
Introduction to Computation Theory

Ronni Chang and Paige Zhu
Mentor: Zoe Xi

May 25, 2024

Abstract

Computation theory helps us understand which problems can be
solved by algorithms and which cannot. This includes understanding
concepts like decidable and undecidable problems, providing insight
into the inherent limitations of computational systems.

In addition, algorithm analysis equips us with tools to analyze
the efficiency of algorithms. The analysis assists us to identify the
most efficient algorithms for solving problems and understanding the
resources they require.

Computation theory also allows us to classify problems based on
their computational difficulty. This classification helps in determining
which problems are tractable (can be solved efficiently) and which are
intractable (require impractical amounts of time/resources).

In this paper, we present fundamental concepts of automata, com-
putability, and complexity theory. After defining Turing machines and
exploring their variants, we shift toward time complexity analysis and
explain big-O and small-o notation. Finally, we explore the impor-
tance of polynomial time algorithms and introduce complexity classes
P, NP, and NP-complete.

1 Introduction

Computation Theory is the study of the fundamental principles underly-
ing computation and the analysis of algorithms. It’s often split into three
parts: automata, computability, and complexity.

1



So what exactly is automata, computability, and complexity theory? Au-
tomata theory deals with abstract machines and formal languages, explor-
ing the capabilities and limitations of computational models such as finite
automata and pushdown automata. Computability theory investigates what
problems can be solved algorithmically (i.e. with a Turing machine), focusing
on the notion of computable functions and the halting problem. Complex-
ity theory studies the resources required to solve computational problems,
including time and space complexity, aiming to classify problems based on
their inherent difficulty and identify efficient algorithms for solving them.

In general, computation theory aims to answer the question, What are
the fundamental capabilities and limitations of computers?

In the following definitions, we will mostly follow Sipser [Sip96].

2 Preliminaries

Definition 2.1. An alphabet is any non-empty finite set. Each item in
the alphabet is known as a symbol of the alphabet. We use Σ to denote an
alphabet. A string over Σ is a finite sequence of symbols from Σ, and a
language over Σ is a set of strings.

Definition 2.2. Let A and B be languages. We can definition the following
regular operations:

• Union: A ∪B = {x | x ∈ A or x ∈ B}

• Concatenation: A ◦B = {xy | x ∈ A and y ∈ B}

• Star: A∗ = {x1x2 · · · xk | k ≥ 0 and each xi ∈ A}

Definition 2.3. A finite automata is a 5-tuple (Q,Σ, δ, q0, F ) such that:

1. Q is a finite set of states,

2. Σ is the alphabet,

2



3. δ : Q× Σ → Q is the transition function,

4. q0 ∈ Q is the start state, and

5. F ⊆ Q is the set of all accept states.

3 Turing Machines

A Turing machine, or TM is one of the first models of our modern com-
puter. It’s very similar to finite automata, with one major difference: a
TM uses an infinite tape with an unlimited memory. It uses a tape head to
read and write symbols on the tape, as well as to move on the tape. The
tape head will keep moving forever until it enters an accept or reject state,
in which the accompanying will immediately halt.

Definition 3.1. A Turing machine is a 7-tuple (Q,Σ,Γ, δ, q0, qaccept, qreject)
where Q,Σ,Γ are all finite sets and

1. Q is the set of all states,

2. Σ is the input alphabet not containing the blank symbol ⊔,

3. Γ is the tape alphabet, where ⊔ ∈ Γ and Σ ⊆ Γ,

4. δ : Q× Γ → Q× Γ× {L,R} is the transition function,

5. q0 ∈ Q is the start state,

6. qaccept ∈ Q is the accept state, and

7. qreject ∈ Q is the reject state, where qreject ̸= qaccept.

The set of strings that a TM accepts is called the language of that TM,
which is denoted as L(TM). A TM is used to test membership in a language.

We can now define two new terms: Turing-recognizable and Turing-
decidable to describe these languages.

