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Abstract

This paper explores fundamental concepts in 3-dimensional topology, focusing
on 3-manifolds, Heegaard splittings, and the Poincaré Conjecture. We introduce
manifolds and their dimensional properties, then demonstrate how Heegaard split-
tings decompose compact orientable 3-manifolds into handlebodies. Finally, we
discuss the Poincaré Conjecture and summarize Perelman’s proof establishing the
3-sphere as the unique simply connected closed 3-manifold.
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1 Introduction

Topology is a branch of mathematics that studies the properties of objects that remain
unchanged under continuous deformations. Unlike geometry, which concerns precise
measurements (like distances and angles), topology focuses on the abstract properties
of shapes that are preserved when they are stretched, bent, or twisted, but not when
they are cut or glued.

1.1 Homeomorphism

Now, let’s move on to homeomorphism, a fundamental concept in topology that rig-
orously defines when two shapes are ”the same” from a topological perspective. Two
spaces X and Y are homeomorphic if you can stretch, bend, or twist one into the
other without tearing or gluing. More formally, this means there is a continuous func-
tion f that matches every point in X to a unique point in Y , and you can also reverse
this process smoothly.

For two shapes to be homeomorphic, they must satisfy a few conditions:

• Bijectivity: The function f : X → Y must be both injective (no two distinct
points in X map to the same point in Y ) and surjective (every point in Y is the
image of at least one point in X).

• Continuity: Both the function f and its inverse f−1 : Y → X must be continu-
ous, ensuring a smooth transformation with no sudden breaks in either direction.

If all these conditions hold, the two shapes are considered homeomorphic; they are
“topologically identical,” even though they may look different.

A classic example of homeomorphism is transforming a cube into a sphere. These two
shapes can be deformed into one another smoothly without cutting or gluing. In other
words, there’s no need for any “breaks” in the object; it’s just reshaped continuously.

Figure 1: A sphere can be deformed into a cube without cutting and gluing, these two
shapes are homeomorphic. [Ada04]
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Figure 2: A doughnut deforming into a coffee cup without cutting and gluing. [Sci11]

1.2 Isotopy

Isotopy is a more restrictive notion than homeomorphism. While homeomorphism
concerns the topological equivalence of spaces, isotopy addresses whether one embedded
object can be continuously deformed into another within a fixed space.

For example, a coffee cup and a doughnut are homeomorphic because they have the
same number of holes, but isotopy talks about whether one embedding can be deformed
into another without cutting.

In knot theory, the unknot (a simple loop) and the trefoil knot (a knotted loop) are
both homeomorphic to a circle, but they are not isotopic because you cannot untie the
trefoil into the unknot without cutting the string.

Figure 3: The unknot and trefoil knot are homeomorphic but not isotopic to one
another. [Gya25]

2 Understanding Manifolds

A manifold is a topological space that locally resembles Euclidean space. More pre-
cisely, an n-dimensional manifold is a space where every point has a neighborhood
homeomorphic to an open subset of Rn.

Different dimensions change how manifolds behave and what properties they have.
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2.1 1D Manifolds

A 1-dimensional manifold is a space that locally resembles 1-dimensional space (R).
Consider a curve in the plane. Zooming in on any point reveals an open neighborhood
of points that behave like a segment of the real line. More precisely, each point has an
open neighborhood homeomorphic to an open interval in (R).

Figure 4: Zooming in on any point shows neighborhoods homeomorphic to an open
interval in R. [Cha25]

2.2 2D Manifolds: Surfaces

A 2-dimensional manifold is referred to as a surface. Classic examples include the
surface of a sphere or a donut (torus). On these surfaces, you can move in two directions
but cannot step ”outside” the surface itself. If you zoom in on any point, it will appear
flat, like a small plane. The neighborhood around each point is homeomorphic to an
open disk in R2

Figure 5: Examples of 2 manifolds, the sphere and the torus.[Ada04]

2.3 3D Manifolds

A 3-dimensional manifold locally resembles R3. A natural example is the space
around us: even if the universe has curvature or unusual global topology, small regions
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behave like ordinary 3D space. If you zoom in on any point of a 3-manifold, the
neighborhood looks like a solid ball, homeomorphic to an open ball in R3.

2.4 Higher-Dimensional Manifolds

Manifolds can exist in higher dimensions as well, and while they are harder to visualize,
they follow the same principles. For example, a 4-dimensional manifold would behave
locally like our familiar 3D space but with an additional dimension we can’t physically
perceive. In physics and mathematics, time is often treated as the fourth dimension
because we can move both forward and backward through it.

To visualize a 4-dimensional manifold, topologists often use what’s called a ’movie
method,’ where slices of the 4D object are represented over time.

3 Heegaard Splitting

A Heegaard splitting is a fundamental technique for decomposing any compact ori-
entable 3-manifold into two simpler, more manageable pieces called handlebodies.
These handlebodies are glued together along a common boundary surface, called the
Heegaard surface, and their union reconstructs the original manifold.

To understand Heegaard splittings, we first need to define the concept of genus.

3.1 Genus

The genus of a surface counts the number of “through-holes”, or complete holes that
pass entirely through the surface, like the hole in a donut.

