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Abstract

The relationship between the golden ratio and continued fractions
is commonly known about throughout the mathematical world: the
convergents of the continued fraction are the ratios of consecutive
Fibonacci numbers. The continued fractions for the powers of the
golden ratio also exhibit an interesting relationship with the Lucas
numbers.

In this paper, we study the silver means and introduce the bronze
means, which are generalizations of the golden ratio. We correspond-
ingly introduce the silver and bronze Fibonacci and Lucas numbers,
and we prove the relationship between the convergents of the contin-
ued fractions of the powers of the silver and bronze means and the
silver and bronze Fibonacci and Lucas numbers. We further general-
ize this to the Lucas constants, a two-parameter generalization of the
golden ratio.

1 Introduction

The golden ratio exhibits an interesting relationship with continued frac-
tions. We can summarize this relationship in three already known properties.
Firstly, the nth convergent of the golden ratio is Fn+1

Fn
.[1] Secondly, the con-

tinued fraction of the nth power of the golden ratio is {Ln;Ln} for odd n and

{Ln−1; 1, Ln − 2} for even n.[3] Finally, the convergents of the powers of the
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golden ratio can be expressed as
Fa(n+1)

Fan
. In this paper, we will generalize the

golden ratio to a group of constants and see that corresponding properties
hold.

In Section 2, we will define old and new terms and list known proper-
ties. In Section 3, we will prove the three properties, which constitute the
relationship between the golden ratio and continued fractions. In Section 4,
we generalize this to the silver means, whose continued fractions are {m;m},
analogous to the golden ratio’s {1; 1}. To complete the generalization, not
only must we generalize the Fibonacci and Lucas numbers to two families
of series we will call the silver Fibonacci and Lucas numbers, but we need
to also define the bronze means and the associated bronze Fibonacci and
Lucas numbers. We will find that the three properties which were true of
the golden ratio also hold for the silver and bronze means. In Section 5,
we will go even further to a two-parameter generalization of these proper-
ties. The Lucas sequences are a family of sequences, of which the silver and
bronze Fibonacci and Lucas numbers are a subset. When we define the Lucas
constants, constants associated with a Lucas sequence and analogous to the
silver and bronze means, we see that they obey one of the properties. The
other two, however, only certain Lucas constants obey. We will discuss the
nature of the continued fractions of the Lucas constants and for which Lucas
constants these properties hold. Though we will find certain cases for which
these properties hold, the search for an all-encompassing case will be left to
further research.

2 Definitions and Properties

2.1 Old Definitions

A continued fraction is a form of representing a number by nested fractions,
all of whose numerators are 1. For instance, the continued fraction for 9

7

is 1 +
1

3 +
1

2

. The compact notation for this continued fraction is {1; 3, 2}.

(Note a semicolon follows the first term, while commas follow the others.)
The continued fraction of a number is finite if and only if that number is
rational.
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A quadratic irrational or quadratic surd is a number that is the solution
to some quadratic equation with rational coefficients. The continued frac-
tion of a number is periodic, meaning it has a repeating block, if and only if
that number is a quadratic irrational. The repeating block of a periodic con-
tinued fraction is denoted by a vinculum (a horizontal line above the block).

A reduced surd is a quadratic surd which is greater than 1 and whose con-
jugate is greater than −1 and less than 0. Galois proved that the continued
fraction of a number is purely periodic, meaning it begins with its repeating
block, if and only if that number is a reduced surd. He also proved that the
repeating block of a reduced surd is the mirror image of the repeating block of
the negative reciprocal of its conjugate, which must also be a reduced surd.[2]

A convergent is the truncation of a continued fraction. For example, the
second convergent of {3; 2, 5, 6, 8} would be {3; 2}.

The Fibonacci numbers (Fn) are a sequence defined by the recurrence Fn+2 =
Fn+1 + Fn, where F0 = 0 and F1 = 1.

The Lucas numbers (Ln) are a sequence defined by the recurrence Ln+2 =
Ln+1 + Ln, where L0 = 2 and L1 = 1.

The golden ratio (φ) is 1+
√
5

2
.

The silver means (Sm) are m+
√
m2+4
2

. The silver means are analogues to
the golden ratio, as S1 = φ.

The Lucas sequences are a family of sequences, consisting of two paired
types of sequences. The U-series (Un(P,Q) or simply Un) is defined by
the recurrence Un+2 = PUn+1 − QUn, where U0 = 0 and U1 = 1. The V-
series (Vn(P,Q) or Vn) is defined by the recurrence Vn+2 = PVn+1 − QVn,
where V0 = 2 and V1 = P . The Lucas sequences are a generalization of the
Fibonacci and Lucas nubmers, as Un(1,−1) = Fn and Vn(1,−1) = Ln.

