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1. Abstract

In this paper, we aim to discuss Diophantine equations: equations
that express a specific natural number. This paper will primarily focus
on one profound Diophantine equation: The Sum of Two Squares. We
shall discuss a brief history of Diophantine equations and methods
that mathematicians have utilized in the past to solve such problems.
We will build towards Pierre de Fermat’s theorem of the sum of two
squares, which discusses only prime natural numbers, and expand to a
generalization for all natural numbers. We aim to discuss and prove
the question of what natural numbers can be expressed as a sum of two
integer squares.

2. Introduction

The earliest, most natural mathematical concepts involve counting
and the presentation of numbers in terms of other numbers. Flipping
through historic mathematics texts, one easily sees that ever since the
conception of geometry, mathematicians have concerned themselves with
the question of which numbers can be presented in a specific arithmetic
sense. A simple example is the set of integer squares: those numbers
n that can be written as x2 with x an integer. Such a problem setup,
where integers are the only legal inputs and/or outputs, is referred to
as a Diophantine equation.

Definition 2.1. [3] A Diophantine equation is a polynomial with
integral coefficients where integer solutions are only of concern

The first studies of Diophantine equations date back to the third
century with Diophantus of Alexandria, hence the name. Solutions to
Diophantine equations have dominated advancements in algebra over
the centuries. Namely, one is typically concerned with the existence of
solutions and a generating expression for all such solutions.

One might ask whether there exists a universal algorithm that deduces
whether any Diophantine equation has solutions (in the integers). This
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problem is David Hilbert’s famous “tenth problem” which was solved by
Yuri Matiyasevich in 1970. Matiyasevich’s theorem states that the set
of all Diophantine equations that have a solution in the non-negative
integers is not recursive and that no such algorithm exists [2].

Since no general solution or algorithm exists to solve Diophantine
equations, one must leverage the unique structure of the problem to
solve it. Consider the classical example of the Pythagorean triples,
integers a, b, and c that satisfy c2 = a2 + b2. The Greeks developed an
algorithm to find Pythagorean triples with all integer solutions, called
the generating equations.

Proposition 2.2 (Euclid’s Generating Functions [8]). Let r and s be
integers satisfying the following:

(1) 0 < r < s

(2) gcd r, s = 1
(3) s ̸≡ r mod 2.

Then a = r2 − s2, b = 2rs, and c = r2 + s2 satisfy a2 + b2 = c2.

Example 2.3. Lets take (r, s) = (3, 2). Then

a = 32 − 22 = 5

b = 2 · 3 · 2 = 12

c = 32 + 22 = 13,

and we can compute that indeed

52 + 122 = 25 + 144 = 169 = 132.

Uniqueness of solutions is also of concern, i.e. how many distinct n-
tuples (x1, . . . , xn) are valid solutions to the equation z = f(x1, . . . , xn).

The main concerns of this paper are early modern results from
Pierre de Fermat. Fermat made astonishing discoveries in number
theory (including parts of what would later become finite group theory)
and proposed two theorems that made significant contributions to the
advancement of solving presentation problems. These two theorems are
the sum of two squares theorem and the famous Fermat’s Last Theorem.

Theorem 2.4 (Sum of Two Squares Theorem [7]). Let p be a prime
and x and y be integers satisfying p = x2 + y2. Then p = 2 or p ≡ 1
mod 4.

Example 2.5. The number 5 satisfies gives empirical evidence for this
theorem, as 5 = 12 + 22 and 5 ≡ 1 mod 4.
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This theorem states that for a prime to be written as a sum of two
squares, it must be congruent to 1 modulo 4 (or equal to 2), so no
primes congruent to 3 modulo 4 are not the sums of two squares. We
will prove this and related results in a bit.

The following historic result was only recently proven using methods
beyond the scope of this paper.

Theorem 2.6 (Fermat’s Last Theorem [4]). The Diophantine equation
an + bn = cn has no integer solutions for natural number n > 2.

Consider the equation n = x2 +y2. If we admit numbers x and y from
the complex numbers then any n ̸= 0 can be written this way. However,
if we restrict to the case when x and y are integers, this problem becomes
more complicated and requires a finer analysis of details and residues.
In general, all Diophantine equations have complex solutions, but this
is quite uninteresting.

3. Sums of Two Squares

3.1. Primes. In this section, we will prove the sum of two squares
theorem for primes. First, we will give a few definitions in modular
arithmetic, a set of foundational ideas that will allow us to properly
partition the primes.

Definition 3.1. [5] Let n ∈ Z. We say that a ≡ b mod n if a and b

have the same remainder r on division by n, where r is an element of
the residue system Z/nZ := {0, 1...n − 1}.

Example 3.2. We can write 13 as (4 · 3) + 1, so we say 13 ≡ 1 mod 4

Proof of Theorem 1.4. We recall {0, 1, 2, 3} is a complete residue system
of Z/4Z. Note, we are only considering primes expressed as a sum of
two squares, and thus we have to consider the set (Z/4Z)2, where the
residue system is reduced once more:

02 ≡ 0 mod 4
12 ≡ 1 mod 4
22 ≡ 0 mod 4
32 ≡ 1 mod 4.

