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1 Abstract
In traditional Euclidean Geometry, parallel lines never intersect. In our per-
ception of the world, however, parallel lines appear to converge at vanishing
points infinitely far away. Projective geometry explores this possibility; at its
core, examining the properties of points and lines, and how they behave under
transformations of perspective. In this presentation, we present an exploration
of analytic projective geometry, its sub-geometries, projective transformations,
and its very useful applications in art, animation, and game design.

2 Intersecting parallel lines in Art
One of the most intuitive uses of projective geometry is within art. In fact,
projective geometry was first developed during the Renaissance for use in art.

In art, artists employ the use of vanishing points, where parallel lines con-
verge on a horizon to create the illusion of a three-dimensional world on a
two-dimensional surface. Compositional techniques include : one point per-
spective, typically used when the subject of the art piece is viewed head on
and a strong focal point is desired, two point perspective when a building is
viewed from an edge, and three point perspective when a more dramatic angle
is desired.
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Figure 1: An example of a road
drawn in one-point perspective

Figure 2: An example of buildings
and roads in two-point perspective

Figure 3: If you were an earthworm, this would be how you saw the world
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The three perspectives mentioned above are linear perspectives, and follow
the same conventions as projective geometry. However, artists also introduce
conventions beyond projective geometry by using curved lines in four, five, and
six point perspectives. These perspectives are able to represent more complex
fields of vision: four point perspective projects a cylindrical field of vision,
five point perspective projects a hemispherical field of vision, and six point
perspective projects a spherical field of vision, able to capture 360-degrees to
create a sense of encircling the viewer.

Figure 4: A street drawn in a
four-point perspective.

Figure 5: If you were a fish, you
might see the world like this

Figure 6: A street drawn in a six-point perspective.
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3 Introduction
Before we begin our exploration, we must first define some terms

Definition 3.0.1. A mapping is a function that assigns each element in a
given set to a unique corresponding element in another set.

Definition 3.0.2. A transformation is a mapping of an input (such as a
point, vector, or shape) to an output image.

Since projective geometry originates from perspective drawings in Renais-
sance art, it does not preserve distances and is hence non-metrical. In projec-
tive geometry, we define all parallel lines intersecting at a point infinity.

Definition 3.0.3. An ideal point is a point at infinity where parallel lines
meet In a plane the ideal points form an ideal line, and in space they form an
ideal plane or a plane at infinity.

Axiomatically, we characterize this idea two distinct lines in the plane have
at least one point on both lines. The definition of persepectivity formalizes this
idea:

Definition 3.0.4. Perspectivity with respect to a point is the mapping (such
that each point has a unique relative in the resulting image) of points A,B,C,D
on one line to the points A′, B′, C ′, D′ on another line.

P

A′
B′

C ′
D′

A B C D

Figure 7: Points A,B,C,D and A′, B′, C ′, D′ are related by a perspectivity
with respect to point P .

Definition 3.0.5. Points are collinear if they lie on the same line.
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Definition 3.0.6. Collineation in the context of projective geometry, is a
one-to-one mapping from one projective plane to another, such that the images
of collinear points remain collinear after transformation.

Additionally, in Euclidean geometry, distance is fundamental (we derive al-
most all associations through diatance). However, this property, in addition to
angles, are not preserved in projective geometry. Instead, collineation ensures
that lines remain as lines after transformations, preserving incidence relations
(i.e., which points lie on which lines).

4 Cross Ratios

P R Q S

Figure 8: Cross ratio of (P,Q;R, S)

Cross-ratios, denoted (P,Q;R, S), are the ratio of four distinct collinear points,
as represented by the fraction:

PR

QR
PS

QS

R must be in between points P and Q for which the cross-ratio refers to.
This property of betweeness arises the concept of separation, where any pair
of points separate the point between them with its harmonic conjugate. Har-
monic conjugates are two points that divide a line segment internally and
externally in the same ratio.
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4.1 Harmonic Set

Definition 4.0.1. Four distinct points form a harmonic set, denoted H(PQ,RS),
if and only if they are collinear and their 6 lines (fulfilling the conditions il-
lustrated below) form a complete quadrangle.

Equivalently, P,Q,R, S form a harmonic set if (P,Q;R, S) = −1. (For the
interested reader, this equivalence can be shown by applying Menelaus’s and
Ceva’s theorems to triangle T1PQ in Figure 9).