3



Definition 3.2. A language is Turing-recognizable if there is a Turing
machine that can correctly identify and accept any string that belongs to the
language.

Definition 3.3. A language is Turing-decidable or decidable if there ex-
ists a Turing machine that, for any input string, will always halt and either
accept or reject that input.

By this definition, we can also define an undecidable language.

Definition 3.4. A language is undecidable if there does not exist a Turing
machine that decides this language.

To better understand how a Turing Machine works, let’s try an example
problem.

Example 3.5. We construct as follows a TM M that decides the language
A = {02n | n ≥ 0}. We can give a high level description of M as follows:

M =“On input string ω:

• Go from left to right and cross off every other 0.

• If there was only 1 zero in the first step, accept.

• If there were more than 1 zero in the first step and there were an
odd number of zeros, reject.

• Go back to the very left of the tape.

• Go back to the first step.”

Every time our machine iterates, the number of 0s halves until there are
an odd number of 0s left. When this happens, our machine checks how many
0s are left. If there is only one 0, we know that the original number of 0s must
have been a power of 2, so the machine accepts. Otherwise, we know that

4



the original number could not have been a power of 2, so the machine rejects.

Let’s now give a more formal description of this TM using our definition
from before.

M :

• Q = {q1, q2, q3, q4, q5, qaccept, qreject}

• Σ = {0}

• Γ = {0, x,⊔}

• δ as pictured in Figure 3

• The start state is q1, the accept state is qaccept, and the reject state is
qreject.

Figure 1: State diagram for TM M (Sipser, pg. 172), and visualization of δ

This type of TM is termed a single-tape Turing machine. While
there are other variations like multi-tape Turing machines, it’s worth
noting that single-tape TMs can simulate multi-tape TMs. Therefore, multi-
tape TMs do not provide any additional computational power. Furthermore,
there are deterministic Turing machines (DTMs) and nondetermin-
istic Turing machines (NTMs). Each variant offers distinct capabilities,
but NTMs cannot generate consistent results and thus are not a realistic
computational model in practical problem solving. It is a big open problem
whether NTMs truly provide more computational power than DTMs.

5



4 Time Complexity: Big-O O(n) and Small-O

o(n) Notation

A computational apparatus will be used to perform algorithms for problem
solving. In real world, computational resources are limited, so efficient algo-
rithms are always desired. In this section, we analyze what it means for an
algorithm to be efficient.

The concept of algorithmic efficiency is based on an algorithm’s running
time or time complexity, which is the time an algorithm takes to solve a
problem.

Definition 4.1. Let M be a deterministic TM that halts on all inputs. The
time complexity of M is the function f, where f : N → N , where f(n) is
the maximum number of steps M uses on any input of length n.

When we are looking at the time complexity of different algorithms, the
input could be very different. To simplify this down, and to be able to com-
pare the time complexities of different algorithms, we can just compute the
time complexity of an algorithm based purely on the length of the string
representing the input.

Finding the exact amount of time that an algorithm spends is frequently
a long and complicated process, so we often choose to estimate the complex-
ity. Furthermore, we do not really care too much about the little details - as
the algorithm grows with the size of the input, the smaller values (e.g., x2

in x3+x2) become nearly obsolete when the input size goes towards infinity.
This is why we use asymptotic bounds. There are two ways to measure
complexity that we will cover in this section: big O and small o.

Understanding algorithm time complexity is crucial for predicting perfor-
mance as input sizes grow. Big O notation gives an upper bound on growth
rates, while small o provides a stricter upper bound. You can think of big
O notation as a “less than or equal to” function, while small o is more like
“less than”.

6



Definition 4.2. Let f and g be functions f, g : N → R+. We can define
f(n) = O(g(n)) if positive integers c and n0 exist such that for every integer
n ≥ n0,

f(n) ≤ cg(n).

We say that g(n) is the asymptotic upper bound of f(n).

The following example of big O notation provides better understanding
of the concept.

