
THE BASICS OF THE THEORY OF COMPUTATION

SHAMINI BIJU AND ZZ ZHANG

Mentored by Katherine Taylor

1. Introduction

This paper introduces topics about the different machines used to explore the theory of computa-
tion: Finite Automata, Context-Free Grammar, Pushdown Automata, and Turing Machines. Each
of these machines is used as a tool to understand the capabilities and computations of computers
by recognizing different classes of languages.

To understand the importance of languages, let us first define them. A language is a set of strings
over some alphabet. The alphabet is a nonempty finite set of symbols. For example, a language
could be L = {0n|n ≥ 0}, the alphabet would be {0}, and the symbol would be 0. Several strings
in the language could be 0, 00, 000 (keep in mind that n doesn’t signify exponents, instead, it is
the number of times 0 repeats).

These languages are used in the theory of computation to represent problems by defining the
input strings, allowing precision in describing problems. Then, a corresponding machine recognizes
the language by accepting the strings in the language (denoted as L(name of the machine)), relating
to the input and the solution of a problem. To put it more simply, the language of a machine is a
set of strings that a machine “accepts.” Finally, the languages that will be introduced in this paper
are regular languages, context-free languages, Turing-recognizable languages, and Turing-decidable
languages.

2. Finite Automata

To understand how computers process information, we first need to explore finite automata -
simple yet powerful models of computation. These abstract machines take in strings of input and
determine whether they follow specific rules, giving us insight into how computers handle tasks
like language processing and search algorithms. Finite automata are foundational in fields such as
programming languages, compilers, and text recognition. There are two main types: Determin-
istic Finite Automata (DFA) and Nondeterministic Finite Automata (NFA), each with a unique
approach to reading and interpreting input, but both play a key role in how we model computa-
tion. In addition, we will be talking about regular expressions, which are used to describe languages.

2.1. Deterministic Finite Automata (DFA). A Deterministic Finite Automaton (DFA) is a
machine used to recognize patterns in strings of input. It consists of a finite set of states, transitions
between those states, and rules that dictate how it moves based on input symbols. For each state

1



2 SHAMINI BIJU AND ZZ ZHANG

and input symbol, a DFA has exactly one transition to a new state, which makes its behavior
entirely deterministic. A DFA that accepts binary strings ending in “01” has five states and moves
deterministically based on the input symbols. For example, it accepts the string “1001” because
the last two digits match the pattern “01”. Let us take a look at an example.

Figure 1

In Figure 1, we have the following components:
States: These represent the different positions the machine can be in. The DFA moves between

these states based on the input it reads. For example,q, q0, q00, q001 are all states in Figure 1.
Transitions: The arrows show how the machine changes from one state to another in response

to an input symbol. For each state and input symbol, there is exactly one possible transition. For
example, the only way to transition from q to q0 is by processing the input 0.

Start State: This is the state where the DFA begins its operation, typically marked with an
arrow pointing toward it. This is q in Figure 1.

Accepting States: If the DFA ends in one of these states after reading the entire input, the
input is accepted. If it ends in a non-accepting state, the input is rejected. These are denoted with
two circles, as seen in q001 in Figure 1.

This diagram provides a visual way to understand how a DFA processes input and moves between
states according to specific rules. Now that we’ve looked at the diagram and how the DFA works,
let’s dive into its formal definition.

Definition 2.1. A finite automata is a 5-tuple, which means it is defined by five components:

M = (Q,Σ, δ, q0, F )

where:

(1) Q is a finite set of states,
(2) Σ is the input alphabet (the symbols the DFA can read),
(3) δ : Q× Σ → Q is the transition function, which tells the DFA how to move from one state

to another,
(4) q0 ∈ Q is the start state, where the DFA begins, and
(5) F ⊆ Q is the set of accepting states.



THE BASICS OF THE THEORY OF COMPUTATION 3

2.2. Nondeterministic Finite Automata (NFA). Following our discussion of DFAs, let us now
explore nondeterministic finite automata (NFA), another type of finite automaton that introduces
a bit more flexibility.

