
EXPLORING NONDETERMINISM THROUGH DFS AND BFS

SHERRI WU (MENTOR: KATHERINE TAYLOR)

Abstract. This paper explores the foundational concepts of the Theory of Computation, with
a particular focus on nondeterminism and how it can be modeled and understood using depth-
first search (DFS) and breadth-first search (BFS). The first part of the paper introduces Finite
Automatons, and explains how depth-first-search plays an important role in the processing of non-
deterministic finite automaton. The second part of the paper briefly introduces Turing Machine,
and introduced another way of exploring graph and process input with breadth-first-search.

1. Introduction

Theory of Computation is a branch of Theoretical Computer Science and Mathematics. It helps
us to understand the three questions mentioned in the Abstract: What kind of questions are
solvable through computation? How many resources are needed? What models are needed? These
three questions are deeply related. To answer the first question, we have computability, which is a
branch that helps us figure out whether a question is computable. After that, we have Complexity
Theory to help us estimate how much time and memory space we need to solve this question. The
Automata Theory and Formal Language gave us highly structured tools and models to support the
other work.

Although modern programming tools are widely used, the theory of computation remains essen-
tial - not only because it predates these tools, but because it provides the theoretical foundation of
designing more efficient algorithms. For example, Automaton are widely used in machine tools and
are fundamental in the design of compiler. Moreover, for some certain tasks, the regular expressions
derived from Automata theory can outperform the regular expression engines in popular scripting
languages like Perl, Java, Python, etc. The graph below illustrates the difference in performance
when matching a string using Perl versus with using an NFA.

In the later section of this paper, we will introduce the complexity theory with some examples of
regularly used algorithms while solving the Shortest Path Problem. This part will include specific
algorithms and analysis on their complexity.

2. Automaton and Languages

2.1. Finite Automaton. The first thing we need is a computational model. To start we need to
understand the simplest model, called the finite state machines or finite automaton. Let us first
think about a vending machine.

Imagine there is a vending machine that sells snack A for 1 dollar and snack B for 2 dollars, and
only accept coins of 1 dollar or 50 cents. So, if you press button A, the machine would go to the
state A0 meaning it is waiting to receive 1 dollar, and if you put in 1 or two.5 coins, the machine

1



2 SHERRI WU (MENTOR: KATHERINE TAYLOR)

Figure 1. As shown by Cox [2], the Thompson NFA is drastically faster.

will go to the state 1 which indicates that you already put in 1 dollar in total, and the machine
will accept it and give you snack A. Similarly, you can choose to buy snack B and the machine will
wait to receive 2 dollars. The ”accept states” are denoted with two circles in the graph.

However, the vending machine diagram is not exactly a finite automaton. Because we notice
that the machine doesn’t know where to go if the first input is not button A or B but some coins.

A set of strings that is accepted by the machine is called the language of the machine. In
our vending machine example, the language is a set of money that is enough to buy a snack.

Very intuitively, you might already get an idea of what a finite state machine does. We can now
look at the formal definition of a Deterministic Finite Automata.

Definition 2.1. A deterministic finite automaton is a 5-tuple [1], where:

(1) Q is a finite set called the states,
(2) Σ is a finite set called the alphabet,
(3) δ : Q× Σ → Q is the transition function,



EXPLORING NONDETERMINISM THROUGH DFS AND BFS 3

(4) q0 ∈ Q is the start state,
(5) F ⊆ Q is the set of accepting states.

Here is a state diagram for the automaton M1. We can see that there is an arrow pointing toward
q1 from nowhere, that indicates the start state; there are symbols like 0 and 1 on some arrows, these
symbols make up the alphabet ; Each circle is a state for the machine; Each arrow pointing from
one state to another indicates a transition with an input at current state; The state with double
circle is an accept state.

Example 2.1. Consider the Finite Automaton M1.

