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1 Introduction

In graph theory, a graph is a pair of sets G = (V,E) with the vertex set V and
edge set E connecting the vertices. Two vertices x, y of G are neighbors, if xy is
an edge of G. Collectively, all neighbors of a vertex v is called the neighborhood
of v, N(v). The degree of a vertex v, which is the number of edges in E that is
incident at v, is denoted by deg(v).
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Figure 1. The graph on V = 1, . . . , 7 with edge set E =
[1,2][1,3][1,4][2,3][2,5][4,5]

A specific study under Graph theory is extremal graph theory. In extremal
graph theory, one focuses on finding the maximum and minimum conditions
that either ensures or inhibits a pattern. The starting point of extremal graph
theory was this question: what is the maximum number of edges in an n-vertex
triangle-free graph? This question was answered by Willem Mantel in the early
1900’s via Mantel’s Theorem.

In this paper, we will introduce two proofs of Mantel’s theorem using in-
equality of means. We will also present proofs of the inequality of means with
shifting. Lastly, we will use the shifting method to prove some example prob-
lems.

2 Mantel’s Theorem

Theorem 1 Mantel’s Theorem states that every n-vertex, triangle free graph

contains at most ⌊n2

4 ⌋ edges.
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Proof 1. Let G be a triangle-free graph with n vertices and m edges. Since
the graph is triangle-free, the endpoint vertices of any edge xy ∈ E(G) have no
shared neighbors. This means that deg(x) + deg(y) ≤ n. Taking the sum of all
edges in G gives the following inequality:∑

xy∈E(G)

deg(x) + deg(y) ≤ mn (1)

Observe that the term deg(x) will appear in every edge incident to x, so
deg(x) appears deg(x) times. Thus, the previous inequality can be simplified
by considering each vertex instead of each edge:∑

x∈V (G)

deg(x)2 ≤ mn (2)

The inequality between quadratic and arithmetic means is as follows:

Lemma 1 For any reals x1, . . . , xn the following inequality holds√
x2
1 + x2

2 + . . .+ x2
n

n
≥ x1 + x2 + . . .+ xn

n
.

A proof of this inequality is covered in section 3 using shifting. Algebraic ma-
nipulation on this inequality converts the quadratic (left hand) side to match
the form of eq. (2):

x2
1 + x2

2 + . . .+ x2
n ≥ (

x1 + x2 + . . .+ xn

n
)2 (3)

Lemma 2 (The Handshaking Lemma) The sum of all degrees in a graph
is equal to twice the number of edges.

Combining the above 2 lemmas, eq. (2) generates the following inequality:∑
x∈V (G)

deg(x)2 ≥ 1

n
(

∑
x∈V (G)

deg(x))2 =
(2m)2

n
(4)

Recall that the right-hand side of this inequality originated from inequality

1, so (2m)2

n ≤ mn and m ≤ n2

4 . Lastly, since m, the number of edges in a graph,

must be an integer, the floor function can be added to become m ≤ ⌊n2

4 ⌋,
proving Mantel’s theorem.

Proof 2. Let G be a triangle-free graph. Let v be a vertex with maximum
degree. Because G is a triangle-free graph, the neighborhood of v, N(v), is a set
of vertices without edges between. Let V = A∪B where N(v) = A,B = V \A.
Because there are no edges in A, every edge must have at least one endpoint in
B, thus:

2



|E| ≤
∑
x∈B

deg(x) (5)

Because v is the vertex in G with maximum degree, among all x ∈ V , deg(x) ≤
deg(v) = |A|. Thus:

|E| ≤
∑
x∈B

deg(x) ≤ |B|max
x∈B

deg(x) ≤ |B|deg(v) = |B||A| (6)

The AM-GM inequality which states the arithmetic mean is always larger than
the geometric mean is as follows:

Lemma 3 For any reals x1, . . . , xn the following inequality holds

(x1x2x3 · · ·xn)
1
n ≤ x1 + x2 + x3 · · ·+ xn

n

A proof of AM-GM inequality using shifting is covered in Section 3. Algebraic
manipulation of this inequality gives us the below:

x1x2x3 · · ·xn ≤ (
x1 + x2 + x3 · · ·+ xn

n
)n (7)

eq. (6) and eq. (7) then gives the following:

|E| ≤ |A| ∗ |B| ≤ (
|A|+ |B|

2
)2 =

n2

4
(8)

Since the number of edges in a graph must be an integer, the floor function

can be added to become |E| ≤ ⌊n2

4 ⌋, proving Mantel’s theorem.

