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Abstract. Spectral graph theory bridges the world of linear algebra and
graph theory by studying how a graph’s connectivity and organization are
encoded in the eigenvalues and eigenvectors of its associated matrices. We
begin with a concise overview of the fundamental concepts of graph theory
and the basics of matrices in linear algebra. Then, we introduce the principal
matrix representations of a graph: the adjacency matrix and incidence matrix.
We highlight their definitions and properties. Next, we introduce the Laplacian
operator and its graph analogue, the Laplacian matrix. Finally, we investigate
the eigenvalues of the Laplacian matrix and how they reveal deep insights into
the connectivity of the graph.

Contents

1. Background 2
1.1. Introduction to Graphs 3
1.2. Introduction to Matrices 5
1.3. Eigenvalues and Eigenvectors 8
2. Adjacency Matrices 10
2.1. Definition of the Adjacency Matrix 10
2.2. The Power of the Adjacency Matrix 11
3. Incidence Matrices 12
3.1. Definition of the Incidence Matrix 12
4. The Laplacian Operator 12
4.1. Intuition Behind the Laplacian 13
4.2. Laplace’s Equation 14
5. Laplacian Matrices 15
5.1. Definition of the Laplacian Matrix 15
5.2. Eigenvalues of the Laplacian Matrix 16
5.3. Spectral Partitioning 21
5.4. Trees in Graphs 25
5.5. Counting Spanning Trees 27
References 30

Date: May 20, 2025.



2 BRIAN PAN NATHAN NIE DANIEL WANG

1. Background

The first recorded discovery of graph theory was by Leonard Euler, a Swiss
mathematician, who developed a theorem to solve the famous Seven Bridges of
Königsberg problem in 1736 [5]. Euler wanted to find a way to cross all seven bridges
in the city of Königsberg, shown in Figure 1, once and exactly once. In the map, the
bridges are colored red, while the river is colored blue. Euler eventually found that
this was an impossible task, and this discovery laid the foundation for graph theory.

Figure 1. The city and bridges of Königsberg

Since then, the field of graph theory has developed significantly with the work
of mathematicians such as Georg Kirchhoff and Arthur Cayley, who have made
meaningful contributions to graph theory. We will discuss some of these in this
paper, including Kirchhoff’s matrix tree theorem [3] and Cayley’s tree formula [1].

One unique field in graph theory is spectral graph theory, which combines linear
algebra and graph theory. Spectral graph theory originated in the 1950s with the
first few pieces of research on structural and spectral properties of graphs, as well as
on quantum chemistry. However, this line connecting the two would not be drawn
until much later. One of the first books that summarized all of the work in this
field was published in 1980 by Cvetković, Doob, and Sachs, which was a monograph
called Spectra of Graphs [7]. Today, spectral graph theory has developed greatly and
is applied to a wide range of fields, including in machine learning, network analysis,
autonomous systems, and chemistry.

This paper explores the field of spectral graph theory, which studies the rela-
tionships between the structure of a graph and the eigenvalues and eigenvectors of
matrices associated with it − particularly the adjacency matrix, incidence matrix,
and Laplacian matrix.

We begin with the foundational concepts of graph theory, including the nomen-
clature and properties of graphs. Shortly after, we introduce linear algebra with
the properties of matrices, as well as the eigenvalues and eigenvectors of matrices.
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Next, we dive into the relationships between graphs and their matrix representa-
tions. More specifically, we look at the properties of the adjacency matrix and the
incidence matrix. Then, we introduce the Laplacian operator and its graph analog,
the Laplacian matrix, which is a central object in spectral graph theory. Finally, we
analyze the key properties of the Laplacian matrix with a focus on its eigenvalues,
eigenvectors, and how they relate to the structure of the graph.

1.1. Introduction to Graphs. The most basic definition needed in our investiga-
tion is that of a graph.

Definition 1.1. [1] A graph is an ordered pair G = (V, E) where V is the vertex
set and E is the edge set. An edge e ∈ E is a pair uv of distinct vertices u, v ∈ V.

Hence, there are no loops, meaning that no vertex can have an edge to itself.
Moreover, we stipulate that a graph cannot have multiple edges that connect the
same pair of vertices. When the edges are given direction, the graph is a digraph.
Unless stated otherwise, the graphs in this paper are not directed, so we are free to
assume uv = vu. We also say that |V | is the order of the graph, or the number of
vertices, of G while |E| is the size, or the number of edges, of G.

Two vertices u and v are adjacent or neighbors if u, v ∈ V (G) and the edge
e = uv ∈ E(G). The vertex u and the edge e are said to be incident.

Consider the following graph in Figure 2. The order |V | is 6, while the size |E| is
6 as well. This graph shows that v3 is adjacent to v1 and v4, while it is incident to
e = v1v3.

G:

v1

v2 v3

v4

v5

v6

e

Figure 2. A graph

A subgraph of a graph G = (V, E) is a smaller graph G′ contained within G,

formed by taking subsets of V and E. Intuitively, G′ is formed by removing vertices
and edges from G, but we cannot add vertices or edges.

Definition 1.2. The degree deg v of a vertex v is the number of edges incident
with v, equivalent to the number of vertices adjacent to v.

An interesting result involving degrees in graph theory is the degree sum formula
which states that for any graph, one can relate the number of edges to the degrees
of its vertices. This theorem is often referred to as the First Theorem of Graph
Theory because many who start studying this subject would encounter this result as
their first theorem.
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Theorem 1.3 (First Theorem of Graph Theory). [1] If G is a graph of size m, then∑
v∈V (G)

deg v = 2m.

Proof. Each edge in G represents a degree of two because it is incident with two
vertices. Therefore, each edge is counted twice when summing the degrees of the
vertices of G. □

As an example, consider the graph in Figure 2. The sum of the degrees of its
vertices is 3 + 2 + 2 + 4 + 1 + 0 = 12, while two times the number of edges is also
2m = 6 · 2 = 12.

The particular reason why this theorem is also named the handshaking lemma by
many is because it follows directly from the degree sum formula that there must be
an even number of odd vertices in a graph. If there is a party of people who shake
hands, the number of people who shake an odd number of other people’s hands
must be even.

Example 1.4. Consider a graph of order 12 and size 31 in which the degree of
each vertex is either 4 or 6. To find the number of vertices of degree 4, let x be the
number of vertices of degree 4. Then, there are 12 − x vertices of degree 6.

By the degree sum formula, 4x + 6(12 − x) = 2 · 31, so there are x = 5 vertices of
degree 4. Consequently, there are 12 − 5 = 7 vertices of degree 6.

In theory, a graph of order 12 and size 31 with 7 vertices of degree 6 and 5 vertices
of degree 4 is tedious to count by hand, so this theorem proves to be extremely
beneficial.

Many times, graphs are used to model connections between states in a process,
so graph traversals are of great importance. In a graph G, we choose a vertex u

to start. Then, we proceed from u to a neighbor of u, then to a neighbor of the
neighbor of u, and so on, until we stop at a vertex v. Such a sequence is called a
walk. The number of edges traversed on a walk is the length of that walk.

Definition 1.5. A u − v walk W in a graph G is a sequence of vertices starting
with u and ending with v where all pairs of consecutive vertices in W are adjacent.

