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Abstract. We discuss matrix groups, projective space, projective geometry over a finite

field, the math behind Spot It!, and Steiner systems.

1. Introduction

Groups are a type of algebraic structure in abstract algebra with basic properties that
give it a wide variety of applications in mathematics and science. For instance, in geometry,
groups are essential to understanding projective geometry, which was historically used in
the context of art as artists searched for the principles of ”projecting” the three-dimensional
objects they wanted to depict onto their two-dimensional canvases. Furthermore, the unique
properties of groups and projective geometry allow it to model many other interesting sce-
narios, such as how to design a Spot It! deck. They also can further extend their use
even into combinatorics through Steiner systems. In conclusion, although seemingly sim-
ple, many complex concepts and situations can be broken down using groups, making them
fundamental to many fields of study.

The rest of the paper is organized as follows. Section 2 introduces basic definitions learned
throughout the program, including groups, fields, projective spaces, and rings, as well as
the game Spot It! Then, section 3 discusses projective space over a finite field, as well as
the computations involved, while section 4 discusses Spot It!, which is a game set up about
a projective plane over a finite field, and computing the number of cards in a deck. Lastly,
Section 5 discusses the steiner system and how it can be used to solve the Kirkman schoolgirl
problem.

2. Preliminaries

Definition 1. A group ⟨G, ∗⟩ is the set G with binary operations and satisfies the following
conditions:

(1) Closure: for all a, b ∈ G, a ∗ b is in G
(2) Associativity: (a ∗ b) ∗ c = a ∗ (b ∗ c) (for all a, b, c ∈ G)
(3) Identity: there exists an e so that for all x ∈ G, we have e ∗ x = x ∗ e = x
(4) Inverse: for all a ∈ G there exists a unique a′ ∈ G so that a ∗ a′ = e and a′ ∗ a = e.

Definition 2. The general linear group GL(n,R) is a group of all n × n matrices with
entries in R and has a non-zero determinant.

Definition 3. The special linear group SL(n,R) is a group of all n×n matrices with entries
in R and the determinant being 1.

Definition 4. A field F is a ring with special additional properties. It contains binary
operations (addition and multiplication) and satisfies the following conditions:

(1) ⟨F,+⟩ is a commutative group
1
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(2) ⟨F, ∗⟩ is a commutative group
(3) For all a, b, c ∈ F , a ∗ (b+ c) = a ∗ b+ a ∗ c
(4) For all a, b, c ∈ F , (b+ c) ∗ a = b ∗ a+ c ∗ a.

Definition 5. A finite field is a field that contains a finite number of elements. An example
would be {0, 1, 2, 3, 4, 5, 6} under mod 7 for addition and multiplication. This works because
it satisfies all the properties.

Spot It! is a card game in which the deck consists of 55 cards, with each card containing
8 symbols, and between any two cards, there is one symbol in common. Each player starts
off with one card in their hand, and the remaining cards are stacked in the center. Each
turn consists of the players attempting to spot a match between an element in their card
and the top card in the stack. If they find a match first, they take the card in the middle
as their new card revealing a new card in the middle stack. The goal of the game is to
have collected the most cards by the end. This game is secretly quite similar to the other
pattern-finding game Set, and the decks for both can be modeled using projective geometry.

Definition 6. Projective space is the space of all lines going through the origin. Any such
line in Rn can be written as

a1x1 + a2x2 + ...+ anxn = 0

which corresponds to the projective point

[a1, a2, ..., an]

in RPn−1.

A Euclidean line becomes a projective point, a Euclidean plane becomes a projective line,
and so on. In projective space, scalar multiples are equivalent, meaning that [a1, a2, ..., an]
is equivalent to [ka1, ka2, ..., kan], as a1x1 + a2x2 + ... + anxn = 0 is the same line as
ka1x1 + ka2x2 + ...+ kanxn = 0.

Projective space in 2 dimensions would be a projective plane, and all of these lines could
be written in the form Ax + By = 0, where A and B are real numbers. For the rest of
this paper, we will be primarily focusing on the projective plane. An especially important
property of projective space to the topics in our paper is that any two distinct lines in
projective space will intersect at exactly 1 point.

