THE RSA CRYPTOSYSTEM

JOSHUA PITE AND YIYING ZHONG
MENTOR: HONGLIN ZHU

ABSTRACT. In the field of cryptography, which aims to ensure secure message communica-
tion, the RSA public key cryptosystem is the oldest widely applied secure data transmission
method. In this expository paper, we provide a historical and technical overview of the RSA
cryptosystem. We introduce the mathematical methods used in RSA, present the steps of
the algorithm, discuss complexity results relating to the security of RSA, and implement a
Python version of RSA.

1. INTRODUCTION

The very earliest history of pre-computer cryptography dates back to the time humans be-
gan using written communication. Before computers were invented, people tended to choose
ciphers to encrypt and decrypt the messages. One famous example of such communication is
the Caesar cipher, used by Julius Caesar around 58 B.C. [6]. The Caesar cipher, also known
as the shift cipher, was a substitution method to shift letters a fixed number of positions down
the alphabetE], which could make the message unreadable without decryption. However, the
Caesar cipher was not a secure way to encrypt the messages. In our daily communication,
certain letters will be used more frequently than others. Comparing the average frequency
of each letters in daily communication with the frequencies in the encrypted messages being
sent makes it easy to determine the correlations between plain letters and cipher letters.

Later in the Middle Ages, with the invention of cryptanalysis, the simple substitution ci-
pher was no longer secure, prompting further development in both cryptography and crypt-
analysis. From homomorphic ciphers to polyalphabetic ciphers, humans started to enhance
the security level by using multiple substitutes for each letter. Due to their ability to keep
information relatively safe from outsider’s interpretation, those ciphers and codes have been
commonly used in the military and for political affairs since the 18th century. The Second In-
dustrial Revolution advanced cryptography and cryptanalysis to an even higher level. While
the military could communicate more efficiently using radios and telegrams, the messages,
however, were at higher risk of being interfered or decrypted by the enemy. In order to
address the issues that arose with radio communication, countries invented different encryp-
tion machines to create incredible complex polyalphabetic ciphers, for example, the Enigma
machine with multiple rotors and the Purple machine using switches.

Then, with the development of computer cryptography, mathematicians and computer
scientists invented two kinds of cryptography: private key cryptography and public key
cryptography [4]. In private key cryptography, the private key is shared between the sender
and the receiver, and is used in both encryption and decryption. Public key cryptography
requires one public key, which is published for encryption, and one private key, which is kept

IThe shift is the same fixed number for every letter.
1

THE RSA CRYPTOSYSTEM 2

secret for decryption, which can better enhance the security level of the communication. The
greatest difference between private and public cryptosystems is the foundational method of
keeping the communication secure. The security of a private cryptosystem relies on the
secret private key. With the pre-exchanged secret key also known to the two communicating
parties, their following messages can be considered secure to a certain degree. The security
of a public cryptosystem depends on the strength of the algorithm and the difficulty of
obtaining the private key used for decryption.

In 1976, Whitfiled Deffie and Martin Hellman published a paper, [2], about their ground-
breaking key exchange method, which promoted the invention of other public key cryptosys-
tem methods. Deffie-Hellman key exchange algorithm helps the two communicating parties
to exchange their shared keys in an insecure setting. Though the fascinating Diffie-Hellman
key exchange algorithm helps exchange the private keys safely, it cannot be used to send
messages for communication. RSA public key cryptosystem actually achieved that goal.
Named after its three public inventors: Ron Rivest, Adi Shamir and Leonard Adlemanﬂ,
RSA public key cryptosystem is the first invented public key cryptosystem and one of the
most commonly one in the world [5].

RSA cryptosystem has two public keys published for encryption, and one private key only
known to the receiver for decrypt the message. Also, the RSA cryptosystem shares the
similar feature of public key cryptosystems, where its security depends on the algorithm
problem, instead of the secret pre-exchanged private keys. Hence, the RSA cryptosystem
allows the communicating parties to directly transmit the message safely in an insecure
channel without sharing the private keys beforehand. In this paper, we will dive deeper into
the mystery of RSA cryptosystem and learn how its algorithm works.

1.1. Outline. We now present an overview for better understanding the structure of our
writing. The rest of the paper is outlined as follows. In section §2] we introduce the relevant
mathematical background. In section §3 we break down the RSA algorithm used for its
cryptosystem, section §4] we talk about multiple reasons why RSA cryptosystem is considered
secure, and in last section §0], we present some common implementation methods of the RSA
algorithm.