2.2 New Definitions

The silver Fibonacci numbers (Fm,n) are a family of sequences defined by the
recurrence Fm,n+2 = mFm,n+1 + Fm,n, where Fm,0 = 0 and Fm,1 = 1. The
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silver Fibonacci numbers are a generalization of the Fibonacci numbers, as
F1,n = Fn.

The silver Lucas numbers (Lm,n) are a family of sequences defined by the
recurrence Lm,n+2 = mLm,n+1 + Lm,n, where Lm,0 = 2 and Lm,1 = m. The
silver Lucas numbers are a generalization of the Lucas numbers, as L1,n = Ln.

The bronze Fibonacci numbers (fm,n) are a family of sequences defined by
the recurrence fm,n+2 = mfm,n+1 − fm,n, where fm,0 = 0 and fm,1 = 1.

The bronze Lucas numbers (lm,n) are a family of sequence defined by the
recurrence lm,n+2 = mlm,n+1 − lm,n, where lm,0 = 2 and lm,1 = m.

The bronze means (Bm) are m+
√
m2−4
2

.

The Lucas constants (C(P,Q) or C) are defined as
P+
√
P 2−4Q
2

. The Lucas
constants are analogues to the golden ratio, as C(1,−1) = φ and generaliza-
tions of the silver and bronze means, as C(m,−1) = Sm and C(m, 1) = Bm.
A Lucas constant is degenerate if P 2 − 4Q is a perfect square.

2.3 Known Properties

These are a few known properties of the Fibonacci and Lucas numbers and
the golden ratio that will be used later on.

• Ln = Fn+1 + Fn−1 = 2Fn+1 − Fn.

• F 2
n − Fn+1Fn−1 = (−1)n−1.

• The continued fraction for the golden ratio is {1; 1}.

• φn+2 = φn+1 + φn.

• φn = Ln+Fn
√
5

2
.

• φφ = −1.

• Fn = φn−φn√
5

.
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3 The Golden Ratio and Continued Fractions

The relationship between the golden ratio and continued fractions can be
encompassed in three properties. The first, which is commonly known, relates
the convergents of the golden ratio to the Fibonacci numbers.[1] The second,
which is known, but not as commonly, relates the powers of the golden ratio
to the Lucas numbers.[3] The final property pertains to the convergents of
the powers of the golden ratio.

3.1 The Convergents of the Golden Ratio

Theorem 3.1. The nth convergent of the golden ratio is Fn+1

Fn
.

Proof. We can easily prove this by induction. Clearly, this works for the
case n = 1, as the 1st convergent is 1, and F2

F1
= 1

1
= 1. Assuming the nth

convergent is Fn+1

Fn
, the n+1th convergent is 1+ 1

Fn+1
Fn

= 1+ Fn
Fn+1

= Fn+1+Fn
Fn+1

=

Fn+2

Fn+1
.

3.2 The Powers of the Golden Ratio

Theorem 3.2. The continued fraction for φn is {Ln;Ln} if n is odd. The
continued fraction for φn is {Ln − 1; 1, Ln − 2} if n is even.

Proof. Let x = {Ln;Ln} and assume n is odd.

x = Ln +
1

x
=⇒ x2 − Lnx− 1 = 0 =⇒ x =

Ln +
√
L2
n + 4

2

=
Ln +

√
(2Fn+1 − Fn)2 + 4

2
=
Ln +

√
4F 2

n+1 − 4Fn+1Fn + F 2
n + 4

2

=
Ln +

√
4Fn+1Fn−1 + F 2

n + 4

2
=
Ln +

√
4(Fn+1Fn−1 − (−1)n) + F 2

n

2

=
Ln +

√
4F 2

n + F 2
n

2
=
Ln + Fn

√
5

2
= φn.
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Now let x = {Ln − 1; 1, Ln − 2} and assume n is even.

x = Ln − 1 +
1

1 +
1

x− 1

= Ln − 1 +
x− 1

x
= Ln −

1

x
=⇒ x2 − Lnx+ 1 = 0

=⇒ x =
Ln +

√
L2
n − 4

2
=
Ln +

√
(2Fn+1 − Fn)2 − 4

2

=
Ln +

√
4F 2

n+1 − 4Fn+1Fn + F 2
n − 4

2
=
Ln +

√
4Fn+1Fn−1 + F 2

n − 4

2

=
Ln +

√
4(Fn+1Fn−1 − (−1)n) + F 2

n

2
=
Ln +

√
4F 2

n + F 2
n

2
=
Ln + Fn

√
5

2
= φn.

3.3 The Convergents of the Powers of the Golden Ra-
tio

Lemma 3.1. Fa(n+2) = LaFa(n+1) + Fan, when a is odd.

Proof. Let gn follow the proposed recurrence, that is let gn+2 = Lagn+1 + gn,

and g0 = 0 and g1 = 1. Let G =
∞∑
n=0

gnx
n. Then,

G = LaxG+ x2G+ x =⇒ G(1− Lax− x2) = x =⇒ G =
x

1− Lax− x2
.