An NFA is similar to a DFA in that it processes an input string and moves through different
states. However, unlike a DFA, an NFA can have multiple possible transitions from a state for a
given input symbol, or it might not transition at all. This means that the machine can have multiple
possible paths to follow, which introduces nondeterminism into its behavior. An NFA that accepts
strings where the third symbol from the end is an “a” can use multiple paths to “guess” where that
symbol occurs. For instance, it accepts “baaba” because one path leads to acceptance by checking
the third-last character is “a”.

Let’s take a closer look at how an NFA works.

Figure 2. This is an example of a NFA.

In Figure 2, we have the following components:
States: These represent the different positions the machine can be in. The NFA moves between

these states based on the input it reads, but unlike a DFA, there can be multiple possible transitions
from a state for the same input symbol.

Transitions: The arrows show how the machine changes from one state to another in response
to an input symbol. In an NFA, for each state and input symbol, there may be multiple possible
transitions, or no transition at all. This introduces nondeterminism, meaning the machine can
follow different paths at the same time.

Start State: This is the state where the NFA begins its operation, typically marked with an
arrow pointing toward it.

Accepting States: If the NFA ends in one of these states after reading the entire input, the
input is accepted. If it ends in a non-accepting state, the input is rejected. However, the NFA is



4 SHAMINI BIJU AND ZZ ZHANG

allowed to ”choose” different possible paths, so even if one path is rejected, another path might
still lead to acceptance.

This diagram provides a visual way to understand how an NFA processes input and moves
between states with multiple possible transitions. Now that we’ve looked at the diagram and how
the NFA works, let’s dive into its formal definition.

Definition 2.2. A nondeterministic finite automaton (NFA) is also a 5-tuple, defined by five
components:

M = (Q,Σ, δ, q0, F )

where:

(1) Q is a finite set of states,
(2) Σ is the input alphabet (the symbols the NFA can read),
(3) δ : Q × Σϵ → P (Q) is the transition function, which tells the NFA how to move from

one state to another, allowing for multiple possible transitions (or none) for a given input
symbol,

(4) q0 ∈ Q is the start state, where the NFA begins, and
(5) F ⊆ Q is the set of accepting states.

2.3. Regular Expressions. Regular expressions are an important aspect of computer science
applications because they give users of text applications the ability to search for strings with
certain patterns, and regular expressions do a great job at describing these patterns. But before
we dive into regular expressions, let’s talk about regular operations, which are used to construct
regular expressions. There are three regular operations that are used in the theory of computation
as tools to study properties of the regular languages.

Definition 2.3. Let A and B be languages. We define the regular operations union, concatena-
tion, and star:

(1) Union: A ∪B = {x|x ∈ A or x ∈ B}
(2) Concatenation: A ◦B = {xy|x ∈ A and y ∈ B }
(3) Star: A∗ = {x1x2...xk|k ≥ 0 and each xi ∈ A}

The union operation takes strings in both A and B and combines them to make one big language.
The concatenation operation connects a string in language A with a string in language B following
behind it. Lastly, the star operation focuses on one language and takes strings from that language
to get a new language. It is important to note that the empty string ϵ is always a string in language
A∗, no matter what A is.

Now let’s move on to regular expressions. Similar to operations in arithmetic, we can use regular
operations to build expressions describing languages: regular expressions. An example is:

(0 ∪ 1)0∗

In this case, the parentheses act like concatenation between (0 ∪ 1) and 0∗. Additionally, regular
operations have an order we have to follow, just like PEMDAS in arithmetic. In regular expressions,
parentheses are first, then the star operation, then concatenation, and finally union.



THE BASICS OF THE THEORY OF COMPUTATION 5

Definition 2.4. Say that R is a regular expression if R is us

(1) a for some a in the alphabet Σ,
(2) ϵ
(3) ∅,
(4) (R1 ∪R2), where R1 and R2 are regular expressions,
(5) (R1 ◦R2), where R1 and R2 are regular expressions, or
(6) (R∗

1), where R1 is a regular expression.