2. MATHEMATICAL PRELIMINARIES

The mathematical foundation of cryptography involves the field of number theory. In this
section, we give an overview of the relevant mathematical background for an analysis of the
RSA cryptosystem.

2.1. Prime numbers. A major object of study in number theory is the set of prime num-
bers. An integer p is a prime number, if p > 2, and the only positive integers dividing p are
1 and p.

While integers are also commonly studied in number theory, we may not always have one
integer divides another, which leads to the concept of divisibility. Given two integers a and
b, with b # 0, we say that b divides a, or that a is divisible by b if there is an integer ¢ such
that

a = be.

2All three where at MIT in 1977.

THE RSA CRYPTOSYSTEM 3

We write b | a to say that b divides a. If b does not divide a, then we denote it as b1 a.

A common divisor of two integers a and b is a positive integer that divides both a and b.
A greatest common divisor is the greatest positive integer that divides a and b. We denote
it as ged(a,b). If we have two positive integers a and b, and their greatest common divisor
is 1, ged(a, b) = 1, then we say these two positive integers a and b are co-prime or relatively
prime. As the numbers become larger, it will be harder to find their greatest common divisor
by simply listing their divisors separately and finding the largest shared one. One efficient
method to find the greatest common divisor is based on a division algorithm.

2.2. The Euclidean algorithm.

Lemma 2.1 (Division algorithm). Given two positive integers a and b, there exist unique
integers q and r such that

a=b-qg+r with 0<r<hb.
Here, q 1s called the quotient and r is called the remainder.

We now present the Euclidean algorithm which finds the greatest common divisor of two
positive integers.

Algorithm 2.2 (Fuclidean algorithm). Let a and b be positive integers. We first apply the
division algorithm on a and b to get

a=b-g+r with 0<r<b.

If d is any common divisor of a and b, then a = ky-d and b = ks - d. Becauser =a—0b-q =
(k1 —q-ko)-d, d must also divide r. Hence, if e is a common divisor of b and 7, then e will be
a divisor of a. In other words, the common divisors of a and b are the same as the common
divisors of b and r. So

ged(a, b) = ged(b, r).
Repeating the process, we divide b by r and get another similar equation, which is
b=r-¢d+r with 0<¢ <b,
in which we will also have
ged(b, 1) = ged(r,).

We can repeat the process of dividing by the reminder, and the resulting reminders will
get smaller until it reaches zero. At that point, with the second to the last reminder s,
ged(s,0) = s = ged(a, b), and we complete the process to find the greatest common divisor
of a and b.

The general method of such way of finding the greatest common divisor is also called
FEuclidean Algorithm.

Theorem 2.3 (Extended Euclidean algorithm). Let a and b be two positive integers, then
there always be integers u and v satisfying this equation

au + bv = ged(a, b).

THE RSA CRYPTOSYSTEM 4

Proof. Looking back at the process of finding the greatest common divisor in Algorithm [2.2]
we know we can get a series of equations

a=b-q+nr with 0 <r; < b,

b=7r1-q+r with 0 <17y < 1y,

rL="To-q3+ 173 With0§T3<7’2,
Tn—2 =Tp-1"qn +Tn with 0 <7, < Tn—1,

Tn—1 = Tn " Qdn+1 + 0.
Now rewriting 7, in terms of the previous r, we have
'n =Tp—2 — Tn-1"(Qn,
T"n—1 =Tn-3 — Thn—2" " qn-1,

'n—2 ="Tn—4 — Tn-3 " 4n-2,

g =b—171"qo,
rn=a—>b-q.
Substituting r,_; into r, and rearranging the terms, we get
'n =Tn—2 — (Tn—?) —Tn—2-" Qn—l) *dn
=Tp—2" (1 + dn—1" qn) + Tp_3 - dn
Conducting the same process once again with r, o, we get
T'n = (Tnfll —Tp-3- anQ) : (1 + Gn-1- qn) +Tn_3 " qn
=73 (G — (@n2) (1 4+ Gn-1Gn) +7Tna- (L +Gu1-qn)

Keep substituting previous r; values and combining the terms, we can finally achieve this
equation r, = a - u + b - v, where u and v are two integers. With ged(a, b) = ged(r,,0) =7,
also known from Algorithm we completed the proof for ged(a,b) = au + bu. O

2.3. Modular arithmetic. Another commonly used tool in cryptography is modular arith-
metic and its congruence.

Let m > 1 be an integer. The integers a and b are congruent modulo m if their difference
a — b is divisible by m. We write it as

a=b (modm).
The number m is called the modulus.
Corollary 2.4. Let m > 1 be an integer, and a is an integer as well, then
a-b=1 (mod m)

for some integer b if and only if gcd(a, m) = 1. If such an integer b ezists, then we say b is
the multiplicative inverse of a modulo m.