We can describe M1 formally by writing M1 = {Q,Σ, δ, q1, F}

(1) Q = {q1, q2}
(2) Σ = {0, 1}
(3) We describe the transition function δ with a table:

State Input 0 Input 1
q1 q1 q2
q2 q1 q2

(4) q1is the start state
(5) F = {q1}

The language of the machine M1 is all the strings that ends with the symbol 0. In set notation :

L(M1) = {w0 | w ∈ {0, 1}∗}
In a Deterministic Finite Automaton (DFA), the transition function requires that for each state

and input symbol, there is exactly one next state. However, in real-world scenarios like a vending
machine, the system might have no response or multiple possible responses for the same input. To
model such behavior, we introduce the concept of a Nondeterministic Finite Automaton (NFA),
where the transition function can assign zero, one, or multiple possible next states for each state
and input symbol pair.

Definition 2.2. A nondeterministic finite automaton is a 5-tuple [1]

M = (Q,Σ, δ, q0, F )

where:



4 SHERRI WU (MENTOR: KATHERINE TAYLOR)

(1) Q is a finite set called the states,
(2) Σ is a finite set called the alphabet,
(3) δ : Q× Σϵ → P(Q) is the transition function,
(4) q0 ∈ Q is the start state,
(5) F ⊆ Q is the set of accepting states.

Σϵ is the alphabet with an extra symbol ϵ which stands for empty string. And P(Q) is the power
set of Q.

2.2. Understanding nondeterminism. From the definition above, it’s not hard to see the dif-
ference between NFA and DFA. It mostly shows in the difference of transition function: the Σϵ and
P(Q). What feature does this transition function bring to NFA? Below is an example of M2

Example 2.2.

When the machine is in the state q1 and reads the input 1, here are two options: stay in q1 or go
to q2. Similarly, when the machine is in state q2, it can go straight to q3 since there is an ϵ (empty
string, exists between any two symbols) or read 0 and go to q3 (if the next input is 0). However, it
does not have the next destination if the next input is 0 and the machine is at state q3.
In order to get to the accept state q4, we need to have the string 101 or 11 in our input. Thus the
language of the machine M2 is any string that contains a substring 101 or 11. In set notation

L(M2) = {xyz | x, z ∈ {0, 1}∗, y ∈ {101, 11}}
Another problem the output P(Q) brings us is that ∅ ∈ P(Q), so there might be no next state

for the machine to go to, and the process “dies” or “halts” there. For an NFA, it is not certain that
the machine will go to the next state from the current state because 1. There are multiple states to
go to 2.and there is an empty string that is accepted as a reading. With this feature, the machine
goes to multiple states, which are multiple branches. When the NFA is working, if it chooses one
branch and continues in that specific branch, if the result does not bring the machine to an accept
state, the machine cannot immediately decide to reject the input. The reason is that the machine
needs to backtrack to the other branches until every branch is rejected. To understand how this
works better, we are introducing Depth-First Search, which is a method in graph traversal that has
a very similar process. Before that let’s take a look at graph.

2.3. Graph.

Definition 2.3. An undirected graph is an ordered pair G=(V,E) where V is a set of vertices,
and E ⊆ {{x, y} | x, y ∈ V and x ̸= y}.

Definition 2.4. A tree is an undirected graph which any two vetices are connected by exactly
one path.



EXPLORING NONDETERMINISM THROUGH DFS AND BFS 5

Figure 2. Tree search

Definition 2.5. A neighbor of a node is any other node that is directly connected with it.

Definition 2.6. A stack is an abstract data type that serves elements in an order of first in last
out.

2.4. Depth-First Search. In order to understand nondeterminism in computation, it is helpful to
first consider how a deterministic algorithm explores a graph. One way is to perform a depth-first
search (DFS). DFS systematically explores a graph by starting at a source node and searching as
deep as it could before backtracking. Whenever we encounter a node with multiple outgoing paths,
we choose one path to follow and store the remaining adjacent nodes on a stack. Once we reach the
end of that path or a dead end, we backtrack by popping from the stack and continue the search.
The following is an example of a graph and how we search it. The number on each node is also the
order of search. First, we start from source node 1. There are three outgoing paths, 2, 7, and 8.
We put 8,7,2 into stack in order. The top one is 2 so that is the node we are going to search next.
Take out 2 from the stack and put in 6,3. The next top item in the stack is then 3. Take 3 out of
the stack and put in 4, 5 into the stack. After we searched both 4 and 5, and take both of them
out of the stack, the top item in the stack is 6, and we backtrack to 6 and so on.