If we continue this walk (until we stop), there is essentially no restriction on what
a walk can be. However, there will be instances where we want to place restrictions
on walks. If a walk contains no repeated vertices or repeated edges, then it is called
a path, denoted Pn with n vertices. A path is shown in Figure 3.

Moreover, a cycle Cn is a walk with n vertices that starts and ends at the same
vertex, but, like paths, cannot have any repeating vertices (except for the first and
last) and cannot have any repeating edges. A k-cycle is a cycle of length k. A graph
is acyclic if it has no cycles. A cycle is shown in Figure 3.

Speaking of graph traversals, it is helpful to know whether we can traverse a
graph from any vertex to any other vertex.

Definition 1.6. A graph G is connected if G contains a u − v walk for all u, v ∈ G.
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P5: C5:

Figure 3. A path P5 and a cycle C5

In other words, a graph is connected if there exists a walk that connects all pairs
of vertices in that graph. If the entire graph is not connected, but rather a specific
section, these sections are called connected components.

As we continue to study graphs, we will encounter certain graphs with shared
characteristics. It is useful to be familiar with some of them.

Definition 1.7. The complete graph Kn with n vertices is a graph in which every
pair of vertices is adjacent.

Therefore, Kn has the maximum possible size for a graph with n vertices. The
complete graph K4 is shown in Figure 4.

K4:

v1

v2v3

v4

Figure 4. A complete graph K4

Definition 1.8. The star graph Sn with n vertices is a graph in which one vertex
has degree n − 1, while every other vertex has a degree of 1.

The star graph takes the shape of a star, hence why it is called a star graph. The
star graph S5 is shown in Figure 5.

1.2. Introduction to Matrices. Linear algebra is essential for the study of spectral
graph theory, especially in analyzing the matrix representations of graphs, so it is
crucial to grasp a solid understanding of the subject.

A vector is a tuple of numbers arranged in a vertical fashion. Usually, they are
used to represent coordinates in n−dimensional space; as such, each entry is well
defined according to a single index. A matrix is a rectangular array of numbers.
An m × n matrix has m rows and n columns. Each entry in the array is called an
element of the matrix which can be directly referenced using rows and columns.
This is done with the notation Aij , which pinpoints the element in the i−th row
and the j−th column.
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S5:
v1

v2v3

v4

v5

Figure 5. A star graph S5

Definition 1.9. The transpose of a matrix A is denoted AT . The ij−th element of
A becomes the ji−th element of AT .

Note that the transpose is also well-defined for a vector: instead of being a column
of numbers, a transposed vector is a row. We will revisit the matrix transpose in
our discussion of the adjacency matrix.

A square matrix is a matrix in which the number of rows and columns are the
same, say n. The main diagonal of a square matrix A is the set of elements Aii, and
the trace is the sum of the entries on the main diagonal. For example, the identity
matrix I, so named because it does not meaningfully transform space, is the square
matrix with 1 on the main diagonal and 0 otherwise.

There is a useful way of representing and visualizing transformations in n−
dimensional space. We do so by multiplying matrices and vectors. When a matrix
is applied to a vector, the vector transforms by the matrix A.

Example 1.10. Suppose we multiply the following matrix A and vector v:

A =
[

2 3
4 1

]
, v =

[
5
6

]
.

Then, the resulting vector will take the form [k1, k2]T . The value of k1 is the sum of
the multiplication of the corresponding elements in the first row of A with v. Thus,
we get k1 = 2 · 5 + 3 · 6 = 28.

Similarly, the value of k2 is the sum of the multiplication of the corresponding
elements in the second row of A with v, yielding k2 = 4 · 5 + 1 · 6 = 26.

Therefore, the resulting vector is Av = [28, 26]T .

In summary, to transform space by multiplying a matrix A with a vector v, the
number of columns of A must match the number of rows of v. Furthermore, the
resulting vector has the number of rows of A, and the individual elements in the
resulting vector can be found by multiplying the rows of A with v.

We can also compose or multiply matrices with matrices.

Definition 1.11. Let A be a m × n matrix and B a n × p matrix. Then

(AB)ij =
n∑

k=1
AikBkj .
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In other words, if A[i, :] denotes the i−th row of A and B[:, j] is the j−th column,
then the ij-th entry of AB is exactly A[i, :]B[j, :].

We visualize matrix multiplication with two arbitrary 2 × 2 matrices shown in
Figure 6.

[
a b

c d

]
·

[
e f

g h

]
=
[

ae + bg af + bh

ce + dg df + dh

]
.

Figure 6. The multiplication of two 2 × 2 matrices

Reversing the order of the two matrices multiplied in Figure 6 produces the result
in Figure 7. It does not yield the same result, proving that matrix multiplication is
not commutative.

[
e f

g h

]
·

[
a b

c d

]
=
[

ea + fc eb + fd

ga + hc gb + hd

]
.

Figure 7. The multiplication of two matrices in reverse order

Next, we examine a crucial part of the matrix: the determinant. The determinant
has many uses, including showing how much a matrix scales an area, calculating the
inverse of a matrix, and providing useful information on graph structure. We will go
back to the discussion of the determinant after the introduction of the eigenvalues
of a matrix.

Definition 1.12. The determinant of a square matrix A, denoted det(A), is the
product of every eigenvalue of A counted with multiplicities.

Moreover, the trace of a square matrix tr(A), or the sum of the main diagonal, is
also equal to the sum of the eigenvalues of A [22].

To visualize an example, we show the determinant for an arbitrary 2 × 2 and
3 × 3 matrix in Figure 8. The determinant and trace of a 1 × 1 matrix is equal to
the only element in the matrix.

det
[

a b

c d

]
= ad − bc

det

a b c

d e f

g h i

 = aei + bfh + cdh − ceg − bdi − afh

Figure 8. The determinant for two arbitrary matrices
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1.3. Eigenvalues and Eigenvectors. One major backbone of spectral graph
theory and linear algebra alike is the use of eigenvalues and eigenvectors. Thus, it is
beneficial to introduce the eigenvalues and eigenvectors of matrices. Eigenvectors
are special vectors such that when a transformation matrix is applied, the resulting
vector is simply a scaled version of the original vector. The factor by which it is
scaled is the eigenvalue.

Definition 1.13. The vector v⃗ is an eigenvector of a matrix A with eigenvalue λ if
Av⃗ = λv⃗.

That is, multiplying the eigenvector v⃗ by A yields the same result as scaling v⃗ by
the eigenvalue λ.

The eigenvectors and eigenvalues of a matrix can be found using the characteristic
polynomial of the matrix. The characteristic polynomial is represented by the
equation det(A − λI) = 0, which is derived by manipulating the equation Av⃗ = λv⃗.
The roots of the characteristic polynomial are the eigenvalues. We look at an example
to find the eigenvalues and eigenvectors of a matrix for a better understanding.

Example 1.14. Find the eigenvalues and eigenvectors of the matrix

A =
[

−6 3
4 5

]
.

We start with the equation Av⃗ = λv⃗. Here, the left side has a vector v⃗ that is
multiplied by a matrix A, while the right side has a vector v⃗ being multiplied by a
scalar λ. To change the equation where both sides have a vector that is multiplied

by a matrix, we multiply the right-hand side by the identity matrix, I =
[

1 0
0 1

]
.