ℓ
P R Q S

T1

T2

T3

T4

Figure 9: a quadrangle construction

Given 3 existing distinct collinear points, there exists an unique fourth one
that can be determined through the construction in Figure 9. If P,Q, and R
are 3 distinct collinear points on line ℓ, then the intersection of the harmonic
conjugates – the two points that divide a line segment internally and externally
in the same ratio – T1, T2, T3, T4 respectively, will each have 6 lines such that
P , Q, R, and the fourth point S, are each on two of the lines. The shape
formed by the intersections T1, T2, T3, T4, form a complete quadrangle.
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Theorem 4.1. Cross ratios of collinear points do not change under projec-
tions.

O

A′

C ′ B′ D′

A C B D

Figure 10: Proved by using the law of sines

Proof: The cross ratio of (A,B;C,D)

=

AC

CB
AD

DB

=
AC ·DB

CB · AD
=

AC ·DB

(AB − AC) · (AB +DB)

=
AC ·DB

AB2 − (AC · AB) + (AB ·DB)− (AC ·DB)
=

AB · CD

AC ·DB

Similarly the cross ratio of (A′, B′;C ′, D′) =
A′B′ · C ′D′

A′C ′ ·D′B′

Applying law of sines to A,B,C,D:

DC =
OC · sin∠DOC

sin∠ODC
etc. (the same for segments AB,DB,AC)

Substituting in the cross ratio we find:

OB · sin∠AOB

sin∠OAB
· OC · sin∠DOC

sin∠ODC
OC · sin∠AOC

sin∠OAB
· OB · sin∠DOB

sin∠ODC

=
sin∠AOB · sin∠DOC

sin∠AOC · sin∠DOB
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Again applying law of sines to A′, B′, C ′, D′:

D′C ′ =
OC ′ · sin∠D′OC ′

sin∠OD′C ′ etc. (the same for segments A′B′, D′B′, A′C ′)

OB′ · sin∠A′OB′

sin∠OA′B′ · OC ′ · sin∠D′OC ′

sin∠OD′C ′

OC ′ · sin∠A′OC ′

sin∠OA′B′ · OB′ · sin∠D′OB′

sin∠OD′C ′

=
sin∠A′OB′ · sin∠D′OC ′

sin∠A′OC ′ · sin∠D′OB′

Since ∠A′OB′ = ∠AOB, ∠d′OC ′ = ∠DOC, ∠A′OC ′ = ∠AOC and
∠D′OB′ = ∠DOB

sin∠A′OB′ · sin∠D′OC ′

sin∠A′OC ′ · sin∠D′OB′ =
sin∠AOB · sin∠DOC

sin∠AOC · sin∠DOB

As such, the cross ratio of (A,B;C,D) = cross ratio of (A′, B′;C ′, D′).
Hence, cross ratios are preserved under projections.

Theorem 4.2. Pascal’s Theorem states that any hexagon on the circumference
of a conic, with vertices A,B,C,D,E, F, (even with coincident points) have
opposite pairs of sides such that their intersections are collinear.

AB

C

X
Z L

M

N

D

F

E

Y

Figure 11: Collinear points constructed from Pascal’s theorem
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Proof: Let the intersection of BC and FE be point M , the intersection
of DC and AF be point N and the intersection of DE and AB be point L.
Then we construct triangle XY Z: Let AB and CD meet at X, CD and AF
at Y and, EF and AB at Z. BM,AN,DL are transversals of triangle XY Z.
Additionally, BC and Y Z meet at point M , XY and AF meet at N , and DE
and XZ meet at L. To prove that L,M,N are collinear:

BM:
ZB

BX
· XC

CY
· YM

MZ
= −1

AN:
ZA

AX
· XN

NY
· Y F

FZ
= −1

DL:
XD

DY
· Y E

EZ
· ZL
LX

= −1

Multiplying the above three equations, we get equation A:

ZB

BX
· XC

CY
· ·ZA
AX

· ·Y F

FZ
· XD

DY
· Y E

EZ
· (ZL
LX

· XN

NY
· YM

MZ
) = −1

According to the intersecting secants theorem, that states that when two
secants intersect at an exterior point, the product of the length of one secant
segment and its external segment equals the product of the other secant seg-
ment and its external segment, we can deduce the following:

ZB · ZA = EZ · FZ
XD ·XC = AX ·BX
Y E · Y F = CY ·DY

Substituting above equations into equation A:
ZL

LX
· XN

NY
· YM

MZ
= −1

Therefore, points M,N,L lie on the same line, i.e., a transversal of triangle
XY Z.
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Theorem 4.3. Desargues’ Theorem states that if two triangles are in perspec-
tive from a point, then they are perspective from a line.