Example 4.3. Supposed that we are given a function f(n) = 10n3 + 7n2 +
2n+4. By looking at only the highest order of this function and ignoring its
coefficient, we can say that f(n) = O(n3).

Now, let us move onto the definition of small o.

Definition 4.4. Let f and g be functions f, g : N → R+. Say that f(n) = o(g(n))
if

lim
n→∞

f(n)

g(n)
= 0

.

Namely, f(n) = o(g(n)) means that for any real number c > 0, a number n0

exists, where f(n) < cg(n) for all n ≥ n0.

As usual, we use an example to better understand the concept of small o.

Example 4.5. Consider n2 = o(n3). To show that n2 = o(n3), we need to
prove that limn→∞

n2

n3 = 0. The evaluation of the limit is:

lim
n→∞

n2

n3
= lim

n→∞

1

n
= 0.

Since the limit is 0, this implies that n2 grows asymptotically slower than n3.
Therefore, we conclude that n2 = o(n3).

7



5 The Class P

In computational complexity theory, the complexity class P, standing for
Polynomial Time, is the set of all decision problems (which are problems
with a “yes” or “no” answer) that can be solved by a deterministic Turing
machine in polynomial time. In other words, P contains all problems for
which an algorithm exists that can solve the problem in a number of steps
that is bounded by a polynomial function of the size of the input.

In general, problems in the P class are considered efficiently solvable or
tractable; tractable means that the problems can be solved in theory as well
as in practice. When being implemented, efficient algorithms of P problems
can find their solutions relatively quickly, even when the input data is very
large.

The reason why polynomial time is the center of discussions falls in two
aspects:

• Growth Rates: Polynomial functions grow at a much slower rate com-
pared to exponential or factorial functions. Namely, even if an al-
gorithm for a problem has a high-degree polynomial time complexity
(e.g., n4 or n5), it’s likely still manageable for sufficiently large inputs
compared to exponential solutions.

• Reasonable increases: If a task’s runtime doubles when the input size
doubles, we’d consider that acceptable. If the runtime increases a thou-
sandfold, there’s a problem. Polynomial time algorithms still exhibit a
reasonable scaling behavior.

For instance, consider two growth rates, one of polynomial n3 and the
other of exponential such as 2n. Let n be 100, which is a reasonable input
size to an algorithm. The polynomial running time takes 1 billion steps, a
large but manageable number, whereas the exponential running time 2100 is
an enormous number. This simple example explains that polynomial time
algorithms are fast enough for many purposes, but exponential time algo-
rithms rarely are useful.

8



All reasonable deterministic computational models are polynomially
equivalent. That is, any one of them can simulate another with only a
polynomial increase in running time. Analyzing an algorithm to show that
it runs in polynomial time includes two tasks.

First, we have to give a polynomial upper bound (usually in big-O no-
tation) on the number of stages that the algorithm uses when it runs on
an input of length n. Then, we have to examine the individual stages in
the description of the algorithm to be sure that each can be implemented in
polynomial time on a reasonable deterministic model. We choose the steps
when describing the algorithm to make this second part of the analysis easy
to do.

When both tasks have been completed, we can conclude that the algo-
rithm runs in polynomial time because we have demonstrated that it runs
for a polynomial number of stages, each of which can be done in polynomial
time, and the composition of polynomials are polynomials.

Example 5.1. Given an array of n integers (e.g., [5, 8, 3, 10, 6]), let us develop
an algorithm to find the maximum element in this array. This problem can
be solved in linear time O(n) by scanning through the array once and keep-
ing track of the maximum element encountered so far. As each element is
examined, we update the maximum element if the current element is greater
than the current maximum. This algorithm has a time complexity that grows
linearly with the size of the input array n, making it an example of a problem
in the complexity class P.

Example 5.2. Suppose we are given a directed graph G that contains vertices
s and t, as shown in Figure 2. The PATH problem is to determine whether a
directed path exists from s to t. Let

PATH = {⟨G, s, t⟩ | G is a directed graph that has a directed path from s to t}.

Theorem 5.3. The language PATH is in P.