Plugging in A and I yields [
−6 3
4 5

]
v⃗ = λ

[
1 0
0 1

]
v⃗.

Then, subtracting the right side from the left side leads to the equation[
−6 3
4 5

]
v⃗ − λ

[
1 0
0 1

]
v⃗ = 0⃗.

From here, we can factor out the eigenvector and multiply the scalar λ into I. We
get ([

−6 3
4 5

]
−

[
λ 0
0 λ

])
v⃗ = 0⃗.

Next, we perform matrix subtraction to get[
−6 − λ 3

4 5 − λ

]
v⃗ = 0⃗.

Because we want the eigenvector to be non-zero, the matrix must transform the
eigenvector to become the zero vector. In other words, the matrix on the left must
squish the eigenvector to the zero vector, and the determinant of the matrix must
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be zero. This yields the equation

det
[

−6 − λ 3
4 5 − λ

]
= 0.

Now, we apply the determinant formula for the 2 × 2 matrix to get:

(−6 − λ)(5 − λ) − 3 · 4 = 0.

Moving forward, this simplifies into the quadratic:

λ2 + λ − 42 = 0.

Therefore, solving for the roots gives λ = −7, λ = 6.
Now that we have the eigenvalues, we can solve for the eigenvectors. We start by

plugging in the eigenvalue 6 to Av⃗ = λv⃗. Since we are working in two dimensions,
we can say that v⃗ = [x, y]T . [

−6 3
4 5

][
x

y

]
= 6 ·

[
x

y

]

Multiplying this out and turning it into a system of linear equations yields−6x + 3y = 6x

4x + 5y = 6y.

From either linear equation (both equations will always represent the same line),
solving for y leads to the equation y = 4x, which means that y is always going to
be equal to four times that of x, implying the eigenvectors of A is any non-zero
scaler multiplier of [1, 4]T . For example, assuming x = 2, we get the eigenvector
v⃗ = [2, 8]T .

Similarly, for λ = −7, we can follow the process to obtain the following system of
equations: −6x + 3y = −7x

4x + 5y = −7y.

For λ = −7, the eigenvector is v⃗ = k[−3, 1]T for some non-zero scalar k.

The graphical representation of the eigenvectors of the matrix in the above
example is shown in Figure 9. The thick red vector represents the eigenvector
v⃗ = [1, 4]T , and the thin red vector extending from that represents the result of
A being applied, or multiplied, to v⃗. In addition, we see that the thin red vector
is simply the thick red vector scaled by a factor of 6, which is the corresponding
eigenvalue of the eigenvector. Similarly, the thick blue vector transforms into the
thin blue vector with a transformation of A, which equivalently scales the vector by
its eigenvalue −7.

Since the characteristic polynomial was used to find the eigenvectors and eigenval-
ues of a matrix, it is possible to have no real eigenvalues and eigenvectors, one real
eigenvalue and eigenvector, or multiple real eigenvalues and eigenvectors, depending
on how many real roots the characteristic polynomial has, which stems from the
matrix elements themselves.
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Figure 9. Eigenvectors of matrix A

2. Adjacency Matrices

One key matrix representation of graphs is the adjacency matrix. The adjacency
matrix is a square matrix with its elements representing whether or not a pair of
vertices is adjacent in a graph.

The concept of the adjacency matrix developed back in the early 20th century,
and built upon foundational work of mathematicians like Euler. It was in the
mid-20th century that published works on the adjacency matrix developed and
included the properties of adjacency matrices when they are raised to powers [18],
which we look at below.

2.1. Definition of the Adjacency Matrix. To start our investigation of the
adjacency matrix, we first must be familiar with the definition.

Definition 2.1. [1] Let G be a graph of order n and size m, where V (G) =
{v1, v2, v3, · · · , vn} and E(G) = {e1, e2, e3, · · · , em} . Then, we define the adjacency
matrix of G as the n × n matrix A = [Aij ], where

Aij =

1 if vivj ∈ E(G)

0 otherwise.

Thus, an adjacency matrix is symmetric. The graph G and its corresponding
adjacency matrix are shown in Figure 10.

For a directed graph, an element Aij = 1 if the edge begins at vi and ends at vj .
Otherwise, it is 0. Therefore, adjacency matrices of directed graphs will not always
be symmetric.
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G:

v1

v2

v4

v3

v5

A =


0 1 1 1 0
1 0 0 1 0
1 0 0 1 0
1 1 1 0 1
0 0 0 1 0



Figure 10. The adjacency matrix of a graph

2.2. The Power of the Adjacency Matrix. Another way to view the adjacency
matrix is that it provides the number of walks of length 1 from one vertex to another.
That, of course, only leads to two possible values: 1 or 0. However, when the
adjacency matrix is raised to a higher power, a pattern arises. We investigate the
unique transformations the adjacency matrix goes through when it is raised to a
power.

Theorem 2.2. [1] Let G be a graph with vertex set V (G) = {v1, v2, · · · , vn} and
adjacency matrix A. Then, the element (An)ij is the number of distinct vi − vj

walks of length n in G.

Proof. We proceed by induction. First, we set the base case. If n = 1, then an entry
Aij in A1 = A is 1 if vi and vj are adjacent, and 0 otherwise. Therefore, Aij counts
the number of walks of length 1 from vi to vj .

Next, we perform the inductive step. Assume for some k ≥ 1 that (Ak)ab counts
the number of walks of length k from va to vb. Consider a va − vb − vc walk of
length k + 1. Every such walk must have a va − vb walk of length k, followed by a
vb − vc walk of length 1. By the definition of matrix multiplication,

(AkA)ij =
∑

n

(Ak)inAnj .

By the inductive hypothesis, (Ak)ab counts the number of va − vb walks of length k,
while Abc is 1 if vb and vc are adjacent and 0 otherwise. Hence, an entry (Aij)k+1

provides the total number of distinct vi − vj walks of length k + 1 in G. □

To visualize this change, raising the adjacency matrix introduced in Figure 10 to
the second and third power gives the matrices in Figure 11.

A2 =


3 1 1 2 1
1 2 2 1 1
1 2 2 1 0
2 1 1 4 0
1 1 1 0 1

 A3 =


4 5 5 6 2
5 2 2 6 1
5 2 2 6 1
6 6 6 4 4
2 1 1 4 0



Figure 11. Powers of an adjacency matrix
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Additionally, note that (A2)ii = deg (vi) since the degree represents the number
of walks i with length 2. This also implies that (A2)ii =

∑
k Aik.

An interesting property involving the trace also arises when the adjacency matrix
is raised to a power.

Proposition 2.3. The trace of A2 is twice the number of edges in the graph.

Proof. Let vi be some vertex of G. Then, the entry (A2)ij is equal to the degree of
vi. This means that

tr(A2) =
∑
vi

deg(vi) = 2|E(G)|.

□

3. Incidence Matrices

Accompanying the adjacency matrix is its sibling, the incidence matrix. The
incidence matrix has elements that represent whether or not a vertex and an edge
are incident in a graph. The study of the incidence matrix dates back to the 19th
century, with one of the first textbooks defining incidence matrices [19].

3.1. Definition of the Incidence Matrix. The incidence matrix, like the adja-
cency matrix, comes with a simple definition.

