
The PRIMES 2011 problem set solutions

Here are the solutions of the problems from the PRIMES 2011 prob-
lem set. Note that some solutions are just sketched (not given in full).

1. The number of all combinations out of 4 dice is 64 = 1296. The
number of combinations when all are different is 6 ·5 ·4 ·3 = 360. So the
number of combinations when at least two are the same is 1296−360 =
936. Out of 360, 5 · 4 · 3 · 2 = 120 don’t contain 3. Altogether 54 = 625
don’t contain 3. So among the cases when at least two are equal,
625− 120 = 505 don’t contain 3. So 936− 505 = 431 contain 3. So the
chance of winning is 431/936.

2. (a) Between 1 and 125, there are 25 numbers divisible by 5,
5 numbers divisible by 25, and 1 number divisible by 125. So k =
25 + 5 + 1 = 31.

(b) Let us compute modulo 5. We have 1·2·3·4 = 4. So the numbers
between 1 and 125 not divisible by 5 contribute a factor 425 = 4. The
numbers which are divisible by 5 but not by 25 contribute 45 = 4. The
numbers divisible by 25 contribute a 4. So altogether we get 43 = 4.
Thus N = 5m+ 4.

3. These numbers are powers of 2. Indeed, sums of consecutive
numbers are S = n(n + 1)/2 −m(m + 1)/2 = (n −m)(n + m + 1)/2,
where n − m ≥ 2. So we get such a representation of S once we fix
a factorization of 2S into an odd and an even number, such that the
smaller factor is not 1. For S being powers of 2, such a factorization
does not exist, but for all other S the factorization 2S = 2r(2b + 1)
does the job. So there are 20 such numbers below a million (the first
power of 2 bigger than a million is 220).

4. The sum

(
√

10 + 3)2010 + (
√

10− 3)2010

is an integer (as seen by using the binomial formula), but
√

10−3 < 0.2,
so the first hundred digits of the first summand are all the digits 9.

5. (b) Imagine that Manhattan is a square lattice. Introduce a
coordinate system with origin at Mary’s home, and the axes going
diagonally. Then for each block Mary walks, the x and the y coordinate
changes by 1 or −1. Returning back means that for each of them,
there are exactly n copies of 1 and n copies of −1, so the answer is(
2n
n

)2
. In (a), the answer is thus 2522 = 63, 504. For (c), note that by

Stirling’s formula,
(
2n
n

)
is about 22n/

√
πn. So the chance of return is(

2n
n

)2
/42n, which is about 1/πn. For n = 10 it’s about 1/31.4, which is

approximately 0.032.
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6. The area of a triangle with integer coordinates is a half-integer,
so the area S of the triangle T is rational. If the sides of the tri-
angle are 2a, 3a, 4a then by Heron’s formula its area is 3

4
a2
√

15. So

a2 = 4S/3
√

15, i.e. is irrational. This is a contradiction, since by the
Pythagorean theorem a2 has to be a rational number.

7. Let pn be the probability of the population to die out by the n-th
generation (where we begin with the zeroth generation). Then p1 = p,
p2 = p2(1− p) + p, and in general

pn+1 = p2
n(1− p) + p.

The sequence pn by definition is increasing, so it has a limit q. Thus,
q = q2(1 − p) + p, so q = p

1−p
, or q = 1. If p ≥ 1/2 then the first

solution makes no sense (as we must have q ≤ 1), so q = 1, and thus
the probability of the population to survive indefinitely is 1 − q = 0.
If p ≤ 1/2 then pn ≤ p

1−p
for all n (as pn+1 ≥ pn), so q = p

1−p
, and the

indefinite survival probability is 1− q = 1−2p
1−p

.