3 Proving inequalities with shifting

A technique called shifting can be used to prove all parts of the Cauchy-Schwarz
inequality.

The quadratic mean and arithmetic mean (QM-AM) inequality is as follows:√
x2
1 + x2

2 + · · ·+ x2
n

n
≥ x1 + x2 + · · ·+ xn

n
(9)

For this proof, we will shift values of x to decrease the left-hand side while
keeping the right-hand side constant. Let A equal the current arithmetic mean
of the numbers. Without loss of generality, we will choose two terms, x1 and x2

such that x1 < A < x2. Next, let s be the minimum of A− x1 and x2 −A and
shift the value of x1 to x1 + s and x2 to x2 − s. This moves x1 and x2 closer to
A (and makes one value equal to A).

We can show that this shift will decrease the QM of the set by substituting
the new values of x1 and x2 into the original formula: ‘

QM ′ =

√
x2
1 + x2

2 + · · ·+ x2
n

n
(10)
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We want to prove that the QM ′ is indeed ≤ QM . The inequality QM ′ ≤
QM simplifies to become 0 ≤ (x1)s − (x2)s + s2 and x2 − x1 ≤ s, which
must be true because of the definition we used for s. Thus, shifting values
does decrease the QM without changing the AM. We continue shifting until

x1 = x2 = . . . = xn = A. For this equality case, QM ′ =
√

n(A2)
n = A and

AM = n(A2)
n = A, so QM ′ = AM after shifting. However, QM ′ is smaller than

the original QM, proving that QM ≤ AM .

Similarly, shifting can also be used to prove the AM-GM inequality, which
is as follows:

x1 + x2 + x3 · · ·+ xn

n
≥ (x1x2x3 · · ·xn)

1
n (11)

For this proof, we will shift values of x to increase the right-hand side (RHS)
while keeping the left-hand side (LHS) constant. Let A equal the current arith-
metic mean of the numbers. We will choose two terms, x1 and x2 such that
x1 < A < x2. Next, let s be the minimum of A − x1 and x2 − A and shift the
value of x1 to x′

1 = x1 + s and x2 to x′
2 = x2 − s. This moves x1 and x2 closer.

After shifting, LHS and RHS are as follows:

LHS =
(x1 + s) + (x2 − s) + · · ·+ xn

n
=

x1 + x2 + · · ·+ xn

n
(12)

RHS = n
√
(x1 + s)(x2 − s) · · ·xn ≥ n

√
x1x2 · · ·xn (13)

The LHS remains constant after shifting while the RHS, which is the geometric
mean, increased after shifting. We can continue shifting until equality case is
reached, where all x = A. In this case:

LHS =
nA

n
= A (14)

RHS =
n
√
An = A (15)

LHS = RHS (16)

The geometric mean increased after shifting while arithmetic did not, thus arith-
metic mean is greater than or equal to geometric mean.

4 More questions using shifting

1. Prove that aK5 free graph on n vertices has ≤ n3

16 triangles. This is equivalent
to proving Zykov’s theorem, as shown below, for k = 3, l = 5.

Theorem 2 (Zykov 1949) Let l > k ≥ 2 be integers. Any n-vertex graph
without any Kl has at most

n2

(l − 1)2

(
l − 1

k

)
copies of Kk.
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Let t(u) be the number of triangles containing vertex u, and t(uv) be the
number of triangles containing edge uv. Let also t(G) be the number of triangles
in a graph G. Let G = (V,E) be such that G has no K5’s and the most triangles.
Any edge not contained in any triangles can be removed without changing the
number of triangles, so t(uv) ≥ 1 for all uv ∈ E.

Lemma 4 For any uv /∈ E, t(u) = t(v).

We will prove this lemma by contradiction. Consider vertices u and v such
that uv /∈ E and t(u) < t(v). Then remove u and replace it with a new vertex
v′, such that N(v′) = N(v), to create G′.

t(G′) = t(G)− t(u) + t(v) > t(G) (17)

If G′ contains a K5, then N(v) contains a K4, so G contained a K5. Thus
G′ is K5-free and has more triangles than G, which is a contradiction.

Lemma 5 If uv, vw /∈ E then uw /∈ E.