By solving the denominator, we find its roots are
−La±
√
L2
a−4

2
, which by sim-

ilar methods as the one used in the first part of the previous proof, are equal
to −φa and −φa.

G = − x

(φ
a

+ x)(φa + x)
=

φ
a

φ
a
+x
− φa

φa+x

Fa
√

5
=

1
1+ x

φ
a
− 1

1+ x
φa

Fa
√

5
=

1
1−φax −

1
1−φax

Fa
√

5

=⇒ gn =
φan − φan

Fa
√

5
=
Fan
Fa

.

Since Fan
Fa

satisfies the recurrence, it follows that Fan would as well.
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Lemma 3.2. Fa(n+2) = LaFa(n+1) − Fan, when a is even.

Proof. Let gn follow the proposed recurrence, that is let gn+2 = Lagn+1− gn,

and g0 = 0 and g1 = 1. Let G =
∞∑
n=0

gnx
n. Then,

G = LaxG− x2G+ x =⇒ G(1− Lax+ x2) = x =⇒ G =
x

1− Lax+ x2
.

By solving the denominator, we find its roots are
La±
√
L2
a+4

2
, which are equal

to φ
a

and φa.

G =
x

(φ
a − x)(φa − x)

=

φ
a

φ
a−x −

φa

φa−x

Fa
√

5
=

1
1− x

φ
a
− 1

1− x
φa

Fa
√

5
=

1
1−φax −

1
1−φax

Fa
√

5

=⇒ gn =
φan − φan

Fa
√

5
=
Fan
Fa

.

Since Fan
Fa

satisfies the recurrence, it follows that Fan would as well.

Theorem 3.3. The nth convergent of φa is
Fa(n+1)

Fan
, if a is odd, and the 2nth

convergent of φa is
Fa(n+1)

Fan
, if a is even.

Proof. We can easily prove this by induction. For odd a, the case of n = 1
yields F2a

Fa
= La, which is the first convergent of φa = {La;La}. Assuming the

nth convergent is
Fa(n+1)

Fan
, the n+1th convergent is La+ 1

Fa(n+1)
Fan

= La+ Fan
Fa(n+1)

=

LaFa(n+1)+Fan

Fa(n+1)
=

Fa(n+2)

Fa(n+1)
. For even a, the case of n = 1 yields F2a

Fa
= La, which

is the second convergent of φa = {La − 1; 1, La − 2}. Assuming the 2nth

convergent is
Fa(n+1)

Fan
, the 2n + 2th convergent is La − 1 +

1

1 + 1
Fa(n+1)
Fan

−1

=

La−1+
1

1 + Fan
Fa(n+1)−Fan

= La−1+
Fa(n+1)−Fan
Fa(n+1)

=
LaFa(n+1)−Fa(n+1)+Fa(n+1)−Fan

Fa(n+1)
=

LaFa(n+1)−Fan
Fa(n+1)

=
Fa(n+2)

Fa(n+1)
.
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4 The Silver and Bronze Means

The properties we have found that relate the golden ratio and continued
fractions can be generalized to a family of similar numbers, known as the
silver means.[4] As the continued fraction of the golden ratio is {1; 1}, the
continued fractions of the silver means are {m;m}. As the Fibonacci and
Lucas numbers are related to the golden ratio, the families of sequences we
will call the silver Fibonacci numbers and silver Lucas numbers are related
to the golden ratio similarly. To complete the generalization, we must also
define another family of constants and another two families of sequences, we
will call the bronze means and the bronze Fibonacci and Lucas numbers.
With these terms defined, we can generalize theorems 3.1, 3.2, and 3.3.

4.1 Lemmas Pertaining to the Silver and Bronze Means

We will begin by stating lemmas analogous to the known properties listed in
Section 2.3.

Lemma 4.1. Lm,n = Fm,n+1 +Fm,n−1 = 2Fm,n+1−mFm,n. Similarly, lm,n =
fm,n+1 − fm,n−1 = 2fm,n+1 −mfm,n.

Proof. As both sides of each equation share the same recurrence, we need
only show that the cases for n = 1 and n = 2 work.

Fm,2 + Fm,0 = m+ 0 = Lm,1.

fm,2 − fm,0 = m− 0 = lm,1.

Fm,3 + Fm,1 = m2 + 1 + 1 = m2 + 2 = Lm,2.

fm,3 − fm,1 = m2 − 1− 1 = m2 − 2 = lm,2.

Lemma 4.2. F 2
m,n−Fm,n+1Fm,n−1 = (−1)n−1. Similarly, f 2

m,n−fm,n+1fm,n−1 =
1.