2.4. NFAs and DFAs: Different, but Equivalent. While DFAs and NFAs might look different
on the surface, they’re both types of finite automata—and surprisingly, they’re equally powerful.
Let’s break down their main differences and how, in the end, they can do the exact same things.

States: Both DFAs and NFAs are made up of states that represent different steps in processing
an input string. The machine moves through these states as it reads each symbol. In both cases,
one of the states is marked as the start, and some are marked as accepting.

Pathways: Here’s where things begin to split. In a DFA, for every state and input symbol,
there is exactly one path to follow. It’s like being on a road with one clear direction at every
intersection. In contrast, NFAs allow multiple (or even zero) transitions for a given symbol and
state. You can think of them as a book about choosing your own adventure: multiple possible
paths can unfold, and the machine can “guess” which path might lead to acceptance.

Acceptance: A DFA accepts a string only if there is one unique path that leads to an accept-
ing state. An NFA, on the other hand, accepts a string if at least one of its possible paths ends
in an accepting state. So, as long as there’s some way to reach an accepting state, the NFA says yes.

So what does this all mean in practice? Despite their structural differences, DFAs and NFAs are
ultimately capable of recognizing the same types of languages. This brings us to one of the most
fundamental ideas in automata theory:

Equivalence: Even though NFAs might seem more flexible or powerful because they can explore
multiple paths at once, they’re actually not more powerful than DFAs. In fact, for every NFA, there
is a DFA that accepts exactly the same language. This important fact is what we mean when we
say DFAs and NFAs are equivalent.

3. Context-Free Grammar and Pushdown Automata

Compared to finite automata, context-free grammars and pushdown automata are much more
powerful in describing languages. Similar to regular expressions, context-free grammars are used to
describe language syntax like Java and Python. Additionally, compilers use context-free grammars
to parse code to check whether it’s written correctly. While context-free grammars are used to
define a language, pushdown automata are machines that recognize or accept the language defined
by the context-free grammar.



6 SHAMINI BIJU AND ZZ ZHANG

3.1. Context-Free Grammar (CFG). Context-free grammars are used to describe context-free
languages, which include regular languages and many more.

The following grammar is named G1, consisting of substitution rules or productions.

A → 0A1
A → B
B → #

Figure 3. Example of a context-free grammar.

Each line of a grammar represents a rule, it’s made of a symbol and a string separated by an
array. The symbol is called a variable, and the string often consists of variables and terminals,
which are often represented as lowercase letters, numbers, or special symbols, while variables are
capitalized. Additionally, the top left variable is assigned as the start variable. In this example,
the start variable is A, A and B are the variables, and the terminals are 0, 1, and #. To describe
a language, you generate strings of the language using a grammar using a process called a deriva-
tion. The process includes three steps:

(1) Start with the start variable.
(2) Find a variable that is written down and a rule that starts with that variable. Replace the

written-down variable with the right-hand side of that rule.
(3) Repeat step 2 until no variables remain.

To depict a derivation visually, we can use a parse tree...

Figure 4. Parse tree for the derivation of string 000#111 in grammar G1

while the derivation process of string 000#111 is

A ⇒ 0A1 ⇒ 00A11 ⇒ 000A111 ⇒ 000B111 ⇒ 000#111



THE BASICS OF THE THEORY OF COMPUTATION 7

The language of a context-free grammar, denoted L(G1) for the grammar G1, is constructed using
all the strings generated through the process of derivation and is called a context-free language.
Specifically, the language recognized by G1 is represented by this: L(G1) = {0n#1n|n > 0}.

Definition 3.1. The formal definition of a context-free grammar is a 4-tuple:

(V,Σ, R, S),

where:

(1) V is a finite set called the variables,
(2) Σ is a finite set, disjoint from V, called the terminals,
(3) R is a finite set of rules, with each rule being a variable and a string of variables and

terminals, and
(4) S ∈ V is the start variable.