THE RSA CRYPTOSYSTEM 5

Proof. First suppose gcd(a, m) = 1. Based on Theorem , there will be two integers u and
v satisfying the equation au +mv = ged(a, m) = 1. It can also be written as au — 1 = —muw.
Hence, au =1 (mod m), and we can take u as b.

For the other way, suppose that a has an inverse modulo m, so a-b =1 (mod m). This
means there is some integer ¢ satisfy ab — 1 = e¢m. Using Theorem again, ged(a,m) =
ab — ¢cm = 1, which completes our proof of the corollary: a has an inverse modulo m if and
only if ged(a,m) = 1. O

We now state a fundamental result in elementary number theory, Fermat’s little theorem.

Theorem 2.5 (Fermat’s little theorem). Let p be a prime number and a be an integer such
that pta. Then
a?'=1 (mod p).

Proof. First look at a list of numbers
a,2a,3a,4a,...,(p—1)a reduced modulo p. (2.1)

We first show that these p — 1 numbers are all different modulo p. Suppose, for the sake of
contradiction, that we have two numbers from the list ja and ka such that
ja=ka (modp), sothat (j—k)a=0 (mod p).

Since p { a, we must have p | (j — k), but —(p—2) < j—k < p—2, hence j — k =0, and we
prove the assumption that these numbers in the list are all different.

Now to prove the theorem, we multiply all the numbers in the list (2.1) together and reduce
modulo p, which gives

a-2a-3a---(p—1)a=1-2-3-(p—1) (mod p).
This can also be written as
a - (p—1)!'=(p-1! (mod p).
With p 1 (p —1)!, we can cancel (p — 1)! at both sides, which gives us
a1V =1 (mod p),
and we completed the proof of Fermat’s little theorem. [l

2.4. Euler’s theorem. We need two more ingredients, Fuler’s totient function and Euler’s
theorem, which is a generaliation of Fermat’s little theorem.

Definition 2.6. Euler’s totient function, ¢(n), counts the positive integers up to a given
integer n that are relatively prime to n. That is, ¢(n) is the number of m € N such that
1 <m < nand ged(m,n) = 1.

Example 2.7. Here are values of ¢(n) for the first few positive integers:

n (1234567891011 12|13 14|15
on)|1]1]2]2[4]2]6[4]6|4 (104 [12]6 |8

Proposition 2.8. (i) If p is a prime number, then ¢(p) =p — 1.
(ii) If p and q are distinct prime numbers, then ¢(pq) = (p — 1)(q¢ — 1).

Proof. (i) If p is a prime number, then ged(p, k) = 1 for all integer 1 < k < p, so we
have p — 1 numbers that are relatively prime to p. Hence, ¢(p) = p — 1.

THE RSA CRYPTOSYSTEM 6

(ii) Since the proper divisors of pg are 1, p, and ¢, any integer n with 1 < n < pg must
have ged(n, pg) being one of these three numbers. Complementary counting gives
that

o(pqg) =pg—1-(¢—1)—(p—-1)=(p—-1)(¢—1).

We now state Euler’s theorem.

Theorem 2.9 (Euler). If n and a are coprime positive integers, then a?®™ s congruent to
1 modulo n, where ¢ denotes Euler’s totient function; that is

a®™ =1 (mod n).

Remark 2.10. The proof of Theorem [2.9 can be found in [5]. However, we will only need the
statement in the special case when n = pq is a product of two distinct prime numbers. This
case follows from Theorem [2.5 and Proposition 2.8 Indeed, we have that

a®®d) — ,(=1)(a-1)

is congruent to 1 modulo p and modulo ¢. Hence, a?®? — 1 is a multiple of both p and g,
hence a multiple of pq. Therefore,

PPV =1 (mod pq).