For example:

• A genus 0 surface is a sphere (no holes)

• A genus 1 surface is a torus (1 hole)

• A genus 2 surface has two holes, and so on.

This idea of genus helps us organize different types of shapes based on the number of
holes they contain.
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Figure 6: Genus 0: Sphere
Figure 7: Genus 1: Torus
[Ale07b]

Figure 8: Genus 2: Dou-
ble Torus [Ale07a]

3.2 The Heegaard Splitting Process

Here’s how a Heegaard splitting works:

1. Start with a compact orientable 3-manifold (like a 3-sphere or another bounded
3-dimensional space).

2. Identify a closed surface of some genus g embedded within the manifold. This
surface will serve as the Heegaard surface.

3. Cut the manifold along this Heegaard surface, dividing it into exactly two pieces.

4. Each resulting piece is a handlebody of genus g, which is a 3-dimensional space
whose boundary is the Heegaard surface.

5. The original manifold can be recovered by gluing these two handlebodies back
together along their common boundary (the Heegaard surface).

The genus of the Heegaard splitting refers to the genus of the Heegaard surface that
separates the two handlebodies.

3.3 Genus 1 Heegaard Splittings

Let’s examine a concrete example involving genus 1 handlebodies. Consider how
gluing two solid tori (genus 1 handlebodies) can produce different 3-manifolds depending
on the gluing pattern.

The figure below demonstrates how a specific gluing of two solid tori yields the
manifold S1 × S2:

• The left and right circles represent the boundaries of two solid tori.

• The red circle on each torus represents a longitude, while the yellow arc repre-
sents a meridian.
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(a) Splitting of a sphere (b) Heegaard surface of a sphere

Figure 9: An example of a Heegaard splitting of the 3-sphere.[Ada04]

• The gluing map aligns longitudes to longitudes and meridians to meridians, cre-
ating a direct product structure.

• The resulting 3-manifold is S1 × S2.

Figure 10: Example of S1 × S2 as a Heegaard splitting of genus 1

This example illustrates how the same handlebodies can produce entirely different
manifolds depending on how their boundaries are identified during the gluing process.

3.4 Every 3-Manifold Has a Heegaard Splitting

One of the most important results in 3-manifold topology is that every closed, ori-
entable 3-manifold can undergo a Heegaard splitting. This means that no matter
how complex a 3-dimensional space might be, it can always be decomposed into ex-
actly two handlebodies. This fundamental theorem was first proven by mathematicians
Kneser and Reidemeister in the early 1900s.
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Here’s how the proof works in simplified terms:

1. Triangulation: Start by triangulating the 3-manifold—decompose it into a finite
collection of tetrahedra (3D triangles) that fit together without gaps or overlaps.

2. Extract the 1-skeleton: Take the 1-skeleton of this triangulation, which con-
sists of all the vertices (points) and edges (lines) of the tetrahedra.

3. Build a regular neighborhood: Construct a regular neighborhood around
this 1-skeleton by “thickening” it uniformly. Think of wrapping a thin layer of
padding around every vertex and edge. This thickened region forms the first
handlebody.

4. The complement: The remaining portion of the 3-manifold (everything outside
the regular neighborhood) automatically becomes the second handlebody.

5. The Heegaard surface: The boundary where these two handlebodies meet is
the Heegaard surface of the splitting.

This constructive proof guarantees that Heegaard splittings exist universally, making
them an indispensable tool for analyzing 3-manifolds. No matter how complicated a
3-manifold appears, it can always be understood as the union of two handlebodies.

4 The Poincaré Conjecture

The Poincaré Conjecture, posed by Henri Poincaré in 1904, states that every closed,
simply connected 3-manifold is homeomorphic to the 3-sphere, S3. This problem re-
mained unsolved for nearly a century until Grigori Perelman proved it in 2003, funda-
mentally impacting 3-manifold theory.

Perelman’s proof shows that any such manifold can be continuously deformed into
a round 3-sphere, confirming the conjecture. This result is central to understanding
the classification of 3-manifolds and connects deeply with the structure of Heegaard
splittings.

To understand what this conjecture means, we need to unpack the key terms.

Closed means the shape is compact and has no edges. Mathematically, this means the
space can be built using only finitely many tetrahedra, so it’s not infinite or open-ended.

Simply connected means that any loop you draw on the shape can be shrunk down
to a single point without tearing the space.
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Figure 11: On a 3-sphere, every loop can shrink to a point.[Ada04]

If a 3-manifold meets these two conditions, being closed and simply connected, then
the Poincaré Conjecture says it’s homeomorphic to the 3-sphere. In plain terms: it
may look complicated, but the shape is actually topologically equivalent to the 3-sphere.

One subtle but important note: if a 3-manifold has genus greater than zero (in other
words, it has holes), then it cannot be simply connected, since any loop around one
of those holes won’t shrink to a point. So, a shape with genus > 0 is definitely not
homeomorphic to a 3-sphere.

Figure 12: A loop around a torus’s hole can’t shrink — this shape is not simply con-
nected. [Ada04]
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