Proof. The high-level idea. We prove this theorem by presenting a poly-
nomial time algorithm that decides PATH. Before describing that algorithm,

9



Figure 2: The PATH problem (Sipser, pg. 287)

let’s observe that a brute-force algorithm for this problem isn’t fast enough.
A brute-force algorithm for PATH proceeds by examining all potential paths
in G and determining whether any of them is a directed path from s to t.

A potential path is a sequence of vertices in G having a length of at most
m, where m is the number of vertices in G. (If any directed path exists from
s to t, one having a length of at most m exists because repeating a vertex
never is necessary.) But the number of such potential paths is roughly mm,
which is exponential in the number of vertices in G. Therefore, this brute-
force algorithm uses exponential time.

To get a polynomial time algorithm for PATH, we must do something
that avoids brute force. One way is to use a graph-searching method such
as breadth-first search. Here, we successively mark all vertices in G that are
reachable from s by directed paths of length 1, then 2, then 3, through m.
We can now bound the running time of this strategy by a polynomial.

A poly-time algorithm for PATH. A polynomial time algorithm M
for PATH operates as follows.

M =“On input ⟨G, s, t⟩, where G is a directed graph with vertices s and
t:

1. Place a mark on vertex s.

2. Repeat the following until no additional vertices are marked:

• Go over every edge (a, b) of all the edges of G; if an edge (a, b)

10



is found going from a marked vertex a to an unmarked vertex b,
mark vertex b.

3. If t is marked, accept. Otherwise, reject.”

Now we analyze this algorithm to show that it runs in polynomial time.
Obviously, stages 1 and 3 are executed only once. Stage 2 runs at most m
times because each time except the last it marks an additional vertex in G.
Thus, the total number of stages used is at most 1+ 1+m, giving a polyno-
mial in the size of G.

Stages 1 and 3 of M are easily implemented in polynomial time on any
reasonable deterministic model. Stage 2 involves a scan of the input and a
test of whether certain vertices are marked, which also is easily implemented
in polynomial time. Hence M is a polynomial time algorithm for PATH.

6 The Class NP

The examples in the previous section demonstrate that many problems do
not have to be solved by exhaustively searching through a space of solutions,
called brute-force search.

There are problems, however, for which we are unable to find polyno-
mial time algorithms; the reason could be that a polynomial solution has not
been discovered yet, or that a polynomial algorithm can not exist due to the
intrinsic difficulties of the problems. Instead, we may be given a proposed
solution, and our task is simply to check whether or not the proposed so-
lution is correct. Verifying the correctness of the proposed solution may be
much easier than determining its existence. Simply put, a problem is said to
have polynomial verifiability if there exists a polynomial-time verifier for
its solutions.

An example of a problem with polynomial verifiability is the Hamilto-
nian Path problem: given a directed graph G and two vertices specified s

11



and t, is there a directed path from s to t that visits each vertex exactly once?

Let HAMPATH = {⟨G, s, t⟩ | G is a directed graph with a Hamiltonian
path from s to t}. Verifying a proposed solution involves checking whether it
is indeed a valid path that satisfies the conditions, and this verification can
be done in polynomial time.

Another polynomially verifiable problem is compositeness. Recall that a
natural number is composite if it is the product of two integers greater than
1 (i.e., a composite number is one that is not a prime number). Let

COMPOSITES = {x | x = pq, for integers p, q > 1}.

We can easily verify that a number is composite—all that is needed is a di-
visor of that number.

On the other hand, some problems may not be polynomially verifiable,
such as the complement of the Hamiltonian Path problem. Even if we could
somehow determine that a graph did not have a Hamiltonian path, we do
not know of a way for someone else to verify its nonexistence without using
the same exponential time algorithm for making the determination in the
first place.

Definition 6.1. A verifier for a language L is an algorithm V , where

L = {w | V accepts ⟨w, c⟩ for some string c}.