8. For twins the probability of a healthy descendant is (1− 1
4
× 1

2
×

1
103 )8000, which is about 0.37. So the probability of disease is about
63%. For unrelated parents, the probability of a healthy descendant is
(1− 1

4
× 1/106)8000, which is about 0.998, so the probability of disease

is 0.2%.
9. We have (2m+ 1)2 − 1 = 4m(m+ 1), which is divisible by 8. So

any number with required property is of the form 8k + 1. Conversely,
we claim that any number of the form 8k + 1 is the remainder mod
2n of a perfect square. We prove it by induction in n starting n = 3.
The base is clear, so we make an induction step from n − 1 to n for
n ≥ 4. Let a be an odd number between 1 and 2n. By the induction
assumption there exists x such that x2 − a is divisible by 2n−1. If it is
not divisible by 2n, then it gives remainder 2n−1 when divided by 2n.
Now, (x + 2n−2)2 − a = x2 − a + 2n−1 + 22n−4. The last summand is
divisible by 2n as n ≥ 4, so (x+2n−2)2−a is divisible by 2n, as desired.

10. (a) We have an = 2n for n = 0, ..., k−1. If n ≥ k then a sequence
satisfying our condition ends with a 1, or with 10, or with 100, or with
100..0 (k − 1 zeros). So

an = an−1 + ...+ an−k.

(b) By (a) the first values of an(3) are:
1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504.
So a10(3) = 504.
(c) The characteristic equation of the recursion is

tk = tk−1 + ...+ 1.
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This equation has a unique positive solution 1 < T < 2, which is a
simple root, as seen by setting t = 1/x (this gives 1 = x+x2 + ...+xn).
Moreover, for any complex root z of the equation, one has |z| < T (as
again is seen by setting t = 1/x). This implies that the general solution
of the recursion is of the form

yn = CT n + εn,

where εn/T
n goes to 0. It remains to show that in our case C > 0.

To see this, it suffices to note that for any solution yn of the recursion,
there is a constant M such that |yn| ≤Man.

Thus, an
∼= CT n and pn

∼= C(T/2)n. So b = T/2 and thus b < 1
(d) For k = 2, an(2) is the Fibonacci sequence, and T 2 = T + 1, so

T is the golden ratio, and b2 =
√

5+1
4

.
11. (a) Assume the contrary, and let V be a 2-dimensional space

with the required property. Let A,B ∈ V be non-proportional. Then
det(At + B) is a polynomial of degree n. This degree is odd, so f has
a real root. For this root t, At+B is not invertible, a contradiction.

(b) Pick V ⊂M(r) of dimension f(r) and take V ′ ⊂M(rs) consist-
ing of A⊕ ...⊕ A (s times), A ∈ V .

(c) If V ⊂M(n) is an n+1-dimensional space, then it has a nonzero
element with zero first row.

(d) f(2) = 2 (V=complex numbers).
(e) f(4) = 4 (V=quaternions).
(f) f(8) = 8 (V=octonions).
(g) For C, f(n) = 1 for all n, since det(At + B) always has a root

(similar to (a)). For Q, f(n) = n; indeed, f(n) ≤ n by (c), and for n-
dimensional V we can take Q(21/n) acting on itself by left multiplication
(in some basis, e.g. 2j/n, j = 0, ..., n− 1).

12. (a) The sequence is decreasing, so has a limit x such that x =
x− xm+1, so x = 0.

(b,c) Compare the sequence xn to yn = Cn−b, b > 0, C > 0. The
sequence yn satisfies the recursion

yn+1 = C((yn/C)−1/b + 1)−b,

or

yn+1 =
yn

(1 + (yn/C)1/b)b
= yn − bC−1/by1+1/b

n + ...

So one should expect that 1+1/a = m+1, or a = 1
m

. Also, one should

expect that K−m/m = 1, so K = m−1/m. To prove that this is indeed
the case for a, let us write yn as yn(b, C) and squeeze the sequence
xn between two (possibly shifted) sequences of the form yn(a1, C1) and
yn(a2, C2) for any a1 <

1
m
< a2. Once this is done, we similarly squeeze
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xn between two (possibly shifted) sequences yn(a, C1) and yn(a, C2) for
any C1 < m−1/m < C2, proving (c).
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