Definition 3.1. [1] Let G be a graph of order n and size m, where V (G) =
{v1, v2, v3, · · · , vn} and E(G) = {e1, e2, e3, · · · , em} . Then, the incidence matrix of
G is the n × m matrix B = [Bij ], where

Bij =

1 if vi is incident with ej

0 otherwise.

A graph G and its corresponding incidence matrix are shown in Figure 12.

G:

v1

v2
v3 v4

v5

e1 e2

e3
e4

B =


1 1 1 0
1 0 0 0
0 1 0 1
0 0 0 1
0 0 1 0



Figure 12. The incidence matrix of a graph

The incidence matrix of a directed graph functions in a similar way. On a directed
edge, the initial vertex in the incidence matrix is −1, while the ending vertex is 1
[6], with an example shown in Figure 13.

4. The Laplacian Operator

The Laplacian matrix ultimately stems from the Laplacian operator. Therefore,
before introducing the Laplacian matrix, we must first become acquainted with the
Laplacian operator.
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G:

v1

v2

v3v4

e1>

e2

>

e3 >

e4
>

e5> B =


−1 0 −1 0 0
0 1 0 1 0
1 −1 0 0 −1
0 0 1 −1 1



Figure 13. The incidence matrix of a directed graph

The Laplacian operator, named after the French mathematician Pierre-Simon
Laplace, was first studied in 1786 in which Laplace applied this operator to the
study of celestial mechanics. Today, it is encountered all throughout mathematics
and physics: in the wave equation, Schrödinger’s equation, Poisson’s equation, and
of course, Laplace’s equation.

The Laplacian normally appears in a multivariable calculus or partial differentia-
tion course, so the study of the Laplacian requires a strong calculus background. In
simple terms, the Laplacian operator takes the difference between the value of a
function at a point and the average of its values at nearby points. However, to gain
a more solid understanding of the Laplacian, we first discuss the intuition behind
this operator and then introduce the definition.

4.1. Intuition Behind the Laplacian. Take the graph of a function f(x, y) that
represents the elevation of an area of land. The function receives the specific position
of the ground x, y as input and outputs the elevation z of the land at that point.

After graphing f(x, y) on a three-dimensional plane, we may notice that certain
x, y points produce relatively large z while other x, y points produce relatively small
z. To represent these changes in the graph, the gradient of a function Df(x, y) is
used [8].

The gradient is a specific type of vector field that assigns a vector to every point
in space. Every vector field consists of vectors with a magnitude and direction. In
the case of the gradient, these vectors point to areas with the fastest rate of increase
[8]. They represent what and how much change there is between two points. As an
example, the vectors in a vector field would point away from spots that are relatively
small in value, while the vectors would point toward spots that are relatively large
in value. An example of a three-dimensional function gradient is shown in Figure 14.

The behavior of the gradient around a point is the idea of divergence, which
measures how much the vectors point away from a point. High divergence at a point
signals that the vectors surrounding that point have a net direction away from it.
Similarly, low divergence at a point means that the vectors surrounding that point
have a net direction towards it [8].

The question arises: How much divergence does the gradient of a function have
at a specific point? In other words, exactly how much of a "minimum point" would
(x, y) be in terms of f(x, y)?

The Laplacian operator is used to solve this problem, which gives us a good idea
of how functions change across space by describing the divergence of the gradient
of a function at a particular point. In other words, it measures how "smooth" a
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Figure 14. The gradient and vector field of f(x, y) = −(cos2 x + cos2 y)2

function is over its domain. This can be used to help find a local minimum of the
function, also known as minimizing the function [8].

The Laplacian is especially useful in modern-day machine learning. As stated
previously, the Laplacian finds the difference between a point and the points in its
vicinity. Now, researchers have applied this to machine learning models, where there
are many use cases.

One such use case is with the machine’s cost function. The cost function describes
the difference between the predictions of a model and the actual value of the element
it is predicting. Using the Laplacian, the models can measure how "wrong" they are,
hence allowing them to improve these models for a better outcome.

4.2. Laplace’s Equation. Now that we have an intuitive sense of what the Lapla-
cian does, we will briefly define it and discuss some of the more technical details.

Definition 4.1. [9] The Laplacian (or Laplace operator) of a multivariable function
f(x1, x2, · · · , xn), denoted ∆f = ∇2f , is a differential operator that takes the
divergence of the gradient of the function f .

A differential operator is an operator that is a function of the differentiation
operator. In other words, it uses derivatives. The derivative in calculus is the slope
of the tangent line of a curve. The partial derivative essentially takes the derivative
of a multivariable function with respect to one of its variables while keeping all
other variables constant. It would be equivalent to finding the "slope" at a point
in a multi-dimensional graph. The vector field discussed earlier uses these partial
derivatives to map out the directions and magnitudes of each individual arrow at a
point in space to create the gradient.

Using the gradient, we’ve discussed how to find the direction and magnitude of
the fastest increase. If we wanted to test whether or not the point we have is the
lowest, we would use Laplace’s equation.



AN INTRODUCTION TO SPECTRAL GRAPH THEORY 15

Definition 4.2. [9] Laplace’s equation is a second-order partial differential equation,
written as ∆f = ∇2f = 0. It sums the second derivatives of each dimension with
respect to one dimension, and sets the sum to 0. Laplace’s equation in 2 dimensions
with respect to u is

∇2u = ∂2u

∂2x2 + ∂2u

∂2y2 = 0,

while a general form with n total dimensions with respect to u is

∂2u

∂x2
1

+ ∂2u

∂x2
2

+ · · · + ∂2u

∂x2
n

= 0.

Laplace’s equation helps determine whether or not the output of a function is
the lowest compared to its surroundings. In other words, it finds a minimum of the
function. Referring back to Figure 14, using this equation, we would expect the
input (x, y) = (0, 0) to return a true statement because that point is a minimum of
the function.

5. Laplacian Matrices

Now, we can dive into the meat and bones of spectral graph theory. The Laplacian
matrix, also called the graph Laplacian, is used greatly across multiple fields of
science. One of the first celebrated results with the Laplacian matrix was brought
about by one of Kirchhoff’s papers on electrical networks in 1847 [16]. Later, the
work of Fiedler in 1973 paved the way for more in-depth studies on the Laplacian
matrix [16].

Although seemingly arbitrary, this matrix representation of a graph provides us
with a powerful way to observe and investigate connectedness in a graph. After
discussing the definition and some properties of the Laplacian matrix, we investigate
the eigenvalues of the Laplacian matrix and the properties that we can deduce
from them, along with some applications of these properties, including spectral
partitioning. Finally, we will discuss the famous spanning tree problem.

5.1. Definition of the Laplacian Matrix. How does the Laplacian translate to
graphs? The Laplacian matrix also examines the relationship between one vertex
and the others around it, but in a slightly different manner. We will investigate how
it does so. First, we define the Laplacian matrix.

Definition 5.1. [4] The Laplacian matrix of a graph G is L = D − A, where D is
the degree matrix of G and A is the adjacency matrix of G.

An element Dij of the degree matrix D is deg vi if i = j. Otherwise, Dij = 0.
From this definition, we are able to derive another similar definition of the Laplacian
matrix by examining the relationships between vertices.

