
Sudoku as Sets and Predicate Logic

Ren Lin

Abstract

This paper explores the combinatorial puzzle Sudoku through ideas
from set theory and predicate logic. The rules of Sudoku, which re-
quire distinct values in each row, column, and subgrid, can be formal-
ized using definitions in set theory and written as logical statements.
Thinking of Sudoku as a grid related to sets and logic, and solving
the puzzle by finding values that meet all logical rules, presents useful
applications of mathematical ideas.

Contents

1 Introduction 1

2 Preliminaries 2

3 Formalizing Sudoku 3

4 Applications and Analysis 4

5 Conclusion 6

6 References 6

1 Introduction

Sudoku is a combinatorial puzzle that is solved by completing a partially
filled 9 × 9 so that each row, column, and 3 × 3 grid contains each of the
digits from 1 to 9 exactly once. Some see Sudoku as a simple game, but it
has a deep mathematical structure that we can study using set theory and
predicate logic. Solving a Sudoku puzzle requires satisfying certain condi-
tions across rows, columns, and subgrids. These conditions required to solve
a Sudoku puzzle can be described using sets and logical statements.
The discussion begins in Section 2 with an overview of set theory and pred-
icate logic, focusing on ideas that will be essential for modeling Sudoku. In

1



Section 3, we will define the Sudoku grid and its rules using ideas from Sec-
tion 2. Section 4 uses all past sections to solve a puzzle in Sudoku by checking
conditions for solution uniqueness. Sections 5 and 6 include final reflections
and references.

2 Preliminaries

Definition 2.1. (Set). A collection of distinct objects, called elements.
Examples of sets include:

(1) Empty: The empty set, denoted ∅, contains no elements.

(2) Subset: A set A is a subset of B, written A ⊆ B, if every element of
A is also an element of B.

(3) Power Set: The power set P(A) is the set of all subsets of A.

Definition 2.2. (Element). If a is an object and A is a set, we write a ∈ A
to indicate that a is an element of A.
Definition 2.3. (Ordered Pair). An ordered pair (a, b) is a pairing of two
elements where the order matters. That is, (a, b) ̸= (b, a) in general.
Definition 2.4. (Relation). A relation is a set of ordered pairs. For example,
a relation R between sets A and B is written as:

R = {(a, b) | a ∈ A, b ∈ B}.

Definition 2.5. (Predicate). A predicate is a logical statement involving
one or more variables. The truth value of the statement depends on the
values of the variables. For example, P (x) might be true for some values of
x and false for others.
Definition 2.6. (Quantifiers).

(1) The universal quantifier ∀ means ”for all”. For example, ∀x ∈ A, P (x)
means that P (x) is true for every x in A.

(2) The existential quantifier ∃ means ”there exists” or ”there is at least
one”. For example, ∃x ∈ A, P (x) means there is at least one x in A
for which P (x) is true.

Definition 2.7. (Satisfiability). A set of logical statements is satisfiable if
there exists an assignment of values to its variables that makes all statements
true.

2



3 Formalizing Sudoku

A Sudoku grid is a 9x9 grid composed of 81 cells. Each cell is located using
a pair of coordinates (i, j) where i represents the row index and j represents
the column index. The set of all cells in the grid is given by:

G = {(i, j) | 1 ≤ i ≤ 9, 1 ≤ j ≤ 9}

The set of possible digits in a Sudoku puzzle is:

D = {1, 2, . . . , 9}

A Sudoku solution is a relation R ⊆ G×D, where G×D is the Cartesian
product of the set of cells G and the set of digits D. R is a set of ordered
pairs ((i, j), d), where (i, j) ∈ G and d ∈ D, such that ((i, j), d) ∈ R indicates
that the cell (i, j) contains the digit d. The predicate P (i, j, d) is defined as:

P (i, j, d) is true if and only if ((i, j), d) ∈ R

The 3x3 subgrids are defined as sets of cells. For each k, l ∈ {1, 2, 3}, the
subgrid Sk,l contains cells (i, j) where:

Sk,l = {(i, j) | 3k − 2 ≤ i ≤ 3k, 3l − 2 ≤ j ≤ 3l}.