PA′

B′

C ′

A

B

C

Figure 12: Two triangles in a Desargueian configuration

Proof: Let ABC and A′B′C ′ be two triangles in the (projective) plane.
Let P be the common intersection of AA’, BB’, CC’. Hence, there are scalars
α, β, γ and α′, β′, γ′ such that:

αA− αA′ = PβB − βB′ = PγC − γC ′ = P

Then we can derive:

αA− βB = α′A′ − β′B′βB − γC = β′B′ − γ′C ′γC − αA = γ′C ′ − α′A′

From this, we can conclude that point αA − βB on line AB also lies at
α′A′ − β′B′. Similarly points βB − γC and γC − αA lie at β′B′ − γ′C ′ and
αA = γ′C ′ − α′A′ respectively. Since we already defined ABC and A′B′C ′ be
two triangles in the (projective) plane, we can say that:

(αA− βB) + (βB − γC) + (γC − αA) = 0

The lines AA′, BB′, CC ′ intersect in a single point if and only if the
intersections of corresponding sides (AB,A′B′), (BC,B′C ′), (CA,C ′A′) lie on
a single line.

As such, the three intersection points are collinear.
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4.2 Homogeneous Coordinates

Naturally, we require a new system to accommodate for the variations of pro-
tective geometry. homogeneous coordinates are a system of coordinates, intro-
duced by Augustus Möbius, to represent points in the projective space.

Definition 4.3.1. Formally: Homogeneous coordinates are determined by:
Pn = {X0, ..., Xn}: X0, ..., Xn are not all 0 and (X0, ...Xn) = λ(X0, ...Xn),

where λ is the mathematical symbol for a scale factor and n is the dimen-
sion of projective space. This means that all scalar multiples of a point are
the same point in projective geometry, as we are not concerned about distances.

(0, 0, 1)

(0, 2, 1)

(2, 1, 1)

Figure 13: The origin in the projective plane

They have an additional coordinate to include representation of points at
infinity. (x, y, 1) would represent a finite point while (x, y, 0) would represent
a point at infinity in the projective plane. In this case, (0, 0, 0) does not exist
in the projective plane and the origin is defined as (0, 0, 1).

They are essential when defining points during transformations in projec-
tive space.

5 Projective Transformations
The usefulness of homogenous coordinates becomes apparent in terms of trans-
formations. A transformation is a one-to-one function from a space onto itself:
the points are columns vectors and lines are row vectors. Thus projectivities
and collineations correspond to invertible matrices.

Definition 5.0.1. Projectivity is represented by an invertibel 2 × 2 matrix.
Two matrices differing by a non-zero constant represent the same projectivity.
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Theorem 5.1. Cross Ratios, harmonic sets, and separations are preserved
under projectivities.

Proof: Let Xi = (ui, vi) for i = 1, 2, 3, 4 be collinear points for the projec-

tivity M =

[
a c
b d

]
. The cross ratios of R(X1, X2, X3, X4) and

R(MX1,MX2,MX3,MX4) are equal since the determinants of the coordi-
nates of the points are equal. Harmonic sets and separations are defined in
terms of the cross ratio; hence, they are also preserved under projectivities.

5.1 Collineation

Definition 5.1.1. Collineation of the projective plane is represented by an
invertible 3× 3 matrix. Two matrices represent the same collineation if one is
a non-zero scalar multiple of the other.

Example: If

6 −1 0
9 1 0
3 −1 3

 illustrates a collineation of points, where would

U = (1, 1, 1) get projected to?

Solution: Multiplying the matrices out, we get the 3× 1 matrix:6 + (−1) + 0
9 + 1 + 0

3 + (−1) + 3

 =

 5
10
5


However, since a scalar multiple of any point in homogeneous coordinates is
the same as its simple form, point U would be projected to the point (1, 2, 1).

5.2 Conics

Projective geometry doesn’t distinguish between circles, ellipses, parabolas,
and hyperbolas. These are conic sections, which are the curves obtained ac-
cordingly after intersecting a cone with a plane. When transforming different
types of lines in the projective plane, different conic sections are obtained af-
ter the mappings. Circles remain circles. Tangent lines of the circle become
parabolas because it retains a point of tangency with the original circle. Se-
cant lines in the circle become hyperbolas, as hyperbolas have two branches,
and each branch corresponds to one of the two points of intersection with the
original circle.
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Definition 5.1.2. The ideal line is designated as a projective line made up of
all ideal points on the projective plane.