Definition 5.2. [4] Let G = (V, E) be a graph with V (G) = {v1, v2, · · · , vn}. Then,
the Laplacian matrix L(G) is the n × n matrix L = [Lij ], where

Lij =


deg(vi) if i = j

−1 if vivj ∈ E(G)

0 otherwise.
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For a directed graph, the Laplacian can be generalized by assigning Lij = −m

for m directed edges from vi to vj , while Lii is equal to the number of incoming
edges to vi.

We know that the Laplace operator measures the divergence of the gradient of a
function f at a point. At the core, it analyzes the values surrounding that point.
The Laplacian matrix functions in a similar way to the Laplacian in that each vertex
plays the role of a point, or the output of a function, while the incident edges form
the surroundings of the point. As an example, a graph and the Laplacian matrix of
that graph are shown in Figure 15.

G:

v1

v2

v4

v3

v5

L =


3 −1 −1 −1 0

−1 2 0 −1 0
−1 0 2 −1 0
−1 −1 −1 4 −1
0 0 0 −1 1



Figure 15. A graph and its Laplacian matrix

In Figure 15, the vertex v1 may represent the value f(1). Similarly, v2 represents
the value f(2), v3 represents f(3), and so on. Essentially, the function assigns a
value to each vertex of a graph. By replacing the derivatives with differences and
swapping the divergence with an average of the incident edges, we arrive at the
Laplacian matrix L.

Additionally, a third definition of the Laplacian matrix can be derived from the
first two definitions, which may seem random, but is crucial to the further study of
its properties.

Lemma 5.3. [11][6] The Laplacian matrix is also defined as L = BBT where B is
the incidence matrix.

Proof. For vi, vj ∈ V (G), the corresponding element in BBT can be expressed as

(BBT )ij =
∑

ek∈E(G)

BikBjk.

First, consider the case i = j. For each edge incident to vi, Bik will be either 1 or
−1 based on the direction. Then BikBjk = (Bik)2 = 1 for each edge incident to vi.
So (BBT )ij counts the total number of edges incident to vi, or deg(vi), as claimed.

Next, consider the second case i ≠ j. If the two vertices vi and vj are adjacent,
then one of Bik and Bjk must be 1, while the other must be −1. This is due to the
direction of the edges. Thus, BikBjk = −1. If vi and vj are not adjacent, then the
result is 0, as claimed. □

5.2. Eigenvalues of the Laplacian Matrix. As previously mentioned, the eigen-
values and eigenvectors of a matrix make up the backbone of spectral graph theory,
and it does not disappoint for the Laplacian matrix. The eigenvalues of the Laplacian



AN INTRODUCTION TO SPECTRAL GRAPH THEORY 17

matrix are extremely interesting because they uncover many properties between a
vertex and its neighboring vertices, including information about its connectivity and
geometric properties. First, we examine an important property of the Laplacian
matrix.

Proposition 5.4. The Laplacian matrix L is a positive symmetric semi-definite
matrix.

Remark 5.5. [11] The Laplacian matrix is symmetric because both the adjacency
matrix A and the degree matrix D are symmetric. The term xT Lx, called the
Dirichlet energy of a graph, measures the variation between pairs of adjacent vertices
where x is some real column vector whose elements represent the vertices in a graph.
The expanded form is

xT Lx =
∑

ij∈E(G)

(xi − xj)2.

This means xT Lx ≥ 0, so the Laplacian matrix is a positive symmetric semi-definite
matrix.

This result directly translates to the eigenvalues being nonnegative as well.
Knowing that the Laplacian matrix has nonnegative eigenvalues says a lot about
the properties of the matrix. If a matrix has nonnegative eigenvalues, then its main
diagonal will be nonnegative, as well as its determinant.

The eigenvalues of the Laplacian matrix is often used to solve abstract problems.
For instance, it may not come as a shock that hitting the surface membrane
of differently shaped drums will produce different sounds, seemingly at random.
However, there is a way to determine the shape of the drum’s surface just by listening
to it. When the surface of the drum is mapped to a graph, the eigenvalues of the
Laplacian matrix of the graph is directly related to the frequency of sound that the
drum produces [17]. Thus, the eigenvalues of the Laplacian matrix of a graph of
a shape uncovers certain geometric properties of that shape. We will revisit the
relation between sound frequencies and the eigenvalues of a matrix later.

Now that we have introduced the eigenvalues of the Laplacian matrix, let us
investigate a theorem that bounds the eigenvalues of a matrix to specific areas on a
plane.

Theorem 5.6 (Gershgorin Disk Theorem). [15] Let A be a complex n × n matrix.
In the complex plane, let Bi be a ball with a center at Aii and a radius Ri that is the
sum of the absolute values of all other entries in the i−th row for i = {1, 2, . . . , n}.
Each eigenvalue of A is contained in some ball Bi.

Example 5.7. To visualize the Gershgorin Disk Theorem, let us find the eigenvalues
of the matrix from Example 1.14,

A =
[

−6 3
4 5

]
.

We proceed by finding the center and radii of the two circles. The center of
the balls are located at B1 = (−6, 0i) and B2 = (5, 0i), and they have a radius of
R1 = 3 and R2 = 4, respectively. Plotting the circles on the complex plane yields
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Figure 16. In this figure, we can see that the eigenvalues λ = 6 and λ = −7 are
clearly contained in the disks.

Figure 16. Gershgorin Disk Theorem

Thus, the Gershgorin Disk Theorem allows us to set a geometric boundary
for what the eigenvalues of a matrix can be. This theorem, combined with the
properties of these matrices, also brings a unique bound to the Laplacian matrix.
The eigenvalues of the Laplacian matrix of a graph, apart from being bounded by
the disks, are also bounded in the interval [0, 2∆] where ∆ is the maximum degree
of G [23].

To visualize this, consider the graph and Laplacian matrix in Figure 17. Its
eigenvalues are 0, 1, 3, 4. These eigenvalues are less than two times the maximum
degree of G, 6.

G:

v1

v3

v2

v4

L =


2 −1 −1 0

−1 2 −1 0
−1 −1 3 −1
0 0 −1 1


Figure 17. A graph and its Laplacian matrix

After examining some general bounds of the eigenvalues of the Laplacian matrix,
let us look at some specific eigenvalues of the Laplacian matrix.

First, let λi(L) be an eigenvalue λ of the Laplacian matrix L such that λ1(L) ≤
λ2(L) ≤ · · · ≤ λn(L) where n = |V (G)|.

Lemma 5.8. The smallest eigenvalue λ1(L) is 0.

Proof. Since L is symmetric and positive semi-definite, we already know that its
eigenvalues are real and non-negative. Consider the sum across the i−th row of L.

This can be expanded as
n∑

j=1
Lij = deg(vi) +

∑
j ̸=i

Lij

= deg(vi) + deg(vi)(−1) + 0

= 0.
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As such, the vector 1 = (1, . . . , 1) ∈ Rn satisfies L1 = 0. Thus, zero is an eigenvalue
of L. □

Theorem 5.9. The Laplacian matrix L has an eigenvalue 0 with multiplicity k if
and only if the graph has k connected components.

Proof. Suppose G has k connected components G1, G2, . . . , Gk. There always exists
an indexing of the vertices such that the first n1 are associated to G1 and so on,
with the last nk associated to Gk. Then the Laplacian matrix L(G) precisely takes
the form

L(G) =


L(G1)

. . .
L(Gk)

 .