3.2. Pushdown Automata (PDA). Parallel to context-free grammars, pushdown automata also
recognize context-free languages. However, pushdown automata are machines that read input and
have states like a nondeterministic finite automata with an additional feature called the stack,
making pushdown automata more powerful as it provides additional memory.

Here’s a schematic drawing of a pushdown automata, it has features including state control
(states and transition function), the tape (input string), and the arrow (pointing at the input
symbol being read).

Figure 5. Schematic of a pushdown automaton

Now let’s take a look at the state diagram of a PDA M1 that recognizes the language {0n1n|n ≥ 0}:



8 SHAMINI BIJU AND ZZ ZHANG

Figure 6. State diagram of PDA M1

Each arrow in the state diagram has a corresponding rule that tells the PDA whether to push or
pop a symbol in the stack (It’s important to note that PDAs always push a special symbol $ before
reading anything input). In this example, the PDA can recognize this language by:

Pushing a symbol onto the stack for every 0 read.
Popping a symbol from the stack for every 1 read.

Accepting if the stack reads the special symbol $ as it would mean that the stack is empty. There-
fore, the number of 1s seen is the same as the number of 0s seen. Otherwise, rejecting.

Furthermore, it’s important to understand that this language would not be recognized by a de-
terministic or nondeterministic finite automata as they have no memory to process whether the
amount of 1s would be the same as the amount of 0s.

Definition 3.2. The formal definition of a PDA is similar to that of a finite automaton because
they are essentially the same thing with the addition of a stack. Therefore, the definition of a
pushdown automaton is a 6-tuple

(Q,Σ,Γ, δ, q0, F )

where Q, Σ, Γ, and F are all finite sets, and

(1) Q is the set of states,
(2) Σ is the input alphabet,
(3) Γ is the stack alphabet,
(4) δ : Q × Σϵ × Γϵ → P (Q× Γϵ)
(5) q0 ∈ Q is the start state, and
(6) F ⊆ Q is the set of accept state.

3.3. CFGs and PDAs: Different, but Equivalent. Despite having very different formats,
context-free grammars and pushdown automata are equivalent in power, meaning that they recog-
nize the same class of languages: regular languages. Let’s take a look at the proof of this statement.



THE BASICS OF THE THEORY OF COMPUTATION 9

Theorem 3.1. A language L is context-free if and only if there exists a pushdown automaton M
such that L = L(M).

When we use the statement ”if and only if,” it means that the theorem needs to be proved both
ways.

First, let’s construct a pushdown automaton from a context-free grammar. Given a CFG G =
(V,Σ, R, S), we construct a PDA P = ({q},Σ, V ∪ Σ ∪ $, δ, q, $, ∅) that accepts empty stack.

• States Q: q as the PDA doesn’t need to remember complex state information, the stack
does most of the work.

• Input alphabet Σ is the same as the terminal alphabet of G.
• Stack alphabet Γ includes all non-terminals (V ), all terminals (Σ), and the special bottom
of the stack symbol ($).

• Initial state is q.
• Transition function δ: when the stack is empty, push the grammar’s start symbol S onto
the stack. If the top of the stack is a non-terminal A, the PDA can choose any production
rule A → β from the grammar. It pops A and pushes β onto the stack in reverse order.
If the top of the stack is a terminal symbol a, the PDA consumes the input a and pops a
from the stack.

• Accept state is the empty set ∅.
The PDA M accepts a string ω if, after processing ω, the stack becomes empty. This means all

non-terminals have been expanded and all terminals have been matched against the correct input.
Now we’ll construct a context-free grammar from a pushdown automaton. Given a PDA M that

accepts by empty stack, construct a CFG G such that L(G) = L(M).

We assume M accepts by empty stack. Let M = (Q,Σ,Γ, δ, q0, Z0, ∅), we construct a CFG
G = (V,Σ, R, S).

