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Abstract

In this paper, we cover the traits of polyhedra and introduce topol-
ogy. For polyhedra, we prove the existence of limited Platonic solids and
introduce Euler’s characteristic to explain why Euler’s formula applies to
polyhedra. Regarding topology, we will cover RP2 and cellular decompo-
sition.
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1 Introduction

Polyhedra are fascinating mathematical constructs with topological characteris-
tics of 3-dimensional shapes despite their simple structure of flat, 2-dimensional
faces. These shapes abide by particular universal characteristics, such as Eu-
ler’s Formula, for polyhedra and topological spheres, and the generalized Euler
Characteristic, for abstract topological spaces. Furthermore, these rules carry
over for evaluating RP2 and cellular decomposition. Such reliance on polyhe-
dra characteristic reflects the complicated and interwoven relationship between
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math concepts in Geometry and Topology, where structures must traverse di-
mensions to be evaluated.

2 Definitions

Definition 2.1. A polyhedron is a convex 2-dimensional shape living in 3 di-
mensions consisting of vertices, edges, and faces. Edges are straight segments
between two vertices and are formed where two faces meet. Faces are closed,
flat surfaces bordered by edges. Vertices are the points at which where 3 edges
meet.

Definition 2.2. A platonic solid or regular polyhedron is a polyhedron whose
faces are made up of congruent regular polygons.

Definition 2.3. The real projective space, denoted by RP2, is a 2-dimensional
space we obtain by adding the points at infinity in the direction of each line to
the usual plane R2.

Definition 2.4. Induction refers to the proof technique of reducing complex
structures into simpler, elementary forms with similar structure to prove the
validity of a rule. If the rule holds true for the basic example, the proof enables
the conclusion that the rule holds true for all cases in which it is applicable.
To prove the rule’s unconditional validity, the proof assumes that the same
conclusion will be reached for all possible applications, given that the initial
example’s scalability is confirmed.

Definition 2.5. Two spaces A and B are homeomorphic if there exists a con-
tinuous function f : A → B with a continuous inverse f−1 : B → A. Informally,
we can describe it as, after A is distorted to create B if the distortion follows
the following criteria:

1. The object may not go through itself.
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2. The object may not attach itself to itself.

3. The object may not be cut or separated from itself.

Cube

∼=
Sphere

Definition 2.6. The cellular decomposition of a topological space X is a space
homeomorphic to X consisting of several balls, called cells, glued together. An
n-dimensional cell is called an n-cell.

A 0-cell is visualized as an isolated point, a 1-cell as a line segment with
open endpoints, a 2-cell as a filled disk, and a 3-cell as a solid ball with filled
volume.

Definition 2.7. For a space X with a cellular decomposition, the Euler char-
acteristic χ(X) of X is a sum of the number of n-cells, added or subtracted in
an alternating pattern:

χ(X) = (# of 0-cells)− (# of 1-cells) + (# of 2-cells)− . . .

3 Polyhedra

3.1 Platonic Solids

There are five Platonic solids, namely the tetrahedron, cube, octahedron, do-
decahedron, and icosahedron.
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Tetrahedron Cube
Octahedron

Icosahedron
Dodecahedron

Theorem 3.1. There exist only five platonic solids.

While it might initially seem like there could be infinite platonic solids -
shapes with regular polygonal sides, seeing movies with massive force fields,
only 5 actually exist.

Before proving this statement, we must display the following properties of
3-dimensional shapes. Consider the following statement where n is the number
of faces joined by a vertex and where α is the measure of the each side’s angles
at said vertex.

n · α < 360◦

This means to display the maximum angle and faces a vertex can have before
being forced to lie in a plane and therefore become unable to become part of a
polyhedron. Consider the following figures.
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Figure 3.1.1

Figure 3.1.2

As seen above, the figure on the left cannot be folded to become a part of a
3-dimensional object and must remain rigid in 2 dimensions. This is consistent
with the above law, n · α < 360◦. 4 · 90◦ = 360◦. 360 is not less than 360, and
therefore the vertex cannot be 3-dimensional.

In contrast, Figure 2 can be folded to become a part of a 3-dimensional
object and will fold to make a corner. Again, this is consistent with the law
n · α < 360◦. 3 · 90◦ = 270◦. 270◦ is less than 360◦, so the vertex can be
3-dimensional.

Now that we have illustrated the formula, we will move on to proving the
initial statement of there existing only 5 platonic solids by going through every
possible option of n and α.

Proof. Again, n is the number of faces joined by a vertex and where α is the
measure of the each side’s angles at said vertex.