Definition 7. A ring R is a set with two binary operations, addition (denoted by a + b)
and multiplication (denoted by ab), such that for all a, b, c ∈ R:

(1) a+ b = b+ a,
(2) (a+ b) + c = a+ (b+ c),
(3) There is an additive identity 0,
(4) For −a in R, (−a) + a = 0,
(5) a(bc) = (ab)c,
(6) a(b+ c) = ab+ ac and (b+ c)a = ba+ ca.

Definition 8. An ideal I is a subset of the ring’s elements such that

(1) (I,+) is a subgroup of (R,+),
(2) For every r ∈ R and x ∈ I, we have rx ∈ I.

Definition 9. A ring mod an ideal Fq[x]/(f(x)) consists of polynomials with coefficients in
field Fq but replaces all instances of f(x) by 0.

Example. F2[x]/(x
2) consists of the elements 0, 1, x, x+ 1.
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Figure 1. The Fano plane.

3. Finite field geometry

Projective space over a finite field is exactly the same as projective space over R as
described in Definition 6, but replacing R with Fq throughout.

The Fano plane is a projective plane containing seven lines, each passing through three
points. One such line is a circle. The points here correspond to the non-zero points in the
two-dimensional vector space over the finite field of order 2, namely

[0 : 0 : 1], [0 : 1 : 0], [1 : 0 : 0], [1 : 1 : 0], [1 : 0 : 1], [0 : 1 : 1], [1 : 1 : 1]

while the lines correspond to one-dimensional linear subspaces of F2P2.
On a projective line with order n, there are n+ 1 points.
To give some more intuition about projective space, we provide a sample computation.

To find the order of GLn(Fp), we are finding the number of invertible n × n matrices with
entries in Fp. In order for a matrix to be invertible, the rows must be linearly independent.
Starting from the top row, we find that there are pn − 1 possibilities, as each entry can
be one of p options but the whole row cannot all be zeroes. Then, the second row cannot
be any multiple of the first row, meaning it has pn − n possibilities. Generalizing this, for
the kth row, there are pn − nk−1 possibilities because the kth row starts with pn options,
but, because it cannot be a linear combination of any of the first k − 1 rows, eliminating
n(k − 1) options. (If we call the rows r1, r2, r3, ..., rk − 1, then all linear combinations of
those rows can be written as a1r1 + a2r2 + a3r3 + ... + ak − 1rk − 1 where every ai is an
integer between 0 and n − 1.) Therefore, the total number of invertible nxn matrices is
(pn − 1)(pn − n)...(pn − nn−1).

Then, to find the order of SLn(Fp), we are finding the number of n × n matrices with
entries in Fp that have a determinant of 1. All of these are already included in GLn(Fp).
We can find the order of this subgroup through the fact that the ratio of the order of the
group to the subgroup is equal to the index of the subgroup and this ratio is 1

p−1 .

The set of projective general or special linear groups can be found from these groups,
partitioning them into equivalence classes.
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Figure 2. A small Spot It! deck.

Figure 3. The Fano plane corresponding to this Spot It! deck.

4. Spot It!

As suggested in the introduction, Spot It! may be set up as a game about a projective
plane over a finite field. Each card contains a set of symbols that allow us to match up a
card with a line in projective space. An example of a small Spot It! deck over the Fano
plane is illustrated in Figs 2 and 3.
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As we can see, each of the 7 cards corresponds to one of the 7 lines in the Fano plane.
Just like any line has 3 points on it, any card has 3 symbols on it. Also, just like any two
distinct lines in the Fano plane share exactly 1 point in common, each pair of distinct cards
has exactly 1 symbol in common.