Let’s identity the production rules: If the PDA, while in state q, reads input a (or ϵ), pops A,
and moves to state p without pushing anything onto the stack: Then the non-termianl can directly
generate the input a. If the PDA, while in state q, reads input a (or ϵ), pops A, pushes a sequence
of symbols onto the stack, and moves to state p: Then the non-terminal can generate a followed
by a sequence of other non-terminals.

Finally, if M accepts ω by empty stack, there is a sequence of transitions that starts in q0, pro-
cesses ω, and empties the stack. This entire computation can be broken down into segments, each
corresponding to a non-terminal in the grammar. By combining these segments according to the
grammar rules, a derivation for ω can be constructed.

If ω is generated by G, there is a derivation S ⇒ ω. Each step in this derivation corresponds to a
valid sequence of operations in M. Specifically, any non-terminal generating a substring x implies
that M can go from state q to state p while popping A and reading x. Following the derivation
from S will lead to a complete computation in M that accepts ω.



10 SHAMINI BIJU AND ZZ ZHANG

These constructions demonstrate the equivalence between context-free grammars and pushdown
automata, meaning that any language that can be described by a CFG can also be recognized by
a PDA, and vice versa.

4. Turing Machines

Turing Machines, designed by Alan Turing in the 1930s, are one of the most important models
in the theory of computation, designed to capture the full range of what it means to compute
something. The standard Turing Machine, which is deterministic, operates by reading and writing
symbols on an infinite tape, one step at a time, following a fixed set of rules. Think of it as a
super-powered automaton with memory.

But that’s just the beginning. Over time, many variants have been introduced—some with
multiple tapes working at once (multitape Turing Machines), others that allow the machine to
explore many computational paths at the same time (nondeterministic Turing Machines), among
many more. These variations may look different, but interestingly, they all turn out to be equivalent
in what they can compute. We’ll explore how and why as we go.

4.1. Standard Turing Machines. A standard, or deterministic, Turing Machine has a tape that
extends infinitely in both directions and serves as both input and memory. At any moment, it can
read a symbol from the tape, write a new one, and move its read-write head left or right. This
simple setup is powerful enough to simulate any algorithm, making it the foundation of modern
computational theory. A Turing Machine can recognize the language {anbn | n ≥ 1} by repeatedly
crossing off one ’a’ and one ’b’. For example, on input ”aaabbb”, it alternates between scanning
for unmatched ’a’s and ’b’s until the tape is fully processed and accepts. Here is an example.

Figure 7. This is a standard Turing Machine.

In Figure 4, we can see a Turing machine in the middle of computation. The machine is currently
in state q7, as indicated by the labeled box. Its tape—an infinite sequence of cells—holds a string of
binary digits followed by blank symbols representing empty space. The arrow points to the second
‘0’, which means the tape head is currently reading that cell. Based on the current state q7 and
the symbol 0 under the head, the machine will consult its transition function to determine the next
action: it could write a new symbol, move the tape head left or right, and switch to a new state.
This visual captures the core mechanics of how a Turing machine processes input step by step.

Like DFAs and NFAs, Turing Machines have a formal definition.



THE BASICS OF THE THEORY OF COMPUTATION 11

Definition 4.1 (Turing Machine). A Turing machine is a 7-tuple, which contains 7 components:

(Q,Σ,Γ, δ, q0, qaccept, qreject)

where Q,Σ,Γ are all finite sets and:

(1) Q is the set of states,
(2) Σ is the input alphabet not containing the blank symbol ⊔,
(3) Γ is the tape alphabet, where ⊔ ∈ Γ and Σ ⊆ Γ,
(4) δ : Q× Γ → Q× Γ× {L,R} is the transition function,
(5) q0 ∈ Q is the start state,
(6) qaccept ∈ Q is the accept state, and
(7) qreject ∈ Q is the reject state, where qreject ̸= qaccept.