When evaluating the time of a verifier, we only consider the length of
the input string w. A polynomial time verifier is a verifier that runs
in polynomial time relative to the length of w. A language L is considered
polynomially verifiable if it has a polynomial time verifier.

It’s important to note that a verifier uses additional information, repre-
sented by the string c in the definition, to verify whether the string w is a
member of L. This information c is also called a certificate, or proof, of
membership in L. For polynomial verifiers, the certificate also has polyno-
mial length, in the length of w, since that is the only amount of information
the verifier can access within its time bound.

12



Definition 6.2. NP is the class of languages that have polynomial time ver-
ifiers.

The term NP stands for Non-deterministic Polynomial Time and it
comes from an alternative representation, by using nondeterministic poly-
nomial time Turing machines (NTMs) that can be deemed as “guess” ma-
chines. Essentially, if a problem is in NP, given a “candidate” solution to
the problem, one can check whether the candidate is a correct solution in
polynomial time. It’s important to note that while all problems in P are also
in NP (since a solution can be verified in polynomial time if it can be found
in polynomial time), not all NP problems are known to be in P.

Example 6.3. In an undirected graph, a clique is a subgraph wherein every
two vertices are connected by an edge. A k-clique is a clique that contains
k vertices. Figure 3 illustrates a graph with a 5-clique. The clique problem
is to determine whether a graph contains a clique of a specified size k. Let

CLIQUE = {⟨G, k⟩|G is an undirected graph with a k-clique}.

Figure 3: A graph with 5-clique. (Sipser, pg. 296)

Theorem 6.4. CLIQUE is in NP.

Proof. The proof idea is to show the clique the certificate. The following is
a verifier V for CLIQUE.

V = “On input ⟨⟨G, k⟩, c⟩:

13



1. Test whether c is a subgraph with k vertices in G.

2. Test whether G contains all edges connecting vertices in c.

3. If both pass, accept ; otherwise, reject.”

Since the running time of the first two steps are proportional to the num-
bers of vertices and edges, the verifier V can be implemented in polynomial
time.

Example 6.5. Given a set of positive integers and a target sum, is there a
subset of the integers that adds up to the target sum?

For instance, suppose we are given a set of positive integers: {2, 4, 7, 9,
11, 15} and a target sum of 20. The subset sum problem asks whether there
exists a subset of these numbers that adds up to the target sum of 20.

If someone claims to have found a subset (e.g., {4, 7, 9}) that adds up
to the target sum, we can quickly verify it by summing the numbers in the
subset to check if they indeed add up to 20. However, finding such a subset
(if it exists) may require trying all possible combinations of numbers, which
can be exponential in the number of integers.

Example 6.6. Let us consider the traveling salesman problem (TSP). Given a
list of cities and the distances between each pair of cities, what is the shortest
possible route that visits each city exactly once and returns to the original
city?

For instance, suppose we are given a set of cities: {A,B,C,D}; the dis-
tances between each pair of cities as follows:

• Distance from A to B: 10 units

• Distance from A to C: 15 units

• Distance from A to D: 20 units

• Distance from B to C: 35 units

• Distance from B to D: 25 units

14



• Distance from C to D: 30 units

The TSP asks for the shortest route that visits each city exactly once and
returns to the original city.

If someone claims to have found a route as a solution, we can quickly
verify it by summing the distances along the route and checking if it visits
each city exactly once and returns to the original city. However, finding such
a route (if it exists) may require trying all possible permutations of the cities,
which grows factorially with the number of cities.

7 NP-Complete class

NP-complete problems constitute a subset within the category ofNP prob-
lems. A problem is NP-complete if every other problem in NP can be
reduced to it in polynomial time and it itself is also a NP problem. NP-
complete problems are significant because they serve as a litmus test for
the potential polynomial-time solvability of all NP problems. The existence
of a polynomial-time algorithm for any NP-complete problem implies that
every single NP problem is also has a polynomial-time algorithm, enabling
the efficient resolution of all NP problems.