Example 2.3.

Let us look at our previous NFA in Example 2.2. Although the the idea of nondeterminism is
a strong theoretical tool that allows us to compute things with presenting parallel explorations,
the real-world computation remains deterministic: the NFA read the input symbol and see what
pathways it could take according to the transition function, and then do the same process as we
described in DFS. In the Tree diagram below, we show the process of state search for the machine
M2 with in put string 01011. With the first input 0 started at q1 the only accessible next state is
q1. Similar to the idea of a DFS for graphs where we push the neighbors into the stack, we push q1
into the stack. Second, we search the top element in the stack which is now q1, we pop q1 out and
then push in the three “neighbors” with the input 1, which are q1, q2 and q3. The order of pushing



6 SHERRI WU (MENTOR: KATHERINE TAYLOR)

Figure 3. DFS of M2 [1]

in the accessible states does not influence the whole process of search and result. The third step is
fundamentally the same as the first step, we pop out the o state that we are searching, and push
in the only “neighbor” with input 0 at state q1. And again, the fourth step is the similar to the
second step, we pop out q1 and then push in q1, q2 and q3. The path ends when the input has been
fully consumed. By using a stack, we can backtrack to the most recent branching point. Once an
accepting state is reached, the search can terminate, as nondeterminism guarantees acceptance if
at least one computation path leads to success.

q1

Step 1

q1

q2

q3

Step 2

q1

q2

q3

q1

Step 3

q1

q2

q3

q2

q1

Step 4



EXPLORING NONDETERMINISM THROUGH DFS AND BFS 7

3. Turing Machine

To understand the limits of computation, we need a more powerful model than Automaton –
Turing Machines (TMs). A Turing Machine is a powerful machine with an infinitely long tape
that we can write and read from. This allows Turing Machines to go beyond the limit of Finite
Automatons. It is the foundation of modern computer science.

Definition 3.1. A Deterministic Turing machine is a 7-tuple, (Q,Σ,Γ, δ, q0, qaccept , qreject ), where
Q,Σ,Γ are all finite sets and

(1) Q is the set of states,
(2) Σ is the input alphabet not containing the blank symbol ⌞,
(3) Γ is the tape alphabet, where ⊔ ∈ Γ and Σ ⊆ Γ,
(4) δ : Q× Γ −→ Q× Γ× {L,R} is the transition function,
(5) q0 ∈ Q is the start state,
(6) qaccept ∈ Q is the accept state, and
(7) qreject ∈ Q is the reject state, where qreject ̸= qaccept .

The {L,R} part tells whether to move the tape head left or right (L or R).

Definition 3.2. The set of strings that a TM accept is called the language of the TM, denoted
by L(TM).

For Turing Machines, there are three outcomes: accept, reject, or loop. Here we have some new
definitions due to this feature.

Definition 3.3. Call a language Turing-recognizable if there exists some TM recognize it.

Definition 3.4. Call a language Turing-decidable if there exists some TM accept or reject it.
These machine are called deciders because they always decide to accept or reject a string.

Now we construct a Turing machine M over the alphabet {0, 1} that accepts strings with the
same number of 0s and 1s.

Example 3.1. Let M = (Q,Σ,Γ, δ, q0, qaccept, qreject) be a Turing Machine where:

(1) Q = {q0, q1, q2, q3, qaccept, qreject}
(2) Σ = {0, 1}
(3) Γ = {0, 1, X, Y,⊔}
(4) q0 is the start state
(5) qaccept is the accept state
(6) qreject is the reject state
(7) δ is defined as follows:



8 SHERRI WU (MENTOR: KATHERINE TAYLOR)

Current State Read Symbol Action (Write, Move, Next State)
q0 0 (X,R, q1)
q0 1 (Y,R, q2)
q0 X (X,R, q0)
q0 Y (Y,R, q0)
q0 ⊔ (⊔, R, qaccept)
q1 0 (0, R, q1)
q1 X (X,R, q1)
q1 Y (Y,R, q1)
q1 1 (Y,L, q3)
q1 ⊔ (⊔, R, qreject)
q2 1 (1, R, q2)
q2 X (X,R, q2)
q2 Y (Y,R, q2)
q2 0 (X,L, q3)
q2 ⊔ (⊔, R, qreject)
q3 0 (0, L, q3)
q3 1 (1, L, q3)
q3 X (X,L, q3)
q3 Y (Y,L, q3)
q3 ⊔ (⊔, R, q0)

Example 3.2.