The most likely and smallest αs will be the following: 60◦ from an equilateral
triangle, 90◦ from a square, 108◦ from a regular pentagon, and 120◦ from a
regular hexagon. The following:

α = 60◦

α = 90◦

α = 108◦

α = 120◦

In addition, n cannot equal 1 or 2 for the following reasons. If n were 1, the
shape would simply remain with one side and remain as a 2D object. If n was
2, the shape would simply glue itself to itself, once again collapsing to become
a 2D object. Therefore, we must start at n = 3. We will go from the smallest
α to the highest α that meets the conditions of the inequality n · α < 360◦.
Therefore, we will start with α = 60◦. 3 · 60◦ = 180◦. 180◦ is less than 360◦, so
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the statement is fulfilled. Next, we move on to α = 90◦. 3 · 90◦ = 270◦. 270◦

is less than 360◦, so the statement is fulfilled again. We will do the same as for
α = 108◦. 3 · 108◦ = 324◦. 324◦ is less than 360◦, so the statement is fulfilled.
Lastly, we have a case where α = 120◦. 3 · 120◦ = 360◦. 360◦ is not less than
360◦, and therefore the vertex cannot be 3-dimensional and no other shape with
a greater angle can become part of a platonic solid when n = 3 and at all, as
n = 3 is the smallest possible n. We should keep track of the cases that met
the inequality.

3 · 60◦ < 180◦

3 · 90◦ < 270◦

3 · 108◦ < 324◦

These correspond to the tetrahedron which has 4 sides, the cube, which
has 6, and dodecahedron, which has 12, respectively. Next, we will move on
to the cases where n = 4. Again, we will start with α = 60◦. Then, we get
4 · 60◦ = 240◦. 240◦ is less than 360◦, so this situation is possible. We try
again for α = 90◦. Then, we get 4 · 90◦ = 360◦. 360◦ is not less than 360◦, so
this situation is impossible and any other situation where α > 90◦ is possible.
Therefore, we add only one situation to our list of inequalities.

4 · 60◦ < 360◦

This situation corresponds to the octahedron, which has 8 sides. Next, we will
move on to the cases where n = 5. Again, we will start with α = 60◦. Then, we
get 5 · 60◦ = 300◦. 300◦ is less than 360◦, so this situation is possible. We try
again for α = 90◦. Then, we get 5 · 90◦ = 450◦. 450◦ is greater than 360◦, so
this situation is impossible and any other situation where α > 90◦ is possible.
Therefore, again, we can add only one situation to our list of inequalities.

5 · 60◦ < 360◦

This situation creates the vertex of an icosahedron, which has 20 sides. Finally,
we will have n = 6. Here, we try again for α = 60◦. Then, we get 6 ·60◦ = 360◦.
360◦ is equal to and not less than 360◦, so this situation is impossible and any
other situation where α > 60◦ is possible. In addition, no other situation where
n > 6 is possible either, as α > 60◦ makes α as small as it can be. Therefore,
we cannot add any situations to our list of inequalities and our list is complete
with the following.

Calculation Sum of Angles Polyhedron
3 · 60◦ 180◦ < 360◦ Tetrahedron
3 · 90◦ 270◦ < 360◦ Cube
3 · 108◦ 324◦ < 360◦ Dodecahedron
4 · 60◦ 240◦ < 360◦ Octahedron
5 · 60◦ 300◦ < 360◦ Icosahedron

The illustrations of these solids can be seen below in section 3.2.
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3.2 Euler’s Formula

Euler’s Formula for polyhedra states that for a polyhedron with V vertices, E
edges, and F faces:

V − E + F = 2

Euler’s Formula is fundamentally a topological property. The rule is main-
tained even when a polyhedron is deformed or flattened into a 2-dimensional
shape (known as a planar graph), as long as the polyhedron’s properties of ver-
tices, edges, and faces remain intact. A polyhedron can be represented on a
flat planar graph by replacing faces with edges and vertices. The polyhedron’s
vertices are represented as nodes, and the edges of the polyhedron become edges
of the graph. This method enables the formation of a skeleton graph.
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Figure 3.2.2: Cube and its 2D net representation.

Note that on the planar graph, the sixth face exists in the region outside of
the graph.

Theorem 3.2. Euler’s Rule can be proved through induction.