This ideal line handles parallel lines by allowing us to treat them as inter-
secting at a single point.

Hyperbola

Parabola

Circle/Ellipse

Ideal line

Figure 14: Conics in relation to the ideal line

Hyperbolas intersect the ideal line at two points, parabolas intersect it in
one point, and circles and ellipses do not intersect it.

5.3 Inversion

Definition 5.1.3. Inversion maps circles or lines to other circles or lines with
respect to a circle. The inverse of a point P with respect to the inversion circle
O is P ′, determined by the equation OP · OP ′ = r2P ′. P ′ is collinear to line
OP .

A O P B P ′

T

Figure 15: Cross-ratios are preserved under inversion
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Theorem 5.2. If P is a point in the diameter AB of a circumference with
center O, and P ′ is the inverse of P with respect to this circumference, then
(A,B;P, P ′) = −1, i.e., four distinct points A,B, P, P ′ form a harmonic set.

Proof:

AP

PB
AP ′

P ′B

=

r +OP

r −OP
OP ′ + r

OP ′ − r

=
(OP ·OP ′)− (OP · r) + (OP ′ · r)− r2

−(OP ·OP ′) + (OP · r)− (OP ′ · r) + r2

(OP ·OP ′) = r2

−(OP · r) + (OP ′ · r)
(OP · r)− (OP ′ · r)

= −1

6 Projective Space
Homogenous coordinates and collineations can be extended to higher dimen-
sional projective space.

6.1 Coordinate system

Projective Space adds an ideal plane to the Euclidean Points (x, y, z). Hence,
homogeneous coordinates require an extra dimension as well. (x, y, z, t) is a
general 3-dimensional point in Projective Geometry. The Ideal points have ho-
mogeneous coordinates (x, y, z, 0).An n dimensional projective space Pn trans-
lates into a subspace of n + 1 dimensional vector space space Rn+1. Hence,
the 1-dimensional vector space is a point. The line is a 2-dimensional vector
subspace and the plane is a 3-dimensional subspace and so on.

6.2 Duality

The concept of duality, unique to projective geometry, states that for every
theorem that refers to a line, there is a dual for this theorem that refers to
a point. This concept is derived from the fact that on every line there are
infinite points, and for every point, there are infinite lines intersecting it.
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AB

C
D

E

F

Figure 16: Pascal’s theorem
Figure 17: Pascal’s inverse:

Brianchon’s Theorem

Remarkably, Pascal’s theorem, as proved above, has a dual theorem involv-
ing points; Brianchon’s theorem is a theorem stating that when a hexagon is
circumscribed around a conic section, its principal diagonals (those connect-
ing opposite vertices) meet at one single point, called a Brianchon point. It is
beautiful to see how the two theorems encapsulate how points and lines have
identical properties in projective geometry.

7 Sub-geometries
Mathematicians originally thought of projective geometry as an extension of
euclidean geometry.

7.1 Sub-geometries of Projective Geometry

In 1859, Arthur Cayley showed that Euclidean Geometry is a sub-geometry of
projective geometry. Felix Klein built upon this to show other relations.
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Projective
Geometry

Affine
Geometry

Congruence

Euclidean
Geometry

Hyperbolic
Geometry

Single-elliptic
Geometry

Figure 18: Relation of Projective Geometry’s subgeometries

Some geometries encompassed by projective geometry include hyperbolic
geometry, affine geometry, Euclidean geometry, and single elliptic geometry.
In order for one geometry to be a sub-geometry of another, it must fulfill two
requirements:
1) First, all transformations of the sub-geometry must also be transformations
within the encompassing geometry.
2) Second, undefined terms in the sub-geometry must be able to find a defini-
tion within the encompassing geometry.

A good example of the second requirement is distance within the hyperbolic
and single elliptic planes. Distance, a relation involving two points A and B,
could be defined in the hyperbolic and single elliptic planes relative to other
points Ω and Λ on a line using the cross ratio. To obtain Ω and Λ, Cayley
used the intersection of a line with a fixed conic – the Absolute Conic.