A valid Sudoku solution must satisfy the following constraints, expressed
in terms of the predicate P (i, j, d), which is true if cell (i, j) contains digit
d ∈ D = {1, 2, . . . , 9}:

1. Each row contains at most one instance of each digit.

∀i ∈ {1, . . . , 9},∀d ∈ D, ∀j1, j2 ∈ {1, . . . , 9}, (j1 ̸= j2) =⇒ ¬(P (i, j1, d)∧P (i, j2, d))

This ensures that if P (i, j1, d) and P (i, j2, d) both hold for the same
digit d, then j1 must equal j2, preventing the same digit from appearing
twice in a row.

2. Each column contains at most one instance of each digit.

∀j ∈ {1, . . . , 9},∀d ∈ D, ∀i1, i2 ∈ {1, . . . , 9}, (i1 ̸= i2) =⇒ ¬(P (i1, j, d)∧P (i2, j, d))

This ensures that for any two different rows i1 ̸= i2, the same digit d
cannot appear twice in the same column.

3. Each 3x3 subgrid contains at most one instance of each digit.

∀k, l ∈ {1, 2, 3},∀d ∈ D, ∀(i1, j1), (i2, j2) ∈ Sk,l,

(i1, j1) ̸= (i2, j2) =⇒ ¬(P (i1, j1, d) ∧ P (i2, j2, d))

This ensures that digit d appears at most once per 3x3 subgrid, where
Sk,l = {(i, j) | 3k − 2 ≤ i ≤ 3k, 3l − 2 ≤ j ≤ 3l}.

3



4. Every cell contains exactly one digit.

∀i ∈ {1, . . . , 9},∀j ∈ {1, . . . , 9}, ∃d ∈ D,P (i, j, d)∧∀d′ ∈ D, (P (i, j, d′) → d′ = d)

This ensures that for each cell (i, j), there exists a digit d ∈ D such that
P (i, j, d) holds, and any other digit d′ ∈ D that also satisfies P (i, j, d′)
must be equal to d, guaranteeing each cell contains exactly one digit.

4 Applications and Analysis

In this section, we explore how the set-theoretic and predicate logic frame-
work developed in Sections 2 and 3 can be applied to solve a Sudoku puzzle
and analyze the uniqueness of its solution. By modeling Sudoku as a satisfi-
ability problem, we can leverage logical constraints to systematically assign
digits to cells and verify whether a given puzzle has a unique solution. This
approach not only provides a mathematical foundation for solving Sudoku
but also connects to broader applications in computer science and constraint
satisfaction problems.

The formalization of Sudoku in Section 3 defines a valid Sudoku solution as
a relation R ⊆ G×D that satisfies the constraints expressed by the predicate
P (i, j, d). These constraints (rows, columns, subgrids, and single-digit per
cell) form a set of logical statements that must be simultaneously satisfied.
This setup naturally lends itself to a satisfiability problem, where the goal is
to find an assignment of truth values to P (i, j, d) for all (i, j) ∈ G and d ∈ D
such that all constraints hold.

Consider a partially filled Sudoku grid, where some cells (i, j) ∈ G are
assigned specific digits d ∈ D. These assignments correspond to a subset of
the relation R, denoted as the set of ”given” entries:

R0 = {((i, j), d) | cell (i, j) is pre-filled with digit d}.

The task is to extend R0 to a complete relation R that satisfies all constraints
in Section 3. In logical terms, we seek a model for the conjunction of the
following:

1. The constraints from Section 3 (row, column, subgrid, and single-digit
conditions).

2. The given entries: ∀((i, j), d) ∈ R0, P (i, j, d).

To illustrate, consider a simple 4x4 Sudoku puzzle (a smaller variant for
brevity) with digits D = {1, 2, 3, 4} and 2x2 subgrids. Suppose the given
entries are:

R0 = {((1, 1), 1), ((2, 2), 2), ((3, 3), 3), ((4, 4), 4)}.