Proof. We start with any connected planar graph. The first graph consists of
6 vertices, labeled A through F . Each vertex is connected by an edge, totaling
8. The shape contains 3 faces within the graph and 1 external to the structure,
adding up to 4 total faces. Algebraically, adding vertices, subtracting edges,
and adding faces would equate to a value of 2. Step 2 of the proof involves the
reduction of a planar graph by removing select vertices and the corresponding
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edges and faces they form. Breaking down the initial graph by removing vertex
C results in quadrilateral ABDFE, where 1 vertice, 2 edges, and 1 face are
removed. Euler’s characteristic (V − E + F = 2) is preserved, given that the
loss of vertex C corresponds to the loss of edges AC and CD, and the loss
of face ACDB. Euler’s Rule is maintained. Further breaking down the figure
into Quadrilateral ABFE removes vertice D and corresponding edges BD and
DF and face BDF . Figure 3 showcases the tenacity of polyhdrons despite
reduction, as the figure’s 4 vertices, 4 edges, and 2 faces total to a value of 2 in
V − E + F .

3.3 Exceptions to Euler’s Rule

Euler’s formula applies solely to convex polyhedra and planar graphs equivalent
(in topology) to spheres. Shapes with holes, such as donut-shaped tori, use:

V − E + F = 0.

Figure 3.2.3
The torus is an exception to the standard Euler’s formula because of its hole,

which restricts the shape from topologically morphing into a sphere. This hole
changes how the vertices, edges, and faces of the polyhedron connect. Every
loop on the torus cannot be glued onto a single point to become universally
connected, as can a sphere.

4 Topology

4.1 Real projective plane, RP2

4.1.1 Construction of RP2

Imagine a point A and a distinct point B with parallel lines a and b running
through their respective points. Normally, these lines would never intersect,
being parallel. However, in the plane of RP2, they do. When one looks down
a long hallway with parallel walls, the walls seem to converge, but they never
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touch. Similarly, in our process of creating RP2, we state that a and b converge
at distance ∞, which we denote as a point C. To continue, we create an infinite
number distinct versions of A,B, a, b, and C oriented in different directions until
the points C create a circle with radius ∞. In relation to homeomorphism, one
can attach an object to itself to form a new object.

O radius
∞ ∞

We will use this action of attaching an object to itself to complete our new
plane, RP2. We do not want two parallel lines converging twice, as that could
imply that they are the same line. Therefore, we attach each point C at infinity
to its corresponding opposite point C. Finally, we have created RP2.

4.1.2 Computing the Euler characteristic of RP2

To find the Euler character, we can use cellular decomposition. To restate it,
where T is the object and χ(T ) is the Euler characteristic of the object,

χ(T ) = (# of 0-cells)− (# of 1-cells) + (# of 2-cells)− ...± (# of n-cells)

We will not be using anything above 2 cells to decompose RP2, so we will
disregard the content afterwards. That leaves us with the following formula.

χ(RP2) = (# of 0-cells)− (# of 1-cells) + (# of 2-cells)

As we stated in the creation of our RP2 plane, we had a circle with radius
infinity at one point. Because Euler’s characteristics are consistent across all
homeomorphic objects, we can reduce that circle to a limited square, called the
fundamental polygon.

To find the Euler character, we must fold the fundamental polygon so that
the arrows are matched. When we fold them with the correct alignments, we get
two 0-cells (vertices), two 1-cells (edges), and one 2-cell (the face). Therefore,
from our prior equation, we get the following using our previous equation.

χ(RP2) = (2)− (2) + (1) = 1

χ(RP2) = 1
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4.2 Cellular Decomposition

Theorem 4.1. An n-dimensional sphere can be constructed by gluing together
cells of dimension ≤ n.

Figure 4.2.1: 2-sphere. Picture from Wikimedia Commons

Proof. A 2-sphere can be constructed with 0-cells, 1-cells, and 2-cells. Using a
0-cell as the base point, glue one 1-cell to form a continuous loop that connects
the opposite sides of the base point. This forms a hollow ring, around which the
structure will be built. Note that the 0-cell is necessary in this construction,
given that the 1-cell may not glue onto itself. Construct the upper and lower
hemispheres of the sphere using two separate 2-cells, one for each hemisphere.
Glue the outer ring, or the circumference, of each 2-cell onto the corresponding
circumference of the prior structure to form a sphere. The value of the Euler
Characteristic χ(S) for a 2-sphere S equals to 2, as defined by the number of
0-cells (1) subtracted by the number of 1-cells (1) and summed with the number
of 2-cells (2).

χ(S) = (# of 0-cells)− (# of 1-cells) + (# of 2-cells) = 1− 1 + 2 = 2.
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Figure 4.2.2: Visual representation of proof. Picture from Cohomology of
Differential Forms and Feynman diagrams
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