Example 2.11. Euler’s theorem may be used to easily reduce large powers modulo n. For
example, consider finding the ones place decimal digit of 7%2%) ie. 7*?2 (mod 10). The
integers 7 and 10 are coprime, and ¢(10) = 4. So Euler’s theorem yields 7* = 1 (mod 10),
and we get 7222 = 74552 = (749 » 72 = 1% % 72 =49 = 9 (mod 10).

3. RSA PUBLIC KEY CRYPTOGRAPHY

To better illustrate the RSA public key cryptography, we consider a scenario in which Alice
wants to send a secret message m to Bob, but Eve can intercept all communications between
the two. Therefore, they must engage in some encryption and decryption protocol so that
Eve cannot obtain the message. The steps of the RSA algorithm are shown in Table [I]

In order to set up this public key cryptosystem, Bob chooses two larg(ﬂ prime numbers, p
and ¢. Using these two numbers, Bob computes his public key pair (V, e), with the modulus
N = pq, and the encryption exponent e, which is an integer co-prime to (p—1)(¢ —1). Then
Bob sends this key pair (V, e) to Alice.

When Alice wants to communicate with Bob, she would covert her message into an integer,
the plaintext m. She then uses the public key pair (N, e) to compute ¢ = m® (mod N). Alice
sends this ciphertext ¢ to Bob.

It is important to note that any message being sent may have the risk of being intercepted
by Eve, so not only the modulus N, encryption exponent e are known, the ciphertext ¢ may
be known to Eve as well.

We now show how Bob can recover the message m. In §4 we discuss why it is hard for
Eve to obtain m with only N, e, and c.

3In practice these numbers are 200 to 600 decimal long.

THE RSA CRYPTOSYSTEM 7

Alice \ Eve \ Bob
Key Creation

Choose large primes p, q,
N and e published. and compute N =p - q.
Choose e, with

ged(e, (p—1)(g—1)) = 1.

Encryption

Create plaintext m.
Use known key (N, e) to Insecure ciphertext c.
compute ¢ = m¢ (mod N).
Send ciphertext ¢ to Bob.

Decryption

Compute d satisfying
ed=1 (mod (p—1)(¢g—1)).
Compute m’ = ¢? (mod N)
for plaintext m = m/.

TABLE 1. Table illustrating the steps of the RSA algorithm.

Since Bob chose p and ¢, only Bob can compute (p — 1)(¢ — 1). By the definition of
encryption exponent, e is co-prime to (p — 1)(¢ — 1), so ged(e,(p — 1)(¢ — 1)) = 1. By
Corollary [2.4] Bob can solve

ed=1 (mod (p—1)(q—1)),

and obtain the multiplicative inverse of e modulo (p — 1)(¢ — 1), which is the decryption
exponent d. Using the decryption exponent d, Bob can solve for the plaintext m by computing
¢t = (m°)?
= m

= mF=1@=1)+1

=m (mod N).
The last equality comes from ¢(N) = (p — 1)(¢ — 1) and from Euler’s Theorem

4. RSA’S SECURITY

Whether the RSA public key cryptosystem is secure or not depends greatly on the difficulty
of finding the value of (p — 1)(¢ — 1). As we illustrated in the previous section§3] if Eve can
find the value of (p —1)(¢ — 1), then she will be able to compute decryption exponent d, and
decrypt the ciphertext ¢ as Bob does.

Expanding (p — 1)(q — 1) gives

p—1)(q—-1)=pg—p—q+1=N—-(p+q) +1

Since Bob published N, N is already known to Eve. Hence now the security of RSA
cryptosystem depends on how hard it is to find the sum p + q.

THE RSA CRYPTOSYSTEM 8

Actually, if Eve can find the sum p + ¢, and with the product N already known, she can
also find out the value of p and q respectively, by finding the roots of such quadratic formula

X —(p+q)X +pq.

In this case, it means that it is not easier for Eve to find the value of (p — 1)(¢ — 1) than
for her to find p and q. We can also say that the security of RSA public key cryptosystems
relies on the difficulty of this factorization problem.

Problem 4.1 (Integer factorization). Given an integer N promised to be a product of two
large primes p and ¢, find p and gq.

However, it does not mean that Eve must factor N in order to decrypt the ciphertext c.
Instead of finding p and ¢, Eve could directly try to solve this congruence

m®=c (mod N),

where m is the plaintext we try to get, with encryption exponent e, modulus N and the
ciphertext ¢ already known to us.
So the fundamental problem of RSA is to solve the congruence.