Proof. We can prove this by induction. This works for the case n = 1, as
F 2
m,1−Fm,2Fm,0 = 1− 0 = (−1)0 and f 2

m,1− fm,2fm,0 = 1− 0 = 1. Assuming
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the property is true for n, we get

F 2
m,n+1 − Fm,n+2Fm,n = F 2

m,n+1 − Fm,n(mFm,n+1 + Fm,n)

= F 2
m,n+1 −mFm,n+1Fm,n − F 2

m,n

= Fm,n+1(Fm,n+1 −mFm,n)− F 2
m,n

= Fm,n+1Fm,n−1 − F 2
m,n = −(−1)n−1 = (−1)n.

f 2
m,n+1 − fm,n+2fm,n = f 2

m,n+1 − fm,n(mfm,n+1 − fm,n)

= f 2
m,n+1 −mfm,n+1fm,n + f 2

m,n

= fm,n+1(fm,n+1 −mfm,n) + f 2
m,n

= f 2
m,n − fm,n+1fm,n−1 = 1.

Lemma 4.3. The continued fractions for the silver means are {m;m}. The
continued fractions for the bronze means are {m− 1; 1,m− 2}.

Proof. Let x = {m;m}.

x = m+
1

x
=⇒ x2 −mx− 1 = 0 =⇒ x =

m+
√
m2 + 4

2
= Sm.

Now let x = {m− 1; 1,m− 2}.

x = m− 1 +
1

1 + 1
x−1

= m− 1 +
x− 1

x
= m− 1

x
=⇒ x2 −mx+ 1 = 0

=⇒ x =
m+

√
m2 − 4

2
= Bm.

Lemma 4.4. Sn+2
m = mSn+1

m + Snm. Similarly, Bn+2
m = mBn+1

m −Bn
m.

Proof. It is clear from the definition of the silver and bronze means that
S2
m = mSm + 1 and B2

m = mBm − 1, so by multiplying the equations by Snm
and Bn

m respectively, it follows quite simply that Sn+2
m = mSn+1

m + Snm and
Bn+2
m = mBn+1

m −Bn
m.
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Lemma 4.5. Snm = Lm,n+Fm,n
√
m2+4

2
. Similarly, Bn

m = lm,n+fm,n
√
m2−4

2
.

Proof. As both sides of each equation share the same recurrence, we need
only show that the cases for n = 0 and n = 1 work.

Lm,0 + Fm,0
√
m2 + 4

2
=

2 + 0 ·
√
m2 + 4

2
= 1 = S0

m.

Lm,1 + Fm,1
√
m2 + 4

2
=
m+ 1 ·

√
m2 + 4

2
= S1

m.

lm,0 + fm,0
√
m2 − 4

2
=

2 + 0 ·
√
m2 − 4

2
= 1 = B0

m.

lm,1 + fm,1
√
m2 − 4

2
=
m+ 1 ·

√
m2 − 4

2
= B1

m.

Lemma 4.6. SmSm = −1. Similarly, BmBm = 1.

Proof.

SmSm =
m+

√
m2 + 4

2
· m−

√
m2 + 4

2
=
m2 −m2 − 4

4
= −1.

BmBm =
m+

√
m2 − 4

2
· m−

√
m2 − 4

2
=
m2 −m2 + 4

4
= 1.

Lemma 4.7. Fm,n = Snm−Sm
n

√
m2+4

. Similarly, fm,n = Bnm−Bm
n

√
m2−4 .

Proof.

Snm − Sm
n

√
m2 + 4

=
Lm,n+Fm,n

√
m2+4

2
− Lm,n−Fm,n

√
m2+4

2√
m2 + 4

=
Fm,n
√
m2 + 4√

m2 + 4
= Fm,n.

Bn
m −Bm

n

√
m2 − 4

=
lm,n+fm,n

√
m2−4

2
− lm,n−fm,n

√
m2−4

2√
m2 − 4

=
fm,n
√
m2 − 4√

m2 − 4
= fm,n.
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4.2 The Convergents of the Silver and Bronze Means

Theorem 4.1. The nth convergents of the silver means are Fm,n+1

Fm,n
and the

2nth convergents of the bronze means are fm,n+1

fm,n
.

Proof. We can easily prove this by induction. Clearly, this works for the case
n = 1, the 1st convergents of the silver means are m and the 2nd convergents of
the silver means are also m−1+ 1

1
= m, and Fm,2

Fm,1
= fm,2

fm,1
= m

1
= m. Assuming

the theorem, the n + 1th convergents of the silver means are m + 1
Fm,n+1
Fm,n

=

m+ Fm,n
Fm,n+1

= mFm,n+1+Fm,n
Fm,n+1

= Fm,n+2

Fm,n+1
, and the n+1th convergents of the bronze

means are m−1+
1

1 + 1
fm,n+1
fm,n

−1

= m−1+
1

fm,n+1

fm,n+1−fm,n

= m−1+ fm,n+1−fm,n
fm,n+1

=

mfm,n+1−fm,n+1+fm,n+1−fm,n
fm,n+1

= fm,n+2

fm,n+1
.