This is called a block diagonal matrix, where we have square matrices of various
sizes along a diagonal with no overlap and otherwise zero.

We can take for granted that det(L(G)) = det(L(G1)) · · · det(L(Gk)). The left
size is zero by the lemma. Similarly, each factor of the right side is zero as well.
Thus, zero has a multiplicity ≥ k. That the multiplicity is precisely k follows
from constructing the zero-eigenvector for each component and showing that it is
unique. □

The special properties of the eigenvalues of the Laplacian matrix also extend to
specific types of graphs.

Theorem 5.10. [2] The Laplacian matrix of a complete graph Kn has eigenvalue 0
with multiplicity 1 and eigenvalue n with multiplicity n − 1.

As an example, going back to the complete graph K4, by Theorem 5.9, the 0
eigenvalue must have a multiplicity of 1 because the graph is connected. Shown in
Figure 18 is the graph and the Laplacian matrix L of K4. Solving for its eigenvalues
yields 0, 4, 4, 4. The 4 eigenvalue has a multiplicity of 3, supporting the theorem.

K4:

v1

v2v3

v4

L =


3 −1 −1 −1

−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

 .

Figure 18. The Laplacian matrix of the complete graph K4

Theorem 5.11. [2] The Laplacian matrix of a star graph Sn has eigenvalue 0 with
multiplicity 1, eigenvalue 1 with multiplicity n−2, and eigenvalue n with multiplicity
1.

As an example, referring to the star graph S5 shown in Figure 5, the connected
graph must have a 0 eigenvalue with multiplicity 1. The corresponding Laplacian
matrix of S5 is shown in Figure 19. Similarly, solving for the eigenvalues yields 0, 1,
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S5:
v1

v2v3

v4

v5

L =


4 −1 −1 −1 −1

−1 1 0 0 0
−1 0 1 0 0
−1 0 0 1 0
−1 0 0 0 1

 .

Figure 19. The Laplacian matrix of the star graph S5

1, 1, 5. The eigenvalue 0 has multiplicity 1, the eigenvalue 1 has multiplicity 3, and
the eigenvalue 5 has multiplicity 1.

Now that we have gained some familiarity with the eigenvalues of the Laplacian
matrix, let us introduce a unique relationship between the eigenvalues of a matrix
and the edge count of a graph.

Lemma 5.12. [21] Let G be a graph. Let α1, α2, . . . , αn be the eigenvalues of A, the
adjacency matrix. Let λ1, λ2, . . . , λn be the eigenvalues of L, the Laplacian matrix.
Show that

2|E(G)| =
∑

i

α2
i =

∑
i

λi.

Proof. First, let us show that
∑

i α2
i = 2|E(G)|. Let A be the adjacency matrix of

G with eigenvalues α1, α2, . . . , αn. Then, the eigenvalues of A2 are α2
1, α2

2, . . . , α2
n.

Since the trace of a square matrix is equal to the sum of its eigenvalues,

tr(A2) =
∑

i

α2
i .

By matrix multiplication, we can rewrite the trace as

tr(A2) =
∑
i,j

AijAji.

Then, since A is a symmetric matrix, we have

tr(A2) =
∑
i,j

(Aij)2.

Furthermore, any element Aij is either 0 or 1, so we can simplify to get

tr(A2) =
∑
i,j

Aij .

Finally, since the trace is also the sum of the degrees, by the degree sum formula,
we know

tr(A2) =
∑

i

α2
i = 2|E(G)|.

Now, let us show that
∑

i λ2
i = 2|E(G)|. Since the trace tr(L) of the Laplacian

matrix is also equal to the sum of its eigenvalues,

tr(L) =
∑

i

λ2
i .



AN INTRODUCTION TO SPECTRAL GRAPH THEORY 21

By definition, L = D − A, so it follows that

tr(L) = tr(D) − tr(A) =
∑

i

deg(vi) − 0 = 2|E(G)|.

Therefore,
tr(L) =

∑
i

λ2
i = 2|E(G)|.

Thus, 2|E(G)| =
∑

i α2
i =

∑
i λi as desired. □

Example 5.13. As an example, consider the graph and its associated Laplacian
matrix and adjacency matrix in Figure 20.

G:

v1

v2

v4

v3

v5

L =


3 −1 −1 −1 0

−1 2 0 −1 0
−1 0 2 −1 0
−1 −1 −1 4 −1
0 0 0 −1 1

 A =


0 1 1 1 0
1 0 0 1 0
1 0 0 1 0
1 1 1 0 1
0 0 0 1 0



Figure 20. The Laplacian and adjacency matrix of a graph

From this graph and its associated matrices, 2|E(G)| = 12, and we calculate the
eigenvalues of the adjacency matrix αi and the eigenvalues of the Laplacian matrix
λi to be

{αi} ≈ {−1.749, −1.271, 0, 0.335, 2.686},

{λi} = {0, 1, 2, 4, 5}.

Moreover, the sum of all αi and λi are∑
i

α2
i = (−1.749)2 + · · · + (2.686)2 ≈ 12,∑

i

λi = 0 + 1 + 2 + 4 + 5 = 12.

This example demonstrates how 2|E(G)| =
∑

i α2
i =

∑
i λi.

5.3. Spectral Partitioning. The eigenvalues of the Laplacian matrix also reveal
how connected a graph is. The Fiedler Eigenvalue, named after Miroslav Fiedler, is
the second-smallest eigenvalue of the Laplacian matrix of a graph and determines
the algebraic connectivity of a graph.

Lemma 5.14. [14] The Fiedler eigenvalue of a graph G is greater than 0 if and
only if G is a connected graph.

Proof. Since the Laplacian matrix is positive semi-definite, all of its eigenvalues are
nonnegative. Moreover, a connected graph must have a 0 eigenvalue with multiplicity
1. Thus, the second-smallest eigenvalue cannot be 0, nor can it be negative, so the
second-smallest eigenvalue of the Laplacian matrix of a connected graph must be
positive. □
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Typically, a graph with a greater Fiedler eigenvalue will have more edges and
can therefore be thought of as "more connected" [20]. As an example, the Fiedler
eigenvalue of the complete graph K100 is 100, while the Fiedler eigenvalue of the
cycle graph C100 is about 0.004, showing that the cycle graph contains a significantly
lower number of edges in contrast to the complete graph, and is "less connected" in
contrast to the complete graph.

Likewise, alongside the Fiedler eigenvalue, the Fiedler eigenvector is the eigenvec-
tor that corresponds to the Fiedler eigenvalue. The Fiedler eigenvector is especially
useful in spectral partitioning, where the goal is to partition, or group, a graph into
two subgraphs in such a way that the subgraphs have nearly the same number of
vertices while also minimizing the number of edges between the two subgraphs [20].

The theory proposed by Fiedler for performing spectral partitioning is based on
a simple idea.

Definition 5.15. [14][20] Let G = (V, E) be a graph and order the eigenvalues
λi of L(G) from least to greatest such that λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L) where
n = |V (G)|. Let the eigenvector corresponding to λ2 be the Fiedler eigenvector µ2.

The process of spectral partitioning by Fiedler’s method is as follows: Each vertex
vi ∈ G is partitioned into G1 if the entry in the i−th row of µ2 is positive. Otherwise,
it is partitioned into G2. A cut edge is an edge that is incident to a vertex in G1

and a vertex in G2.