From a practical perspective, NP-completeness acts as a warning sig-
nal, discouraging attempts to find efficient polynomial-time solutions, which
are likely to be fruitless endeavors. Although there is no formal proof yet,
the widely accepted belief that P ̸= NP guides this pragmatic approach.
Therefore, identifying a problem as NP-complete provides strong evidence
that it cannot be solved by any polynomial-time algorithm.

A central component of demonstrating NP-completeness is polyno-
mial time reducibility. When problem A is reducible to problem B, it
means if we can find a solution to B, it can be used to solve A as well. In
other words, when problem A is efficiently reducible to problem B, an effi-
cient solution to B can be used to solve A efficiently.

Definition 7.1. A function f : Σ∗ → Σ∗ is a polynomial time com-
putable function if some polynomial time Turing machine M exists that

15



halts with just f(w) on its tape, when started on input w.

Definition 7.2. Language A is polynomial time mapping reducible, or
simply polynomial time reducible, to language B, written A ≤P B, if a
polynomial time computable function f : Σ∗ → Σ∗ exists, where for every w,

w ∈ A ⇔ f(w) ∈ B.

The function f is called the polynomial time reduction of A to B.

A polynomial-time reduction of A to B provides an efficient method to
convert testing of membership in A to testing of membership in B. To test
whether w ∈ A, we use the polynomial-time reduction function f to map w
to f(w) and then test whether f(w) ∈ B. If one language is polynomial time
reducible to another language which is already known to have an existing
polynomial time solution, then we can find a polynomial time solution to the
original language, as stated in the following theorem.

Theorem 7.3. If A ≤P B and B ∈ P, then A ∈ P.

Proof. Let M be the polynomial time algorithm deciding B and f be the
polynomial time reduction from A to B. We describe a polynomial time
algorithm N deciding A as follows.

N = “On input w:

1. Compute f(w).

2. Run M on input f(w) and output whatever M outputs.”

We have w ∈ A whenever f(w) ∈ B because f is a reduction from A to B.
Thus, M accepts f(w) whenever w ∈ A. Moreover, N runs in polynomial
time because each of its two stages runs in polynomial time. Note that stage
2 runs in polynomial time because the composition of two polynomials is a
polynomial.

16



Before we move onto formal definition of NP-completeness, let us in-
troduce the first NP-complete problem: the SAT problem. Recall that
there are two Boolean variables, TRUE and FALSE, which are typically rep-
resented by 1 and 0, respectively. The Boolean operations AND, OR, and
NOT are represented by the symbols ∧, ∨, and ¬, respectively; we use the
overbar as a shorthand for the ¬ symbol, so x̄ means ¬x. The following lists
these operations on two Boolean variables.

0 ∧ 0 = 0 0 ∨ 0 = 0 0̄ = 1

0 ∧ 1 = 0 0 ∨ 1 = 1 1̄ = 0

1 ∧ 0 = 0 1 ∨ 0 = 1

1 ∧ 1 = 1 1 ∨ 1 = 1

A Boolean formula is a logical statement that combines Boolean variables
(TRUE or FALSE) using Boolean operations (AND, OR, and NOT). For
example,

φ = (x̄ ∧ y) ∨ (x ∧ z̄)

is a Boolean formula. A Boolean formula is satisfiable if some expression as-
signment of 0s and 1s makes the formula evaluate to 1 (TRUE). The formula
above is satisfiable because there is at least one assignment x = 0, y = 1, and
z = 0 that makes φ evaluate to 1. We say this specific assignment satisfies
φ. The satisfiability problem is to decide whether a given Boolean formula
is satisfiable, denoted by

SAT = {⟨φ⟩|φ is a satisfiable Boolean formula}.

Now, let’s consider the problem 3SAT, which is a special case of the
satisfiability problem where all the Boolean formulas are in a particular form.
A literal is a Boolean variable or a negated Boolean variable, as in x or x̄.
A clause is several literals connected with ∨s, as in (x1 ∨ x2 ∨ x3 ∨ x4). A
Boolean formula is in conjunctive normal form, called a cnf-formula, if
it comprises several clauses connected with ∧s, as in

(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x3 ∨ x5 ∨ x6) ∧ (x3 ∨ x6).