4.3 The Powers of the Silver and Bronze Means

Theorem 4.2. Snm = SLm,n, if n is odd, and Snm = BLm,n, if n is even. In
addition, Bn

m = Blm,n.

Proof. Snm = Lm,n+Fm,n
√
m2+4

2
=

Lm,n+
√
m2F 2

m,n+4F 2
m,n

2
. If n is odd,

Snm =
Lm,n +

√
m2F 2

m,n + 4Fm,n+1Fm,n−1 + 4

2

=
Lm,n +

√
m2F 2

m,n + 4F 2
m,n+1 − 4mFm,n+1Fm,n + 4

2

=
Lm,n +

√
(2Fm,n+1 −mFm,n)2 + 4

2
=
Lm,n +

√
L2
m,n + 4

2
= SLm,n .

If n is even,

Snm =
Lm,n +

√
m2F 2

m,n + 4Fm,n+1Fm,n−1 − 4

2

=
Lm,n +

√
m2F 2

m,n + 4F 2
m,n+1 − 4mFm,n+1Fm,n − 4

2

=
Lm,n +

√
(2Fm,n+1 −mFm,n)2 − 4

2
=
Lm,n +

√
L2
m,n − 4

2
= BLm,n .
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For any n,

Bn
m =

lm,n + fm,n
√
m2 − 4

2
=
lm,n +

√
m2f 2

m,n − 4f 2
m,n

2

=
lm,n +

√
m2f 2

m,n − 4fm,n+1fm,n−1 − 4

2

=
lm,n +

√
m2f 2

m,n + 4f 2
m,n+1 − 4mfm,n+1fm,n − 4

2

=
lm,n +

√
(2fm,n+1 −mfm,n)2 − 4

2
=
lm,n +

√
l2m,n − 4

2
= Blm,n .

4.4 The Convergents of the Powers of the Silver and
Bronze Means

Lemma 4.8. FLm,a,n = Fm,an
Fm,a

, if a is odd.

Proof. Assume a is odd and let G =
∞∑
n=0

FLm,a,nx
n. Since FLm,a,n+2 =

Lm,aFLm,a,n+1 + FLm,a,n, FLm,a,0 = 0, FLm,a,1 = 1,

G = Lm,axG+ x2G+ x =⇒ G(1− Lm,ax− x2) = x

=⇒ G =
x

1− Lm,ax− x2
= − x

(Sm
a

+ x)(Sam + x)
=

Sm
a

Sm
a
+x
− Sam

Sam+x

Fm,a
√
m2 + 4

=

1
1+ x

Sm
a
− 1

1+ x
Sam

Fm,a
√
m2 + 4

=

1
1−Samx

− 1
1−Sm

a
x

Fm,a
√
m2 + 4

=⇒ FLm,a,n =
Sanm − Sm

an

Fm,a
√
m2 + 4

=
Fm,an
Fm,a

.

Lemma 4.9. fLm,a,n = Fm,an
Fm,a

, if a is even.

Proof. Assume a is even and let G =
∞∑
n=0

fLm,a,nx
n. Since fLm,a,n+2 =
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Lm,afLm,a,n+1 − fLm,a,n, fLm,a,0 = 0, fLm,a,1 = 1,

G = Lm,axG− x2G+ x =⇒ G(1− Lm,ax+ x2) = x

=⇒ G =
x

1− Lm,ax+ x2
=

x

(Sm
a − x)(Sam − x)

=

Sm
a

Sm
a−x −

Sam
Sam−x

Fm,a
√
m2 + 4

=

1
1− x

Sm
a
− 1

1− x
Sam

Fm,a
√
m2 + 4

=

1
1−Samx

− 1
1−Sm

a
x

Fm,a
√
m2 + 4

=⇒ fLm,a,n =
Sanm − Sm

an

Fm,a
√
m2 + 4

=
Fm,an
Fm,a

.

Lemma 4.10. flm,a,n = fm,an
fm,a

.

Proof. Let G =
∞∑
n=0

flm,a,nx
n. Since flm,a,n+2 = lm,aflm,a,n+1 − flm,a,n, flm,a,0 =

0, flm,a,1 = 1,

G = lm,axG− x2G+ x =⇒ G(1− lm,ax+ x2) = x

=⇒ G =
x

1− lm,ax+ x2
=

x

(Bm
a − x)(Ba

m − x)
=

Bm
a

Bm
a−x −

Bam
Bam−x

fm,a
√
m2 − 4

=

1
1− x

Bm
a
− 1

1− x
Bam

fm,a
√
m2 − 4

=

1
1−Bamx

− 1
1−Bm

a
x

fm,a
√
m2 − 4

=⇒ flm,a,n =
Ban
m −Bm

an

fm,a
√
m2 − 4

=
fm,an
fm,a

.

Theorem 4.3. The convergents of Sam are
Fm,a(n+1)

Fm,an
and the convergents of

Ba
m are

fm,a(n+1)

fm,an
.