Problem 4.2 (RSA). Given e, ¢ and N, also with this equation known, find the value of x.
z*=c (mod N),

In other words, the security of the RSA relied on the assumption that it is hard to compute
the e roots modulo N.

Theorem 4.3. If the Problem[].1]is solved, then with the value of p and q known, the product
of (p —1)(¢ — 1) can be computed, so that Problem[4.9 can be solved.

Proof. The operation of solving the RSA problem by using the value of (p — 1)(¢ — 1) can
be found in §3 O

Solving the factorization problem to get the product (p — 1)(¢ — 1) is one way of breaking
the RSA problem. However, it is conceivable that there might be other ways to solve for m
without factoring N to find the value (p — 1)(¢ — 1). But until now, no one has ever found
out such a method, and it is unclear if that method might exist.

People have been doing research about the difficulties of these two problems: is breaking
the RSA system as hard as factoring integers. Boneh and Venkatesan [I] suggest that,
directly solving the congruence, also known as computing the roots modulo N, may be
easier than factoring out p and ¢ from N. In other words, Problem may be easier to
solve than Problem .1l

Remark 4.4. With the assumption that the Integer factorization is difficult to solve, RSA
is considered very secure and has been widely used for various applications such as key ex-
change, data transmission and digital signature. However, since the RSA algorithm requires
the use of high-digit prime numbers, the computation of message encryption and decryp-
tion has slow processing speed, which in some cases, diminish the application of the RSA
algorithm. While the quantum computer is developing nowadays, it may help increase the
processing speed. But at the same time, people also suggests that quantum computer may be
able to actually break the RSA algorithm by also solving the Integer factorization problems
discussed above [7].

THE RSA CRYPTOSYSTEM 9

5. RSA’S IMPLEMENTATION

5.1. Finding p and ¢. The security of the RSA algorithm hinges on the choice of two
large prime numbers, p and g. These primes should be selected randomly and should be of
similar but non-identical sizes to protect against certain types of cryptographic attacks (like
Fermat’s factorization method). Here’s how this is typically done:

e Random Number Generation: Start by generating random numbers of the desired
bit length. This length is chosen based on the security requirements. For modern
encryption standards, each of p and ¢ should be at least 1024 bits long.

e Primality Testing: After a random number is generated, it must be tested to confirm
whether it is prime. This is not a trivial task due to the size of the numbers involved.

5.2. Efficient computation of large exponentiations. Both encryption and decryption
processes in the RSA algorithm require performing exponentiation with very large numbers.
Due to the size of these numbers, straightforward methods would be impractically slow.
Therefore, RSA implementation typically uses fast exponentiation algorithms such as square-
and-multiply (also known as exponentiation by squaring) to speed up these calculations. This
technique significantly reduces the computational complexity from exponential to polynomial
time, which is crucial for practical implementations of RSA. For decryption, the method is
similar but uses the private exponent d. The decryption formula is computed efficiently
using the same square-and-multiply approach, ensuring that even though d is typically a
large number, the operation remains computationally feasible.

5.3. Primality testing. Primality testing is the process of determining whether a given
number is a prime. In the context of RSA, it’s important that p and ¢ are prime to ensure
the security of the encryption system. Here are the most commonly used methods, which
fall into two categories:

5.3.1. Probabilistic tests. Probabilistic tests are often favored in cryptographic applications
because they offer a good balance between speed and accuracy.

o Miller-Rabin test: This is the most widely used probabilistic test in cryptographic
applications. It involves checking, under certain conditions, whether a number can
be written in a form that identifies it as a composite (non-prime). A number passes
the test several times with different random bases to increase the certainty of its
primality. Although there is a small chance that a composite number might pass
the test (false positive), this probability decreases exponentially with more rounds of
testing.

e Solovay-Strassen test: This test is similar to Miller-Rabin but uses Euler’s criterion
to check for primality. It is less popular than Miller-Rabin due to certain inefficiencies
and similar error probabilities.

These tests typically do not prove definitively that a number is prime but can say with
high probability that it is not composite. For example, after 20 rounds of Miller-Rabin, the
probability that a composite number is mistakenly considered prime is less than 272°, or
about 1 in a million.