7.1.1 Hyperbolic Geometry as a sub-geometry

The hyperbolic distance between A and B is based on their cross ratio with
the intersections Ω and Λ of the line they determine with the conic. In the
Klein model, the unit circle would be the absolute conic. Since collineations
preserve cross-ratio, the distance formula is preserved under collineations that
are hyperbolic.
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P

a

Figure 19: Klein model of hyperbolic geometry

The absolute conic is given by the equation x2 + y2 − z2 = 0. The point
(x, y, z) is x2 + y2 < z2, i.e., it is interior to the absolute conic. The line is a
set of points interior to the absolute conic that are on a projective line [a, b, c].
The intersections of the line with the absolute conic are the omega points of
the line. The distance between A and B is

dH(A,B) = | log(R(A,B,Ω,Λ))| =
∣∣∣∣log(AΩ

AΛ
÷ BΩ

BΛ

)∣∣∣∣
Where XY is the Euclidean distance between X and Y , and Ω and Λ

are the two omega points of line AB. By hyperbolic isometry we mean a
collineation that leaves the absolute conic stable.

Example: Verifying that the adjacent points Q, Qi have the same distance

between them. X- coordinates of the points are P0 = 0, P1 =
1

3
, P2 =

3

5
, P3 =

7

9
, P4 =

15

17
, P5 =

31

33
,Ω = −1, and Λ = 1, P−i = −Pi, Ω = −1, and Λ = 1

Solution: The Euclidean distances between the points are the differences
of their x-coordinates of the points.(
P0Ω

P0Λ

)
÷

(
P1Ω

P1Λ

)
=

1

1
÷

4

3
2

3

=
1

2

Similarly, all the corresponding products equal (1/2). The absolute values
of the logarithms are equal. Hence all the distances are the same.
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P0P−1 P1P−2 P2P−3 P3. .. .. .

Figure 20: Equidistant points in the Klein model of the hyperbolic plane

Hyperbolic isometries are a group of transformations : The general matrix
form of hyperbolic isometries M must take C to itself, by the theorem in
projective transformations M1TCM−1 = ΛC, forΛ ̸= 0.
Definition 7.0.1. We define the h-inner product of two vectors (r, s, t)·h(u, v, w)
to be ru+ sv − tw.
Definition 7.0.2. We define the h-length of a vector (r, s, t) to be (r, s, t, ) ·
h(r, s, t, ).
Definition 7.0.3. We define two vectors to be h-orthogonal if and only if their
h-inner product = 0

To find conditions on a 3×3 invertible matrix M so that M is a hyperbolic
isometry, we must have M1TCM−1 = ΛC for some Λ ̸= 0:

We multiply by MT on the left and M on the right, we get C = MTΛCM .

Then we get
1

Λ
C = MTCM . If we write P for the first column, Q for the

second column, and R for the third column of M :

MTCM = MT

1 0 0
0 1 0
0 0 −1

M =

P ·HP P ·HQ P ·HR
Q ·HP Q ·HQ Q ·HR
R ·HP R ·HQ R ·HR

 =

1

Λ
C


1

Λ
0 0

0
1

Λ
0

0 0 − 1

Λ
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Hence, we can conclude that the columns must be h− orthogonal to each
other to give 0 off the main diagonal. Additionally, the first two columns have
the same h-length, which is the negative of the h-length of the third column.
Therefore, a projective collineation is a hyperbolic isometry if it can be written
as a 3 × 3 matrix whose columns are h − orthogonal to each other with the
first two columns having the same h-length and the third column having the
negative h-length of the first two.

7.1.2 Single Elliptic Geometry as a Sub-geometry

Unlike spherical geometry, single-elliptic geometry has no parallel lines because
they all intersect when the antipodal points identify with each other. The
absolute conic contains no projective points or lines: x2+y2+z2 = 0. The only
real solution for this conic is (0, 0, 0) which is not a projective point. Single-
elliptic as a subgeometry is characterized by the absence of parallel lines and
the inclusion of a finite number of points at infinity. In this context, the points
at infinity added to the single-elliptic are homeomorphic to projective space.

7.1.3 Affine and Euclidean Geometries as Sub-geometries

Intuitively, the projective plane can be thought of as an Euclidean plane with
the ideal line [0, 0, 1] added. As affine geometry does not account for angle
or distance metrics in particular, we can say that affine geometry is a sub-
geometry of projective geometry. The absolute conic in this case is z2 = 0.
The point is a point not on the absolute conic: (x, y, 1). The line is any other
line except the absolute conic: [a, b, c]. In all the cases, affine transformations
are collineations that leave the absolute conic stable.