4.2. Variant Turing Machines. Variant Turing Machines are modified versions of the standard
Turing Machine, designed to explore different approaches to computation. These variants tweak
the structure of the original machine to model different computational processes or make certain
types of computation easier to do. In this section, we will focus on two key variants: multitape
and nondeterministic Turing Machines. While both offer unique features, they do not funda-
mentally change the limits of what can be computed. Rather, they simply offer different ways to
approach problem solving.

Multitape Turing Machines. A multitape Turing Machine is just like a regular Turing
Machine, but it has more than one tape. Each tape has its own head that can read, write, and move
independently. This makes it easier for the machine to work with different pieces of information at
the same time.

For example, one tape could have the input, while another tape could hold the results of the
machine’s calculations. Even though it has multiple tapes, a multitape Turing Machine isn’t any
more powerful than a regular one. Instead, it just makes some problems easier to solve by speeding
up the process. The figure below is an example of such a machine in comparison to a more standard
Turing Machine.



12 SHAMINI BIJU AND ZZ ZHANG

Figure 8. A Multitape Turing Machine in comparison to a Standard Turing Machine.

The top part of Figure 5 shows a multi-tape Turing machine, named M, with three separate
tapes, each with its own read/write head.

Tape 1 contains the symbols 0 1 0 1 0 ⊔, with the head pointing at the second symbol, 1.
Tape 2 has the symbols a a a ⊔, with the head on the last a.
Tape 3 has b a ⊔, with the head on the b.
Each of these tapes works independently, allowing the machine to read from and write to all three
at the same time. This setup makes the machine more efficient because it can perform multiple
tasks in a single step. For example, you can read input from one tape, use data from another, and
write to a third, all in parallel.

The figure clearly shows how the heads are positioned at different spots across the tapes, high-
lighting the flexibility and speed advantage of a multi-tape machine compared to the standard
Turing Machine, named S, that only has a single tape and head.

Nondeterministic Turing Machines. While multitape machines give us more working space,
nondeterministic Turing Machines change the way choices are made altogether.

Instead of following just one path like a regular Turing Machine, a nondeterministic Turing
Machine can explore many possibilities at once. At any point during its computation, it can branch
out into multiple different paths based on the input and transition rules. If any of those paths
lead to an accepting state, the machine accepts the input. This idea doesn’t make the machine
more powerful in terms of what it can compute, but it opens up a new way of thinking about how
efficiently we might solve certain problems.

Let’s take a look at what this looks like in action.



THE BASICS OF THE THEORY OF COMPUTATION 13

Figure 9. This is a Nondeterministic Turing Machine.

Figure 3.17 shows a nondeterministic Turing machine starting from one configuration at the top
and branching into different paths below. Each line going down shows a possible move the machine
can make at that step. As you go further down the tree, the machine keeps making choices, and
each branch shows a different path it could follow. Some of the paths stop without accepting, but
one of them reaches an accepting state, which is marked at the bottom right. Since the machine
only needs one path to accept the input, this input would be accepted. The figure shows how a
nondeterministic machine explores many paths at once, and acceptance happens if any one of them
ends in success.

5. Relationship Between All Languages

Throughout this paper, we see how computational models vary in their ability. As we move
from simpler to more powerful machines, each gains additional capabilities—such as memory and,
eventually, infinite memory—which expand the class of languages they can recognize. The following
nested diagram illustrates the hierarchical relationship among these language classes. Languages
that fall outside this diagram are not recognized by any known computational model.

Regular

Context-Free

Turing Decidable

Turing Recognizable



14 SHAMINI BIJU AND ZZ ZHANG

L is a regular language if and only if it is recognized by a DFA, NFA, or regular expression.
L is a context-free language if and only if it is recognized by a CFG, PDA
L is a Turing-decidable language if and only if it is recognized by a Turing machine that halts
on every input
L is a Turing-recognizable language if and only if it is recognized by a Turing machine or its
variants

References

[1] Sisper, M. (2013).Introduction to the Theory of Computation (3rd ed.).