However, it is not clear why this specific eigenvalue would result in such a
partition. Moreover, using the eigenvalues and eigenvectors of the matrix of a graph
to partition the graph may be the least obvious thing to do.

To understand the logic behind the Fiedler eigenvalue, we start by visualizing a
vibrating string. When the string is plucked to a specific frequency, it will cause
the string to appear frozen. This is called a standing wave. As it turns out, the
frequency that causes the standing wave is directly related to the eigenvalues and
eigenvectors of the matrix that represents the motion of the string at specific points
[20]. Coincidentally, the Fiedler eigenvector of the Laplacian matrix of a graph
represents the standing wave.

Figure 21. A string vibrating at its standing wave frequency

The section of the string that corresponds to the Fiedler eigenvalue and eigenvector
is exactly one period, as shown in Figure 21. Each entry of the Fiedler eigenvector
equates to one point on the string (usually equally spaced apart), and the heights of
these points correspond to the values listed in the Fiedler eigenvector. This results
in about half of the entries in the vector being positive (as indicated by the blue
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string), while the other half of the entries are negative (as indicated by the red
string).

Now that we have gained a solid understanding of Fiedler’s method and why it
works, let us examine a graph with a bow-tie shape shown in Figure 22 to determine
how the partition should be made.

v1

v2

v3

v4

v5
v6

Figure 22. A graph shaped like a bow-tie

The bow-tie shape does not necessarily tell us anything concrete, but it does point
us to which edges may be chosen to create the partitions. Continuing, calculating
the Laplacian matrix of this graph yields

L =



4 −1 −1 −1 −1 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
−1 0 0 2 −1 0
−1 0 −1 3 −1 0
0 0 0 0 −1 −1


.

The eigenvalues, in order, are

λi = (0, 0.6314, 1.4738, 3, 3.7877, 5.1071).

The Fiedler eigenvalue is λ2 = 0.6314, and the corresponding Fiedler eigenvector is

µ2 =



−0.16
−0.44
−0.44
0.07
0.26
0.71


.

This tells us that v1, v2, v3 are all partitioned into one group, while v4, v5, v6 are
all partitioned into another group, as seen in Figure 23. Note that the sum of the
entries in the Fiedler vector is 0. This is true for the Fiedler vector of any graph [20].
As shown, this method of spectral partitioning aims to balance an approximately
equal vertex count with the minimum possible number of cut edges.

v1

v2

v3

v4

v5
v6

Figure 23. A graph partitioned by Fiedler’s method
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As another example, the partition of another graph by Fiedler’s method is shown
in Figure 24. Fiedler’s method says that v1, v2, v3, v4, v5, v6 should be in one group,
while v7, v8, v9, v10 should be in the other. Note that having a partition with only
one cut edge is also possible, but there would be an imbalance of the vertices of
each partition.

Do note that another partition has a comparable result to Fiedler’s method, with
v1, v2, v3, v4, v5 in one group and v6, v7, v8, v9 in the other. This shows how Fiedler’s
method may not be the only method to successfully partition a graph with these
requirements.

v1
v2

v3

v5
v6

v7

v4

v8

v9

v10

Figure 24. A graph and its partition

Another important result Fiedler proved was regarding the connectivity of the
two subgraphs formed after spectral partitioning.

Theorem 5.16 (Fiedler’s Theorem of Connectivity of Spectral Graph Partitions).
[20] Let G be a connected graph. The two graphs G1 and G2 that are formed after
the spectral partitioning of G are connected.

Referring back to Figure 23 and Figure 24, we note that the initial graphs are
connected, and so is every partition.

If we wanted to measure how well a graph can be partitioned, we refer to the
Cheeger constant, also called the isoperimetric number.

Intuitively, a large positive Cheeger constant says that the graph is well-connected,
and there is no relatively small set of edges that can successfully partition the graph.
In other words, every attempt to partition the graph will result in a relatively large
number of cut edges. On the other hand, a small positive Cheeger constant points
to a graph that has a bottleneck − a relatively small set of edges whose removal
separates a relatively large portion of vertices from the graph [27]. The Cheeger
constant is positive if and only if the graph is connected [28].

Definition 5.17. [24] Let G = (V, E) where S ⊂ V . Then, the Cheeger constant
h(G) is

h(G) = min
0<|S|≤|V |/2

|∂S|
|S|

where |∂S| represents the number of edges with one endpoint in S and one endpoint
in V that is not in S.

In other words, the Cheeger constant is formed by calculating all possible parti-
tions and taking the minimum of the ratio between the vertices in each partition
that form cut edges and those that do not. In summary, for a graph G = (V, E), we
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must first identify all subsets S of V (G) such that 0 < |S| ≤ |V |
2 . Then, for each

subset S, we must calculate the ratio |∂S|
|S| . Finally, we take the minimum ratio over

all of these subsets to declare as the Cheeger constant of the graph.
To demonstrate this with a simple example, let us visualize the cycle graph C4,

shown in Figure 25. The complete list of possible subsets are listed in the figure,
with its corresponding |∂S| and |S|, as well as its ratio. As a result, the Cheeger
constant is the minimum of these ratios, which is 1.

C4:

v1

v2 v3

v4

S |∂S| |S| |∂S|
|S|

{1} 2 1 2
{2} 2 1 2
{3} 2 1 2
{4} 2 1 2

{1, 2} 2 2 1
{2, 3} 2 2 1
{3, 4} 2 2 1
{1, 4} 2 2 1

Figure 25. The cycle graph C4 and the calculation of its Cheeger constant

As a more concrete example, consider the bow tie graph from Figure 22. The
Cheeger constant of this graph is 2

3 , achieved by the partition G1 = {v1, v2, v3} and
G2 = {v4, v5, v6}. This tells us that the bow tie graph can be partitioned in a better
manner than the cycle graph C4. Note that while the bow tie graph still has two
cut edges, it has more vertices than the cycle graph, causing the Cheeger constant
to be lower.

Furthermore, as a more extreme example, a graph with a relatively high Cheeger
constant is the complete graph K8 with h(K8) = 4, while a graph with a relatively
low Cheeger constant is the path graph P8 with h(P8) = 1

4 . This comparison
presents us with a deeper understanding of the Cheeger constant.

The idea of spectral partitioning is useful in many real-life applications. As
an example, spectral partitioning can help identify communities based on certain
criteria [25]. Each vertex may represent one person, while the edges represent the
friendship between two people. Moreover, in biology, spectral partitioning is also
helpful in identifying genes that are functionally related within gene regulatory
networks [26].

5.4. Trees in Graphs. A key type of graph in graph theory is a tree. Trees are
an important type of graph because they represent the "least connected" graphs.
The nomenclature is rather intuitive, as it represents two main ideas of trees seen in
nature; trees are connected, and they are acyclic.

Definition 5.18. A tree is an acyclic connected graph.

A bridge of a connected graph G is an edge e in G such that G−e is disconnected.
Thus, bridges must not lie on any cycle of G, and since trees contain no cycles, all
edges of trees are bridges [1].

There are also many properties that define what a tree can, and cannot, be.
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Lemma 5.19. [1] Every nontrivial tree has at least 2 end-vertices, or vertices with
a degree of 1.