The story with the actual Spot It! deck is very similar, except instead of working with
the projective plane over F2 we work over F7. Each card has 8 symbols on it, just like
how each line has 8 points on it. Also, each pair of distinct cards has exactly 1 symbol in
common, just like any two distinct lines share exactly 1 point in common. The total number

of lines in the projective plane over Fp is p3−1
p−1 = p2+ p+1. So we should expect there to be

72 +7+1 = 57 cards in a Spot It! deck. However, there are only 55 cards due to a printing
issue. Note also that due to the duality between lines and points in the projective plane,
we should expect there to be 57 symbols across all cards in a Spot It! deck. (This is true
even after accounting for the two missing cards.)

How can we find the missing two cards? There are lots of ways to do it. One of them
is to brute force bash through all of the ways to put 8 of the 57 symbols on a card. But
this is not particularly efficient. Another way to do this is to organize the cards by symbol
as shown in Figure 4. The bottom row represents the points making up the line at infinity.
From this arrangement, we can see the locations of the missing Spot It! cards, and from the
lines that pass through each location we can determine relatively easily what the missing
Spot It! cards should be. For example, both cards are missing from snowman column so
should both have snowmen on them. The cards are:

Ladybug Snowman ! Skull Dog Eye Lightbulb Stop

and

Snowman Dinosaur Person Cactus Maple leaf Ice cube ? Daisy.

5. Steiner systems

Definition 10. A Steiner system S(t, k, n) is an n-element set X together with a set of
k-element subsets (“blocks”) so that each t-element subset of X is contained in exactly 1
block.

The Fano plane is a Steiner system in disguise. In our example of the Fano plane,
X = {vertices}, blocks are lines, and t-element subsets of X are pairs of points. Any two
distinct points lie on a unique line. Three points lie on each line. There are seven points in
total. So we have the Steiner system S(2, 3, 7).

In general, the projective plane is also a Steiner system. A projective plane over Fq has
q3−1
q−1 = q2 + q + 1 points. Each line passes through q + 1 points, and each pair of distinct

points lies on a unique line. So this plane is a Steiner system S(2, q + 1, q2 + q + 1). Here,
as before, the blocks are lines.

Steiner systems also arise outside of the context of projective space. Here is a famous
problem from combinatorics, called Kirkman’s schoolgirl problem (1850).

Question 1. 15 schoolgirls walk in groups of 3 each day for 7 days. How can they be
arranged so that no 2 girls walk in the same group more than once?

There are multiple different solutions to this problem. Here is an example of one. Name
the 15 girls A,B,C,...,O.
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Figure 4. the Spot It! cards are arranged like points in the projective
plane over F7. Each line of cards shares exactly one symbol. For example,
all the cards in the rightmost column have a bomb.
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Table 1: A solution to Kirkman’s schoolgirl problem.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
ABC ADG AEO AIM AFJ AHK ALN
DEF BEH BIJ BDL BKO BGN BFM
GHI CJM CDN CEK CGL CFI CHO
JKL FKN FHL FGO DHM DJO DIK
MNO ILO GKM HJN EIN ELM EGJ

These solutions are examples of S(2, 3, 15) systems.
Given a choice of (t, k, n), one may ask if S(t, k, n) exists. The answer is not known in

general, but some specific cases can be handled using abstract algebra.
We describe a smaller version of Kirkman’s schoolgirl problem and how we can use some

properties of rings to solve it. Our smaller version has 8 girls walking in pairs over 4 days
with no repeated pairs. We build S(2, 2, 8) by performing addition over the finite field F4

as suggested by the below table.

Table 2: A solution to our smaller version of Kirkman’s schoolgirl
problem.

Day 1 Day 2 Day 3 Day 4
0 0 0 1 0 x 0 x+ 1
1 1 1 0 1 x+ 1 1 x
x x x x+ 1 x 0 x 1

x+ 1 x+ 1 x+ 1 x x+ 1 1 x+ 1 0

In Table 2, the two values on each day correspond to the pair we’re choosing. We perform
addition over F4. On Day 2, we add 1 to all the values. On Day 3, we add x. On Day 4,
we add x + 1. We do this because 1, x, and x + 1 are different elements of F4. We avoid
repeating people since the second person in the pair is rotated each day. We may rewrite
Table 2 as

Table 3: A solution to our smaller version of Kirkman’s schoolgirl
problem, cont.