17



The following is a 3cnf-formula because all the clauses have three literals:

(x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x5 ∨ x6) ∧ (x3 ∨ x6 ∨ x4) ∧ (x4 ∨ x5 ∨ x6).

Let 3SAT = {⟨φ⟩|φ is a satisfiable 3cnf-formula}. An assignment that
satisfies a cnf-formula is one where each clause must contain at least one
literal that evaluates to 1.

The following theorem presents a polynomial time reduction from the
3SAT problem to the CLIQUE problem.

Theorem 7.4. 3SAT is polynomial time reducible to CLIQUE.

Proof. The polynomial time reduction f that we demonstrate from 3SAT to
CLIQUE converts formulas to graphs. In the constructed graphs, cliques of
a specified size correspond to satisfying assignments of the formula. Struc-
tures within the graph are designed to mimic the behavior of the variables
and clauses.

Let φ be a formula with k clauses such as

φ = (a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ · · · ∧ (ak ∨ bk ∨ ck).

The reduction f generates the string ⟨G, k⟩, where G is an undirected graph
defined as follows. The vertices in G are organized into k groups of three
vertices each called the triples, t1, . . . , tk. Each triple corresponds to one of
the clauses in φ, and each vertex in a triple corresponds to a literal in the
associated clause. Label each vertex of G with its corresponding literal in
φ. The edges of G connect all but two types of pairs of vertices in G. No
edge is present between vertices in the same triple, and no edge is present
between two vertices with contradictory labels, as in x2 and ¬x2. Figure 4 il-
lustrates this construction when φ = (x1∨x1∨x2)∧(x1∨x2∨x2)∧(x1∨x2∨x2).

Now we demonstrate why this construction works. We show that φ is
satisfiable if and only if G has a k-clique.

18



Figure 4: The graph reduction of the 3SAT problem. (Sipser, pg. 303)

Suppose that φ has a satisfying assignment. In that satisfying assign-
ment, at least one literal is true in every clause. In each triple of G, we select
one vertex corresponding to a true literal in the satisfying assignment. If
more than one literal is true in a particular clause, we choose one of the true
literals arbitrarily. The Vertices just selected form a k-clique. The number
of vertices selected is k because we chose one for each of the k triples. Each
pair of selected vertices is joined by an edge because no pair fits one of the
exceptions described previously. They could not be from the same triple
because we selected only one vertex per triple. They could not have contra-
dictory labels because the associated literals were both true in the satisfying
assignment. Therefore, G contains a k-clique.

Suppose that G has a k-clique. No two of the clique’s vertices occur in the
same triple because vertices in the same triple are not connected by edges.
Therefore, each of the k triples contains exactly one of the k clique vertices.
We assign truth values to the variables of φ so that each literal labeling a
clique Vertex is made true. Doing so is always possible because two vertices
labeled in a contradictory way are not connected by an edge and hence both
can’t be in the clique. This assignment to the variables satisfies φ because
each triple contains a clique vertex and hence each clause contains a literal
that is assigned TRUE. Therefore, φ is satisfiable.

19



This example shows that if CLIQUE is solvable in polynomial time, then
so is 3SAT. At first sight, this connection between these two problems is sur-
prising because, they appear to be quite different on the surface. However,
the concept of polynomial-time reducibility allows us to find a link between
the computational complexities of these two seemingly unrelated problems.
Now we proceed to give a definition that will allow us to similarly link the
complexities of an entire class of problems.

Definition 7.5. A language B is NP-complete if it satisfies two conditions:

1. B is in NP, and

2. every A in NP is polynomial time reducible to B.

Theorem 7.6. If B is NP-complete and B ∈ P, then P = NP.

Proof. This theorem follows directly from the definition of polynomial time
reducibility.

Theorem 7.7. If B is NP-complete and B ≤P C for C in NP, then C is
NP-complete.