We will also prove this lemma by contradiction. Consider vertices u, v, w
such that uv, vw /∈ E. Replace u with v′ and w with v′′, such that N(v′) =
N(v′′) = N(v), to create G′:

t(G′) = t(G)− t(u)− t(w) + t(uw) + 2t(v) (18)

= t(G) + t(uw) (19)

> t(G). (20)

Similarly as before, G′ must be K5-free, and it has more triangles than G,
which is a contradiction.

Fact 1 If an graph G = (V,E) is such that for any uv, vw /∈ E we have uw /∈ E,
then G must be a complete multipartite graph.

By the previous lemma, G is a complete multipartite graph. G is K5 free,
so it is a 4-partite graph. Let a, b, c, d be the numbers of vertices in 4 parts.
Now, t(G) = abc+abd+acd+ bcd. Since we are proving that any K5-free graph

on n vertices has ≤ n3

16 triangles, we can write the following inequality for any
a, b, c, d ≥ 0:

abc+ abd+ acd+ bcd ≤ (a+ b+ c+ d)3

16
. (21)

If a = b = c = d, the equality holds. We can use the shifting method to
achieve this condition. Let M = a+b+c+d

4 be the mean of a, b, c, d. First, we pick
a and b such that a < M < b. Next, we shift 2. (a, b) so that (a′ = a+ x, b′ =
b− x) where x = min((M − a), (b−M)).

After shifting, the left-hand side of eq. (21) increases while the right-hand
side stayed the same:
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LHS = (a+ x)(b− x)c+ (a+ x)(b− x)d+ (a+ x)cd+ (b− x)cd (22)

= abc+ abd+ acd+ bcd+ (b− a− x)(c+ d)x (23)

> abc+ abd+ acd+ bcd (24)

RHS =
((a+ x) + (b− x) + c+ d)3

16
=

(a+ b+ c+ d)3

16
. (25)

We keep shifting until we reach the equality case a = b = c = d when
left-hand side = right-hand side. Because the left-hand side increased and the
right-hand side did not, so, at the beginning, left-hand side ≤ right-hand side.

Thus, it is proved that a K5 free graph on n vertices has ≤ n3

16 triangles.

2. Assume G is an oriented graph such that every edge has a direction and
edges xy and yx cannot simultaneously exist. Every edge has weight 1 or 2, and
for any edges xy and yz, w(xy) +w(yz) ≤ 2 where w is the weight of the edge.

Show that the total weight of all edges is at most n2

2 .

We start by discarding all isolated vertices. We will then partition the ver-
tices into three sets. Set X will contain all vertices with an outgoing edge of
weight 2, set Z will contain all vertices with an incoming edge of weight 2, and
set Y will contain all other vertices. Y is disjoint from X and Z by definition
and X and Z are disjoint because there a vertex with an incoming edge of weight
2 cannot have any outgoing edge, and vice versa. All edges are of the form set
X to set Z with weight 2, X to Y with weight 1, Y to Z with weight 1, or Y
to a different vertex in Y with weight 1.

For any two sets A and B, we will notate the number of edges from A to B
as ab. We will also notate the number of vertices in any set A as a. We can find
the total weight of all edges and set up an inequality:

2xz + xy + yz +
y(y − 1)

2
≤ (x+ y + z)2

2
(26)

When x = y = z, the equality case holds, in which both the left-hand side

(LHS) and the right-hand side (RHS) is equal to 9x2

2 . To achieve that equality

case, we can use the shifting method. Let M = x+y+z
3 be the mean of x, y, z.

First, we pick x and y such that x < M < y. Next, we shift x and y such that
x′ = x+ a and y′ = y− a where a = min((M − a), (b−M)). After shifting, the
LHS increased while the RHS remained constant:
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LHS = 2(x+ a)z + (x+ a)(y − a) + (y − a)z +
(y − a)(y − a− 1)

2
(27)

= 2xz + xy + yz + a(y − x+ z)− a2 +
(y − a)2 − (y − a)

2
(28)

≥ 2xz + xy + yz +
y(y − 1)

2
(29)

RHS =
((x+ a) + (y − a) + z)2

2
=

(x+ y + z)2

2
(30)

We keep shifting until we reach the equality case x = y = z when LHS=RHS.
The LHS side increased and the RHS did not, so, at the beginning, LHS ≤ RHS.

Thus, it is prove the total weight of all edges is at most n2

2 .
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