7.2 Sub-geometries of Projective Space

Euclidean, hyperbolic, and single-elliptic geometries of n- dimensions are sub-
geometries of the projective geometry of the same number of dimensions. 3-
dimensional hyperbolic space can briefly be considered related to Minkowski
geometry used in the theory of relativity.
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Figure 21: Lorentz Transformations are symmetries of the Minkowski Space

In 3-dimensions, Cayley’s absolute conic becomes an absolute quadric sphere,
example: ellipsoid, hyperbloid, cone, elliptic parabloid etc. The points of a
3-dimensional hyperbolic space are the points in the interior of the unit sphere
x2 + y2 + z2 − t2 = 0, which is taken to be the absolute quadric surface. Two
4 × 4 matrices represent the same 3-dimensional hyperbolic isometry if and
only if they differ by a non-zero scalar.

If we wanted to find conditions on a 4× 4 invertible matrix M so that M
is a hyperbolic isometry, we must have M−1TCM = γC for some γ ̸= 0.
Similar to finding the conditions on 3 · 3 invertible matrix M so that M is a
hyperbolic isometry, we can also find conditions on a 4 · 4 matrix.

Hence a 4× 4 nonsingular matrix represents a hyperbolic isometry iff any
two of its columns are h-orthogonal, the first three have the same h-length,
and the last column has the opposite h-length.

Minkowski geometry – that contains the Lorentz transformations – is a
sub-geometry of P4. More is explained in the section 7.3
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8 Applications
Projective geometry has proven it’s worth in classical geometry, CAD systems,
relativity theory, and other applications.

8.1 Computer Aided Design

Perspective geometry is used in Computer Aided Design through the use of
matrices. A generalized version of the matrix used in CAD is as follows:

a a a tx
a a a ty
a a a tz
px py pz 1/r


Where the 3 · 3 matrix with a represents affine transformations like rotation,
reflection, shear dilation etc. t is used to make translations by adjusting the
coordinates of the origin, p is used to adjust the perspective of the lines,
and 1/r is the scaling ratio. The scaling ration provides additional flexibility
lacking in the affine transformation.
For example, a cube with no perspective can be represented by the matrix:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Whereas the same cube with one-point perspective is represented by the ma-
trix: 

1 0 0 0
0 1 0 0
0 0 1 0

−1/5 0 0 1


And would be represented in two-point perspective by the matrix:

1 0 0 0
0 1 0 0
0 0 1 0

−1/5 −1/5 0 1
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And finally, in three-point perspective would be:
1 0 0 0
0 1 0 0
0 0 1 0

−1/5 −1/5 −1/5 1


As mentioned above, projective geometry is not oriented; however, no per-
spective view of a real object will ever turn it inside out. The CAD was built
to not allow any negative scalars. Despite the complex sounding nature of
projective geometry and all of the matrices involved, these calculations are
really just a way to model the distortion of space. Video game graphics rely
heavily on such calculations. From rendering lifelike landscapes to creating im-
mersive virtual environments, projective geometry is the backbone of modern
computer graphics.

8.2 Lorentz Transformations

The Michelson-Morley experiments had a significant impact on contradicting
the additivity of velocities. Regardless of the direction light was sent to, the
velocity of the light always stayed the same. Later experiments proved that
the speed of light is constant in vacuum. Henri Poincare and Hendrik Lorentz
determined the Lorentz Transformations, a theoretical group of symmetries
corresponding to Galileo’s principle of relativity. About 15 years later, Albert
Einstein developed the theory of relativity, where he dropped the measurement
of space, time and additivity of velocities.

Suppose Observer A finds the difference in time between two events to be
∆tA and the differences in the x, y, z directions to be ∆xA,∆yA,∆zA respec-
tively. Observer B has measurements ∆tB,∆xB,∆yB,∆zB respectively.

The Theory of relativity guarantees: ∆(x2
A+y2A+z2A−t2A = x2

B+y2B+z2B−t2B)

Hermann Minkowski developed a 4-dimensional geometry using the above
as a distance formula. The Lorentz transformations are the symmetries of
Minkowski space, i.e., special relativity. The above value is closely related
to the equation of the absolute quadric surface for hyperbolic space. Trans-
formations are preserving a constant k = x2

A + y2A + z2A − t2A clearly leave
x2 + y2 + z2 − t2 = 0 stable, and hence are hyperbolic isometries.
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Additionally, Minkowski geometry needs (x, y, z, t, 1) – an extra coordinate
to allow the movement of the origin. Hence Minkowski geometry is a sub-
geometry of P4.

A Lorentz transformation is a collineation in P4, where the bottom row is(
0 0 0 0 1

)
and the upper left 4 × 4 submatrix is a hyperbolic isometry.

The first tree columns having h− length = ±1 and the fourth column has the
h− length = ±1
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