Proof. We already know that C is in NP, so we must show that every A
in NP is polynomial time reducible to C. Because B is NP-complete, every
language in NP is polynomial time reducible to B, and B in turn is poly-
nomial time reducible to C. Polynomial time reductions compose; that is, if
A is polynomial time reducible to B and B is polynomial time reducible to
C, then A is polynomial time reducible to C. Hence every language in NP
is polynomial time reducible to C.

Let’s now look at another example.

Example 7.8. Graph coloring is a classic example of an NP-complete prob-
lem. In the graph coloring problem, we are given an undirected graph
G = (V,E) where V is the set of vertices and E is the set of edges. The
task is to assign colors to the vertices of the graph such that no two adjacent

20



vertices share the same color, using the fewest possible number of colors.
This property makes graph coloring an important problem with applications
in scheduling, register allocation in compilers, and network design, among
others.

Formally, a graph coloring problem can be stated as follows: Given an
undirected graph G = (V,E), find a function f : V → N such that for any
edge (u, v) ∈ E, f(u) ̸= f(v).

1

2

3

4

1

2

3

4

Figure 5: A graph coloring problem with three colors

Figure 5 illustrates an example of the graph coloring problem. In this
coloring, each vertex is assigned a color (red, blue, or green) such that no
two adjacent vertices have the same color. This is a valid coloring of the
graph.

To show that the graph coloring problem is NP-complete, we need to
demonstrate two tasks.

First, the graph coloring problem is in the class NP, meaning that given
a potential coloring of the graph, we can verify in polynomial time whether
it is a valid coloring.

For the second task, we can reduce the well-known NP-complete prob-
lem SAT (Boolean satisfiability problem) to the graph coloring problem. This
reduction is typically done by constructing a graph from a given SAT instance,
such that if the SAT instance is satisfiable, the graph can be colored with a
certain number of colors, and if the SAT instance is not satisfiable, the graph

21



cannot be colored with a certain number of colors.

For simplicity, we use three colors for the explanation. Here’s a brief
outline of the reduction:

Step 1: Construct a Boolean formula from the graph. We con-
struct a Boolean formula that is SAT if and only if the graph can be 3-colored.

• Variables: Create Boolean variables xv,c for each vertex v ∈ V and
each color c ∈ {R,G,B}. The variable xv,c will be true if and only if
vertex v is colored with color c.

• Clauses: Construct the following types of clauses to ensure a valid
3-coloring:

– Each vertex must be colored with exactly one color:

∗ For each vertex v, create the clause:

(xv,R ∨ xv,G ∨ xv,B)

This clause ensures that v is colored with at least one color.

∗ For each pair of colors c1 ̸= c2, create the clause:

(¬xv,c1 ∨ ¬xv,c2)

This clause ensures that v is not colored with two colors si-
multaneously.

– No two adjacent vertices can share the same color:

∗ For each edge (u, v) ∈ E and each color c, create the clause:

(¬xu,c ∨ ¬xv,c)

This clause ensures that if u is colored with color c, then v
cannot be colored with color c, and vice versa.

Step 2: Formulate the complete Boolean formula. Combine all
the clauses constructed in the previous step into a single cnf-formula Φ. The
formula Φ is satisfiable if and only if the graph G can be colored with three

22



colors.

Step 3: Polynomial-time transformation. Each vertex generates a
constant number of clauses (specifically, four clauses: one for ensuring the
vertex is colored and three for ensuring it is not colored with more than one
color). Each edge generates three clauses. Therefore, the number of clauses
and the size of the formula are polynomial in the size of the input graph.

Step 4: Conclusion. Since the SAT problem is known to be NP-
complete, and we have shown a polynomial-time reduction from the 3-
coloring problem to the SAT problem, it follows that the 3-coloring problem
is also NP-complete.

23



References

[Sip96] Michael Sipser. Introduction to the theory of computation. ACM
Sigact News, 27(1):27–29, 1996.

24