THE RSA CRYPTOSYSTEM 10

5.3.2. Deterministic tests. When absolute certainty is required, deterministic tests can be
used, though they are generally slower and less practical for large numbers typical of RSA.

e AKS Primality test: The first primality test proven to be both general (works for all
numbers) and polynomial in time complexity. However, it is rarely used in practice
because simpler probabilistic tests are much faster and provide sufficient certainty
for cryptographic purposes.

e Elliptic curve primality proving (ECPP): This method can provide a certificate of
primality and is often faster in practice than AKS, although its theoretical basis is
more complex. It’s used when a non-probabilistic proof is needed for smaller primes.

5.4. Implementation in RSA. When implementing RSA, primes p and ¢ are typically
generated using a cryptographic library that includes efficient implementations of these tests.
These libraries usually employ a combination of a simple test for divisibility by small primes
to quickly eliminate obvious non-primes, and several rounds of a probabilistic test like Miller-
Rabin for larger numbers.

Given the importance of choosing strong, secure primes, most implementations also adhere
to specific guidelines provided by cryptographic standards, such as those from NIST, which
recommend certain sizes for the primes and specific parameters for the tests to minimize the
risk of choosing weak primes.

5.5. ASCII conversion of messages. Before encryption, plaintext messages need to be
converted into numbers, because the RSA algorithm works with numbers mathematically.
One common method to achieve this is by using ASCII values, [§]:

o ASCII encoding: Each character in the plaintext is replaced with its corresponding
ASCII code. For example, the letter A’ corresponds to 65, B’ to 66, and so on.

e Message conversion: Once each character of the message is converted to ASCII, these
numbers are typically concatenated or otherwise combined into a larger number that
will be the actual input to the RSA encryption formula, as long as this number is
less than n = p X gq.

5.6. Implementation example. We completed an implementation based on this example[3].
The code can be found here.

ACKNOWLEDGMENTS

We would like to express our sincere gratitude to our mentor, Honglin Zhu, for his expert
guidance and invaluable support throughout our study of cryptography. His insightful ideas
and feedback were crucial in determining the direction of our paper and the content of our
presentation.

We would also like to thank Marisa Gaetz and Mary Stelow for coordinating the MIT
PRIMES Circle, giving us the opportunity to embrace the beauty of cryptography, and
providing the necessary resources throughout this semester. Special thanks to Marisa for
her constructive suggestions on our paper and presentation.

https://colab.research.google.com/drive/1qXS_p1TPmGio1BDjxuT9ugstf9Fe9BYC?usp=sharing

THE RSA CRYPTOSYSTEM 11

REFERENCES

Dan Boneh and Ramarathnam Venkatesan, Breaking RSA may not be equivalent to factoring, Advances
in Cryptology — EUROCRYPT’98 (Berlin, Heidelberg) (Kaisa Nyberg, ed.), Springer Berlin Heidelberg,
1998, pp. 59-71.

Whitfiled Diffie and Martin Hellman, New directions in cryptography, IEEE Transactions on Information
Theory 22 (1976), 644-654.

Geeksforgeeks, RSA algorithm in cryptography, Available online, 2023, Retrieved from
https://www.geeksforgeeks.org/rsa-algorithm-cryptography /.

Jeffrey Hoffstein, Discrete logarithms and Diffie-Hellman, pp. 59-112, Springer New York, 2008.

Jeffrey Hoffstein, Integer factorization and RSA, pp. 113-189, Springer New York, 2008.

Jeffrey Hoffstein, An introduction to cryptography, pp. 1-58, Springer New York, 2008.

Moolchand Sharma, Vikas Choudhary, RS Bhatia, Sahil Malik, Anshuman Raina, and Harshit Khandel-
wal, Leveraging the power of quantum computing for breaking rsa encryption, Cyber-Physical Systems 7
(2021), 73-92.

The Unicode Consortium, The wunicode standard, Mountain View, CA, 2021, Retrieved from
https://www.unicode.org/versions/Unicode14.0.0/.

CAMBRIDGE RINDGE AND LATIN
Email address: joshua.pite@gmail.com

BOSTON GREEN ACADEMY
Email address: yyzhong903@gmail.com

	1. Introduction
	1.1. Outline

	2. Mathematical preliminaries
	2.1. Prime numbers
	2.2. The Euclidean algorithm
	2.3. Modular arithmetic
	2.4. Euler's theorem

	3. RSA public key cryptography
	4. RSA's security
	5. RSA's implementation
	5.1. Finding p and q
	5.2. Efficient computation of large exponentiations
	5.3. Primality testing
	5.4. Implementation in RSA
	5.5. ASCII conversion of messages
	5.6. Implementation example

	Acknowledgments
	References