Proof. By theorems 4.1 and 4.2, the convergents of Sam = SLm,a are
FLm,a,n+1

FLm,a,n

if a is odd, the convergents of Sam = BLm,a are
fLm,a,n+1

fLm,a,n
if a is even, and the

convergents of Ba
m = Blm,a are

flm,a,n+1

flm,a,n
. Thus by the lemmas 4.8, 4.9, 4.10,

the convergents of Sam must be
Fm,a(n+1)

Fm,an
, and the convergents of Ba

m must be
fm,a(n+1)

fm,an
.
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5 The Lucas Constants

Our properties about the silver and bronze means can be even further gen-
eralized to a family of sequences known as the Lucas sequences. While the
silver Fibonacci numbers generalize the coefficient of the first term in the
recurrence, the Lucas sequences also generalize the coefficient of the second
term. We need to also define a set of constants analogous to the golden ra-
tio, silver means, and bronze means, which we will call the Lucas constants.
Our properties will relate to the Lucas constants and their associated Lucas
sequences. The second property holds for the Lucas constants, however the
first does not hold for all Lucas sequences, and we will therefore discuss it
last. As a result, while the underlying theorem behind the third property
does hold, the actual property only holds in some cases.

5.1 Lemmas Pertaining to the Lucas Constants

Again we will begin by stating lemmas analogous to the known properties
listed in Section 2.3.

Lemma 5.1. Vn = Un+1 −QUn−1 = 2Un+1 − PUn.

Proof. As both sides of the equation share the same recurrence, we need only
show that the cases for n = 1 and n = 2 work.

U2 −QU0 = P = V0.

U3 −QU1 = P 2 −Q−Q = P 2 − 2Q = V2.

Lemma 5.2. U2
n − Un+1Un−1 = Qn−1.

Proof. We can prove this by induction. This works for the case n = 1, as
U2
1 − U2U0 = 1− 0 = 1 = Q0. Assuming the property is true for n, we get

U2
n+1 − Un+2Un = U2

n+1 − Un(PUn+1 −QUn) = U2
n+1 − PUn+1Un +QU2

n

= Un+1(Un+1 − PUn) +QU2
n = QU2

n −QUn+1Un−1 = Qn.

Lemma 5.3. Cn+2 = PCn+1 −QCn.

14



Proof. It is clear from the definition of the Lucas constants that C2 = PC −
Q, so by multiplying the equations by Cn respectively, it follows quite simply
that Cn+2 = PCn+1 −QCn.

Lemma 5.4. Cn =
Vn+Un

√
P 2−4Q

2
.

Proof. As both sides of the equation share the same recurrence, we need only
show that the cases for n = 0 and n = 1 work.

V0 + U0

√
P 2 − 4Q

2
=

2

2
= 1 = C0.

V1 + U1

√
P 2 − 4Q

2
=
P +

√
P 2 − 4Q

2
= C1.

Lemma 5.5. CC = Q.

Proof.

CC =
P +

√
P 2 − 4Q

2
· P −

√
P 2 − 4Q

2
=
P 2 − P 2 + 4Q

4
= Q.

Lemma 5.6. Un = Cn−Cn√
P 2−4Q

.

Proof.

Cn − Cn√
P 2 − 4Q

=

Vn+Un
√
P 2−4Q

2
− Vn−Un

√
P 2−4Q

2√
P 2 − 4Q

=
Un

√
P 2 − 4Q√
P 2 − 4Q

= Un.

5.2 The Powers of the Lucas Constants

Theorem 5.1. Cn = C(Vn, Q
n).

15



Proof.

Cn =
Vn + Un

√
P 2 − 4Q

2
=
Vn +

√
P 2U2

n − 4QU2
n

2

=
Vn +

√
P 2U2

n − 4QUn+1Un−1 − 4Qn

2

=
Vn +

√
P 2U2

n + 4U2
n+1 − 4PUn+1Un − 4Qn

2

=
Vn +

√
(2Un+1 − PUn)2 − 4Qn

2
=
Vn +

√
V 2
n − 4Qn

2
= C(Vn, Q

n).

5.3 The Convergents of the Powers of the Lucas Con-
stants

The underlying property, which we have so far called a lemma (lemmas 3.1
and 3.2 for the golden ratio and lemmas 4.8, 4.9, and 4.10 for the silver and
bronze means) holds for the Lucas constants, though what we have thus far
called a theorem (theorem 3.3 for the golden ratio and theorem 4.3 for the
silver and bronze means) only holds for some values, so we will call them a
theorem and corollary respectively in this section.

Theorem 5.2. Un(Va, Q
a) = Uan

Ua
.