4



This corresponds to the following grid:

1 . . .
. 2 . .
. . 3 .
. . . 4

The solver must assign digits to the remaining cells such that:

1. Each row i ∈ {1, 2, 3, 4} contains each digit in D exactly once.

2. Each column j ∈ {1, 2, 3, 4} contains each digit in D exactly once.

3. Each 2x2 subgrid Sk,l (for k, l ∈ {1, 2}) contains each digit in D exactly
once.

4. Each cell contains exactly one digit.

Using the predicate P (i, j, d), we can encode these constraints and use
a logical solver (or manual deduction) to find a satisfying assignment. For
example, the constraint that row 1 contains digit 1 exactly once includes the
fact that P (1, 1, 1) is true (since ((1, 1), 1) ∈ R0), and thus P (1, j, 1) must be
false for j = 2, 3, 4. By iteratively applying the constraints, we can deduce
values for each cell. For example, if we find that P (1, 2, 2) is true, we update
R to include ((1, 2), 2) and ensure that no other cell in row 1 or column 2
contains digit 2.

A valid solution to this 4x4 Sudoku puzzle, obtained by satisfying all
constraints, is:

1 3 4 2
4 2 1 3
2 4 3 1
3 1 2 4

This solution can be verified by checking that each row, column, and 2x2
subgrid contains the digits {1, 2, 3, 4} exactly once. For example, row 1
(1, 3, 4, 2) and the top-left subgrid ((1, 1) = 1, (1, 2) = 3, (2, 1) = 4, (2, 2) = 2)
satisfy the constraints.

This process is similar to algorithmic approaches like backtracking or
constraint propagation used in computer science to solve Sudoku. The logical
framework allows us to formalize these algorithms as searches for a satisfying
assignment to the predicate P .

A well designed Sudoku puzzle typically has exactly one solution. Using
the formalization from Section 3, we can analyze whether a given puzzle
has a unique solution by checking whether there exists exactly one relation
R ⊆ G×D that satisfies all constraints and includes the given entries R0.

5



Formally, a puzzle has a unique solution if the set of logical statements
(constraints plus given entries) is satisfiable, and any two satisfying assign-
ments R1, R2 ⊆ G ×D are identical. To verify uniqueness, we can attempt
to find two distinct solutions. Suppose R1 is a valid solution, such as the
one provided above for the 4x4 puzzle. We can add a constraint to force a
different solution:

∃(i, j, d) ∈ G×D such that P1(i, j, d) ̸= P2(i, j, d),

where P1 and P2 represent the predicates corresponding to R1 and R2. If the
resulting set of constraints is unsatisfiable, then no second solution exists,
and the puzzle has a unique solution.

5 Conclusion

This paper demonstrates how Sudoku, a popular combinatorial puzzle, can be
rigorously modeled using set theory and predicate logic. By representing the
puzzle’s grid, digits, and rules as sets and logical constraints, we developed
a framework to solve Sudoku and verify the uniqueness of its solutions. This
approach transforms Sudoku into a constraint satisfaction problem (CSP),
an important concept in computer science and artificial intelligence. The
formalization enables the use of algorithms like backtracking and constraint
propagation, which are applicable to real-world problems such as scheduling,
graph coloring, and circuit design. This logical perspective connects Sudoku
to automated reasoning and model checking, which is a practical way to
explore set theory and predicate logic. Future research could extend this
framework to larger puzzles, such as 16x16 Sudoku, or investigate variants
like diagonal Sudoku.

6 References

[1] Robert R. Stoll, Set Theory and Logic, Dover Publications, 1979.

6


	Introduction
	Preliminaries
	Formalizing Sudoku
	Applications and Analysis
	Conclusion
	References