Now let’s examine the input 01 on M. Starting on input 01 at state q0 with the head on the first
symbol, the machine marks the first 0 as X and moves right to state q1; then it finds a 1, marks
it as Y , moves left to state q3 to return the head to the left end; finally, it scans right back to the
blank and transitions to the accept state.

Just like Finite Automatons, we also have a variant of TM that is Nondeterministic Turing
machines. The definition is similar to the Deterministic Turing Machine, the only difference is the
transition function which shows its nondeterminism. It has the form:

δ : Q× Σϵ → P(Q× Γ× {L,R})
In order to know at what stage our computation has been going so far, we need to know three

things: What state are we at, what is the content on the tape, and where the head is pointing at.

We call these three things configuration.

q0 01
X q1 1
q3 X Y
⊔ q3 X Y
q0 X Y
X q0 Y
X Y q0 ⊔

X Y ⊔ qaccept ⊔
Example 3.3.



EXPLORING NONDETERMINISM THROUGH DFS AND BFS 9

A feature we noticed is that we cannot do the same deterministic process of DFS as for NFA for
NTM, because a NTM might end up in a loop and never end up in an accept state. We define a
Turing Machine M = (Q,Σ,Γ, δ, q0, qaccept) as follows:

(1) Q = {q0, q1, qaccept}
(2) Σ = {1}
(3) Γ = {1,⊔}
(4) q0 is the start state
(5) qaccept is the accept state
(6) The transition function δ is given by:

Current State Read Symbol Write Symbol Move Next State
q0 1 1 R q1
q1 1 1 L q0
q0 ⊔ ⊔ R qaccept

On input 1, the machine loops infinitely by alternating between states q0 and q1, moving the head
right and then left without ever reaching the blank symbol. Hence, it never halts.

So, here we introduce another type of searching method called Breadth-First Search(BFS).

Definition 3.5. A queue is an abstract data type that serves elements in an order of first in first
out.

3.1. Breadth-First Search. For a specific input for TM, we can have a Computation Tree
which all the nodes of it are different configurations. Since the TM can potentially end up in a loop
and never halt, we cannot do DFS. Because using DFS may lead us into an infinitely deep path
before backtracking. Instead, we visit all the configurations in breath-first search to make sure that
if there exist an accept state, we will visit it at some point.

Example 3.4.

In order to do Breath-First Search, we start with one and put all of its neighbors into a queue
and search from the beginning of the queue. In the example, we first visit 1, and put 2 and 3 into
the queue. Now the first element in the queue is 2, so we put neighbors or 2 into the queue which
is 4 and 5 and take 2 out of the queue. The next element in the queue is 3, so we put 6 into the
queue and take 3 out and so on. Good thing about BFS is that if there exist any accept states, we
would not skip it or fail to find it because of potential loops.

2 3

3 4 5

4 5 6

5 6

6



10 SHERRI WU (MENTOR: KATHERINE TAYLOR)

Figure 4. Breadth-First
Search example Figure 5. TM searching [1]

Conclusion

Both Depth-First Search (DFS) and Breadth-First Search (BFS) are fundamental algorithms that
systematically explore the shortest paths in graphs and ensure that all nodes are visited. When
it comes to nondeterminism, these two searching strategies help us simulate a nondeterministic
process in a deterministic way. Both of these two strategies bridge the gap between theoretical
nondeterminism and practical process, making them useful tools in computer science.

References

[1] Sipser, Michael. Introduction to the Theory of Computation, 3rd ed., Cengage Learning, 2012.
[2] Russ Cox. Regular Expression Matching Can Be Simple and Fast (but is slow in Java, Perl, PHP, Python, Ruby,

...). January 2007.