Proof. Let G =
∞∑
n=0

Un(Va, Q
a)xn. Since Un+2(Va, Q

a) = VaUn+1(Va, Q
a) −

QaUn(Va, Q
a), U0(Va, Q

a) = 0, U1(Va, Q
a) = 1,

G = VaxG−Qax2G+ x =⇒ G(1− Vax+Qax2) = x

=⇒ G =
x

1− Vax+Qax2
=

x

(1− Cax)(1− Ca
x)

=

1
1−Cax −

1
1−Cax

Ua
√
P 2 − 4Q

=⇒ Un(Va, Q
a) =

Can − Can

Ua
√
P 2 − 4Q

=
Uan
Ua

.

Corollary 5.1. If the convergents of C(Va, Q
a) are Un+1(Va,Qa)

Un(Va,Qa)
(we will dis-

cuss in the next subsection for which (P,Q) pairs the convergents of C are
Un+1

Un
), then the nth convergent of Ca is

Ua(n+1)

Uan
.

16



Proof. Since Ca = C(Va, Q
a), and Un+1(Va,Qa)

Un(Va,Qa)
=

Ua(n+1)

Ua
Uan
Ua

=
Ua(n+1)

Uan
, the corol-

lary follows quite simply.

5.4 The Convergents of the Lucas Constants

The generalization of this property would be that the convergents of C are
Un+1

Un
. This, however, does not hold for all (P,Q) pairs, though it does hold

for some. To find out which it does hold for, we must first analyze the nature
of the continued fractions of quadratic surds, and more specifically the Lucas
constants.

Theorem 5.3. Let A+
√
D

b
be a quadratic surd, where A, b, and D are integers,

and let a be the remainder when A is divided by b. Then if a2 < D and
(b − a)2 < D, the repeating block of the continued fraction begins with the
first or second term.

Proof. If our quadratic surd added to or subtracted by some integer is a
reduced surd (which is purely periodic), then it follows quite simply that our
quadratic surd’s repeating block must start with the second term. In other

words, we must show that there exists some integer k such that A+bk+
√
D

b
>

1 and −1 < A+bk−
√
D

b
< 0, given a2 < D and (b − a)2 < D. Now by

manipulating our second given equality, we get

(b− a)2 < D =⇒ b− a <
√
D =⇒ b < a+

√
D =⇒ 1 <

a+
√
D

b
.

As A + bk ≥ a, our first desired equality is satisfied for any k. Now by
manipulating the second desired equality, we get

−1 <
A+ bk −

√
D

b
< 0 =⇒ 1 >

√
D − (A+ bk)

b
> 0

=⇒ b >
√
D − (A+ bk) > 0

=⇒ A+ b(k + 1) >
√
D > A+ bk

=⇒ (A+ b(k + 1))2 > D > (A+ bk)2.

Now we can clearly see that for any value of D (keeping in mind that D will
never be a perfect square), there exists some k for which the above equality
is true, as long as D is greater than the least possible value of (A + bk)2,
which is a2.
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Corollary 5.2. The repeating block for the continued fraction of a non-
degenerate Lucas constant begins with the first or second term.

Proof. Since in the case of the Lucas constants b = 2, the only possible
values for a are 0, when P is even and 1, when P is odd. If P is odd, then
D = P 2 − 4Q must also be odd. Then, excluding the degenerate value of
D = 1, both equalities are easily satisfied. If P is even, then P 2 ≡ 0 (mod 4).
D therefore must also be, so again excluding the degenerate value of D = 0,
the equalities are satisfied.

Theorem 5.4. Let A1+
√
D

b
and A2+

√
D

b
be quadratic surds whose repeating

blocks begin with the second term. If A1 + A2 is divisible by b, then the
repeating blocks of the continued fractions of the two quadratic surds are
mirror images of each other, excluding the last term in each of them.

Proof. Since the repeating block of A1+
√
D

b
begins with the second term,

then there exists some reduced surd a+
√
D

b
, for which our quadratic surd

may be expressed as a+bk1+
√
D

b
, where k1 is an integer. We know that the

repeating blocks of a+
√
D

b
and the opposite reciprocal of its conjugate are

mirror images of each other, so the repeating blocks of a+
√
D

b
and

√
D−a
b

must
also be mirror images of each other, though the latter is shifted by a term.
If A1 + A2 = a + bk1 + A2 is divisible by b, then A2 must be expressible

as bk2 − a, where k2 is an integer. Thus, A2+
√
D

b
differs from

√
D−a
b

only in

the first term, as A1+
√
D

b
differs from a+

√
D

b
only in the first term as well.

In the latter example, however, it changes the first term in the repeating
block, making it not the same as the last term in the repeating block in

the other. Therefore, if A1+
√
D

b
and A2+

√
D

b
have repeating blocks beginning

with the second term, their repeating blocks are mirror images of each other,
excluding the last term in each of them.

Corollary 5.3. With the exclusion of the last term, the repeating block of
the continued fraction of a Lucas constant is palindromic.

Proof. Since P + P = 2P must be divisible by 2, apart from the last term,
the repeating block of a Lucas constant is the mirror image of itself, or, in
other words, palindromic.