Day 1 Day 2 Day 3 Day 4
A E A F A G A H
B F B E B H B G
C G C H C E C F
D H D G D F D E

Of course, we could have solved this problem without using group theory via trial and
error, or just by cycling the second group of girls on each day. But this approach generalizes
more naturally to harder problems, such as the one below, with 24 students walking in
rows of 3 for 8 days with no repeated pair. We build S(2, 3, 24). Here we are working over
F8

∼= F2[x]/(x
3).
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Table 4: A solution to a bigger version of Kirkman’s schoolgirl
problem.

Day 1 Day 2 Day 3 Day 4
0 0 0 0 1 x 0 x x2 0 x+ 1 x2 + x
1 1 1 1 0 x+ 1 1 x+ 1 x2 + 1 1 x x2 + x+ 1
x x x x x+ 1 0 x 0 x2 + x x 1 x2

x+ 1 x+ 1 x+ 1 x+ 1 x 1 x+ 1 1 x2 + x+ 1 x+ 1 0 x2 + 1
x2 x2 x2 x2 x2 + 1 x2 + x x2 x2 + x 0 x2 x2 + x+ 1 x

x2 + 1 x2 + 1 x2 + 1 x2 + 1 x2 x2 + x+ 1 x2 + 1 x2 + x+ 1 1 x2 + 1 x2 + x x+ 1
x2 + x x2 + x x2 + x x2 + x x2 + x+ 1 x2 x2 + x x2 x x2 + x x2 + 1 0

x2 + x+ 1 x2 + x+ 1 x2 + x+ 1 x2 + x+ 1 x2 + x x2 + 1 x2 + x+ 1 x2 + 1 x+ 1 x2 + x+ 1 x2 1

Table 5: The previous table continued

Day 5 Day 6 Day 7 Day 8
0 x2 x+ 1 0 x2 + 1 1 0 x2 + x x2 + x+ 1 0 x2 + x+ 1 x2 + 1
1 x2 + 1 x 1 x2 0 1 x2 + x+ 1 x2 + x 1 x2 + x x2

x x2 + x 1 x x2 + x+ 1 x+ 1 x x2 x2 + 1 x x2 + 1 x2 + x+ 1
x+ 1 x2 + x+ 1 0 x+ 1 x2 + x x x+ 1 x2 + 1 x2 x+ 1 x2 x2 + x
x2 0 x2 + x+ 1 x2 1 x2 + 1 x2 x x+ 1 x2 x+ 1 1
x2 + 1 1 x2 + x x2 + 1 0 x2 x2 + 1 x+ 1 x x2 + 1 x 0
x2 + x x x2 + 1 x2 + x x+ 1 x2 + x+ 1 x2 + x 0 1 x2 + x 1 x+ 1

x2 + x+ 1 x+ 1 x2 x2 + x+ 1 x x2 + x x2 + x+ 1 1 0 x2 + x+ 1 0 x

We may rewrite as

Table 6: A solution to a bigger version of Kirkman’s schoolgirl
problem.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8
α Aa α Bc α Ce α Dg α Ed α Fb α Gh α Hf
β Bb β Ad β Df β Ch β Fc β Ea β Hg β Ge
γ Cc γ Da γ Ag γ Be γ Gb γ Hd γ Ef γ Fh
δ Dd δ Cb δ Bh δ Af δ Ha δ Gc δ Fe δ Eg
ϵ Ee ϵ Fg ϵ Ga ϵ Hc ϵ Ah ϵ Bf ϵ Cd ϵ Db
ζ Ff ζ Eh ζ Hb ζ Gd ζ Bg ζ Ae ζ Dc ζ Ca
η Gg η He η Ec η Fa η Cf η Dh η Ab η Bd
θ Hh θ Gf θ Fd θ Eb θ De θ Cg θ Ba θ Ac

Here the girls are numbered α, ..., θ, A, ..., H, a, ..., h.
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