Proof. Let T be a nontrivial tree containing a u−v path P = (u = u0, u1, . . . , uk = v)
of the greatest possible length. Neither u nor v can be adjacent to any vertex
not on P . Otherwise, it would create a new path of greater length. Therefore,
deg u = deg v = 1. □

Lemma 5.20. Every tree of order n has size n − 1.

Proof. We proceed by induction. First, the base case. Every graph with 1 vertex
must have 0 edges, so the base case is true.

Next, the inductive step. We assume a tree with n vertices has n − 1 edges.
Now, let G be a tree with n + 1 vertices. Form the subgraph H by removing an
end-vertex of G, consequently removing the incident edge from G as well. Now, H

has (n + 1) − 1 = n vertices. Since H is a tree, we know H has n − 1 edges by our
previous assumption. Since G has exactly one more edge than H, the edge count
of G must be (n − 1) + 1 = n. Therefore, G has n + 1 vertices and n edges, as
claimed. □

Since a tree is considered the "least connected" of all connected graphs, we may
come to the conclusion that the size of every connected graph of order n is at least
n − 1.

Theorem 5.21. The size of every connected graph of order n is at least n − 1.

Proof. In contrast, assume that there exists a connected graph of order n with size
m = n − 2. Then n ≥ 4, so G contains no isolated vertices.

We claim G contains an end-vertex, so assume to the contrary that the degree
of every vertex of G is at least 2. Then, the sum of the degrees of the vertices of
G is 2m ≥ 2n, so m ≥ n ≥ m + 2, which is impossible. Thus, G must contain an
end-vertex. □

The intuitive nomenclature doesn’t just stop at trees. A forest is a graph that
contains trees.

Corollary 5.22. [1] A forest of order n with k components has size n − k.

Proof. Let a forest F have size m with G1, G2, . . . , Gk be the connected components
of F . Let Gi have order ni and size mi. Then, n is the sum of all ni and m is the
sum of all mi. Since each component Gi is a tree, we know mi = ni − 1. Thus,

m =
∑

i

mi =
∑

i

(ni − 1) = n − k.

□

Now, we can construct a theorem that classifies graphs into the tree category
based on certain conditions.

Theorem 5.23. [1] Let G be a graph of order n and size m. If G satisfies any two
of the properties:

(1) G is connected, (2) G is acyclic, (3) m = n − 1,
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then G is a tree.

Proof. By casework, we first assume G satisfies (1) and (2). Then, by definition,
G is a tree. Thus, we now consider the cases where G satisfies (1) and (3) or G

satisfies (2) and (3).
Case 1. G satisfies (1) and (3). Since G is connected, we only have to show that

G is acyclic. Assume the opposite, that G contains a cycle. Then e is not a bridge
of G. Thus, G − e is a connected graph of order n and size n − 2, contradicting
Lemma 5.20. Therefore, G must be acyclic, and G is a tree.

Case 2. G satisfies (2) and (3). Since G is acyclic, we only have to show that G is
connected. Since G satisfies (2) and (3), it follows that G is a forest of order n and
size m = n − 1. The size of G is n − k for k components in G. Hence n − 1 = n − k

so k = 1. Therefore, G is connected, and G is a tree. □

A type of subgraph of tress is spanning trees, which takes on a similar definition
to the subgraph of a tree, with one key limitation.

Definition 5.24. A spanning tree of a graph G = (V, E) is a tree T = (V, E) such
that V (T ) = V (G) and E(T ) ⊆ E(G). In other words, the spanning tree contains
the same vertex set and a subset of the edge set.

As an example, there are a total of 3 spanning trees of the complete graph K3,
as shown in Figure 26.

K3:

v1

v2 v3

T1:

v1

v2 v3

T2:

v1

v2 v3

T3:

v1

v2 v3

Figure 26. The spanning trees of K3

5.5. Counting Spanning Trees. How can we count the total number of spanning
trees of a graph? Certainly, if a graph is connected, then it must have at least
one spanning tree, but to continue counting them manually would prove to be a
laborious and unenlightening task. Thankfully, Kirchhoff’s matrix tree theorem
provides an elegant way to compute the number of spanning trees of a graph.

Kirchhoff’s matrix tree theorem provides a formula to find the total number of
spanning trees of a graph using the determinant of the Laplacian matrix of a graph.
It is a beautiful result in graph theory connecting linear algebra and combinatorics.

Theorem 5.25 (Kirchhoff’s Matrix Tree Theorem). The number of spanning trees
T (G) in a graph G is det(L0) where L0 is the Laplacian matrix with the i−th row
and i−th column removed for any i.
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The term det(L0) is also known as the cofactor of an element i of the Laplacian
matrix L.

Definition 5.26. The contraction G/e of an edge e from a graph G removes e and
merges the two vertices incident to e to become one vertex.

Sketch. [12][6] First, choose any edge e of the graph G. Then, we consider the two
cases of the spanning trees T (G) that either contains e as an edge, or does not.

Case 1. If T (G) includes e, then contracting e will not remove or change the tree,
so this case can be expressed as T (G/e).

Case 2. If T (G) does not include e, then we can remove e without removing or
changing the tree, so this case can be expressed as T (G − e).

Thus, we have the equation:

T (G) = T (G − e) + T (G/e).

This is the deletion-contraction property. Likewise, det(L0) also satisfies this
property:

det(L(G)0) = det(L(G − e)0) + det(L(G/e)0).

By the definition L = D − A, each row of L must sum to 0. As a result, the
expansion of det(L(G)0) will contain only the terms corresponding to edges that
are connected and not part of a cycle. Any terms that correspond to cycles on the
graph will be canceled out. Thus, we are left with the number of spanning trees. □

Remark 5.27. [13] The theorem presented above only deals with undirected graphs.
However, Kirchhoff’s theorem also generalizes to directed graphs. Oriented spanning
trees of a directed graph would be counted in this case, called spanning arborescences.
In this case, det L0 is equal to the number of arborescences that end at vi.

We illustrate the Matrix Tree Theorem with a simple example. Figure 27 shows
the graph G along with its three spanning trees, as well as its Laplacian matrix. By
removing row 3 and column 3 from L to form L0, we then take the determinant to
obtain

det

 2 −1 0
−1 2 0
0 0 1

 = 0 det
[

−1 0
2 0

]
− 0 det

[
2 0

−1 0

]
+ 1 det

[
2 −1

−1 2

]

= 0 · 0 − 0 · 0 + 1 · 3

= 3.

Cayley’s tree formula follows from Kirchhoff’s theorem as a special case that
deals with the complete graph Kn.

Corollary 5.28 (Cayley’s Tree Formula). [1] The number of spanning trees in a
complete graph Kn with n vertices is nn−2.

Cayley’s tree formula says that the number of spanning trees of K3 is 33−2 = 3,
which is confirmed by Figure 26. In general, applying Kirchhoff’s matrix tree
theorem to the complete graph Kn yields nn−2 spanning trees, which matches
Cayley’s tree formula for the number of spanning trees.
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G:

v1

v3

v2

v4

L =


2 −1 −1 0

−1 2 −1 0
−1 −1 3 −1
0 0 −1 1



T1:

v1

v3

v2

v4

T2:

v1

v3

v2

v4

T3:

v1

v3

v2

v4

Figure 27. A graph, its Laplacian matrix, and its spanning trees
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