gliders [9].
(See Figure 5.)

It is not clear whether the method employed in Lemma 4.1 to characterize
2-periodic positions will be readily generalizable to characterize n-periodic
positions for n ≥ 3. However, we may be able to make progress by consid-
ering periodic positions on motorized trees. It might be possible to “stitch
together” more complicated graphs from trees. We hope that motors prove
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Figure 5. A game on a 6-cycle in which a glider orbits once
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to be a useful tool for determining the conditions under which particular
period lengths are possible and for characterizing periodic positions.
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