Now that we know the nature of the continued fractions of the Lucas con-
stants, we can explore which (P,Q) pairs, the property applies for. Through
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the use of a program, we can find various pairs which work. It is clear that
for Q < 0, the property only holds when P is divisible by −Q. For Q > 0,
the property holds when P is divisible by Q but also in other more obscure
cases. Here, we will prove these two cases for which the property holds.

Theorem 5.5. If P > 0, Q < 0, and P is divisible by −Q, the nth convergent
of C is Un+1

Un
.

Proof. First we must show that the continued fraction for C is {P ;−P
Q
, P}.

Let x = {P ;−P
Q
, P}. Then,

x = P +
1

−P
Q

+ 1
x

= P − Qx

Px−Q
=⇒ Px2 −Qx = P 2x− PQ−Qx

=⇒ Px2 − P 2x+ PQ = 0 =⇒ x2 − Px+Q = 0

=⇒ x =
P +

√
P 2 − 4Q

2
= C.

Now we can prove the theorem by induction. It holds for n = 1, since the
1st convergent is P and U2

U1
= P

1
= P , and n = 2 since the 2nd convergent is

P +
1

−P
Q

= P − Q
P

= P 2−Q
P

and U3

U2
= P 2−Q

P
. For the case of n+ 2, we get

P +
1

−
P

Q
+

1
Un+1

Un

= P +
1

−P
Q

+ Un
Un+1

= P +
QUn+1

QUn − PUn+1

=
PQUn − P 2Un+1 +QUn+1

QUn − PUn+1

=
P 2Un+1 − PQUn −QUn+1

PUn+1 −QUn

=
PUn+2 −QUn+1

Un+2

=
Un+3

Un+2

.

Theorem 5.6. If P > 0, Q > 0, and P is divisible by Q, the 2nth convergent
of C is Un+1

Un
.
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Proof. Again, we must show that the continued fraction for C is {P −
1; 1, P

Q
− 2, 1, P − 2}. Let x = {P − 1; 1, P

Q
− 2, 1, P − 2}. Then,

x = P − 1 +
1

1 +
1

P

Q
− 2 +

1

1 +
1

x− 1

= P − 1 +
1

1 +
1

P

Q
− 2 +

1

x

x− 1

= P − 1 +
1

1 +
1

P

Q
− 2 +

x− 1

x

= P − 1 +
1

1 +
Qx

Px− 2Qx+Qx−Q

= P − 1 +
1

1 +
Qx

Px−Qx−Q

= P − 1 +
Px−Qx−Q

Px−Qx−Q+Qx

= P − 1 +
Px−Qx−Q

Px−Q
= P − Qx

Px−Q
=
P 2x− PQ−Qx

Px−Q
=⇒ Px2 −Qx = P 2x− PQ−Qx =⇒ Px2 − P 2x+ PQ = 0

=⇒ x2 − Px+Q = 0 =⇒ x = C.

Now we can prove the theorem by induction. It works for the case of n = 1
because P − 1 + 1

1
= P = P

1
= U2

U1
and for the case of n = 2 because

P − 1 +
1

1 +
1

P
Q
− 2 + 1

1

= P − 1 +
1

1 +
1

P
Q
− 1

= P − 1 +
1

1 +
Q

P −Q

=
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P − 1 +
P −Q
P

= P − Q
P

= P 2−Q
P

= U3

U2
. For the case of n+ 2, we get

P − 1 +
1

1 +
1

P

Q
− 2 +

1

1 +
1

Un+1

Un
− 1

=
P 2Un+1

Un
− PQ−QUn+1

Un

P Un+1

Un
−Q

=
P 2Un+1 − PQUn −QUn+1

PUn+1 −QUn

=
PUn+2 −QUn+1

Un+2

=
Un+3

Un+2

.

Two more obscure cases for which this property holds are: when P can be
expressed as a2(n+ 1) + a and Q = a2, in which case the continued fraction
is of the form {a2(n + 1) + a − 1; 1, n, a, n, 1, a2(n+ 1) + a− 2}; and when
P can be expressed as 2a(2n + 3) and Q = 4a, in which case the continued

fraction is {2a(2n+ 3)− 1; 1, n, 2, a(n+ 1) + a−2
2
, 2, n, 1, 2a(2n+ 3)− 2}.

6 Further Research

The most obvious topic of further research would be finding Lucas constants
for which the convergents are Un+1

Un
. It seems that for Q < 0, the only case

in which the property holds is when P is divisible by −Q, and this would
be a useful fact to prove. Then, finding other cases where Q > 0, for which
this property holds, and even proving that certain cases can cover all the
Lucas constants for which this holds, would be an area of interest. Another
interesting conjecture to prove or disprove would be that for all cases where

Q < 0, the n
th

convergent is Un+1

Un
, while where Q > 0, the 2n

th
covergent is

Un+1

Un
.
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