Thus, the residue system of (Z/4Z)2 is {0,1}. Yet again, we are only
considering the primes written as a sum of two squares, and so we
consider all elements of (Z/4Z)2 + (Z/4Z)2:
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0 + 0 ≡ 0 mod 4
1 + 0 ≡ 1 mod 4
1 + 1 ≡ 2 mod 4

Therefore, the set {0,1,2} expresses the possibilities for which a number
can be expressed as a sum of two squares. No prime greater than 2 is
congruent to 0 or 2 modulo 4, so we have our result. □

3.2. Sum of Two Squares (Generalized). We have proved that a
prime p is either 2 or congruent to 1 mod 4 for it to be expressed as a sum
of two squares. We will now pose the question for all natural numbers.
We earlier discussed that the set {0,1,2} expresses the possibilities of a
natural number to be expressed as a sum of two squares mod 4. We now
pose the question: can we express a natural number n in terms of it’s
prime factors? Firstly, we must define the terms group, monoid, ring,
and Euclidean domain [1] to properly prove the Sum of Two Squares
by utilizing the Gaussian Integers.

Definition 3.3. A group (G, ∗) is a set G and a binary operator ∗ that
must satisfy:

(1) Closure: a ∗ b ∈ G for all a, b ∈ G.
(2) Associativity: a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G.
(3) Identity: there exists e ∈ G such that e ∗ a = a ∗ e = a for every

a ∈ G.
(4) Invertibility: for every a ∈ G there exists a−1 ∈ G such that

a ∗ a−1 = a−1 ∗ a = e.

Proposition 3.4. (Z, +) is a group.

Proof. Obviously, a + b ∈ Z for all a, b ∈ Z, and we know integer
addition is associative. We take e = 0 as our identity and the inverses
become simple: a−1 := −a such that a + (−a) = −a + a = 0. □

A group where every element commutes (a ∗ b = b ∗ a for all a, b ∈ G)
is called abelian. The aforementioned group (Z, +) is abelian.

Definition 3.5. A monoid (S, ·) is a set S under a binary operation ·
satisfying the properties of closure, associativity, and identity, but not
necessarily invertibility.

We may now combine these two structures into the main tools of the
paper.
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Definition 3.6. A ring (R, +, ·) is a set R and two binary operations,
+ and ·, that satisfy:

(1) (R, +) is an abelian group.
(2) (R, ·) is a monoid.
(3) Distributivity: r · (s + t) = r · s + r · t and (s + t) · r = s · r + t · r

for all r, s, t ∈ R

Similar to the notion of a group, if all elements commute under the
operator ·, we call R a commutative ring.

Proposition 3.7. (Z, +, ·) is a commutative ring.

Proof. We have already shown that (Z, +) is an abelian group. That
(Z, ·) is a monoid is also very clear, and we know that we can distribute
multiplication over addition in the integers, so we are done. □

Definition 3.8. A ring (R, +, ·) is a Euclidean domain if there exists
a Euclidean function N : R → N ∪ {0} that gives meaning to the
Euclidean algorithm and division theorems.

For every nonzero α, β ∈ R there exist ξ, η ∈ R such that α = βξ + η

and N(η) < N(β).

Proposition 3.9. The ring (Z, +, ·) is a Euclidean Domain.

Proof. The Euclidean function for the integers is merely taking the
absolute value of the integer. In other words, N(a) = |a| for a an integer.
We note obviously the integers give meaning to the Euclidean algorithm
and division theorems, and thus the ring (Z, +, ·) is a Euclidean Domain.

□

Definition 3.10. For an element u in a ring to be a unit, there must
also exist a u−1 such that, uu−1 = 1, the multiplicative identity.

Definition 3.11. An irreducible element α is one such that if β|α and
N(β) < N(α), then β is a unit.

Lemma 3.12. A prime element in an Euclidean Domain is the same
as an irreducible element.

The Gaussian integers are a Euclidean Domain under the Euclidean
Function, the Norm, in which elements of the Gaussian integers map
to the natural numbers. We shall take an element of the ring z, for
which it can be expressed as z = a + bi, where a and b are integers,
and i =

√
−1. For z to be mapped to the natural numbers, we must
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take the Euclidean function to be N(z) = zz̄ where z̄ is the complex
conjugate (z̄ = a − bi).

Lemma 3.13. Let z ∈ Z[i]. The set N(z) expresses the set of natural
numbers that can be expressed as a sum of two squares.

Proof. For z = a + bi, observe the result of N(z)

(a + bi)(a − bi) =
a2 − abi + abi − bi2 =

a2 − (−b2) =
a2 + b2

□

We note by Lemma 3.13, that for a natural number n to be expressed
as a sum of two squares, it must be the Norm of some element in the
Gaussian integers.

In order to progress further, we must discuss the prime factorization
of the composite numbers that can be written as a sum of two squares
by first prime factorizing them in both the integer primes and Gaussian
primes.

Lemma 3.14. We propose the Norm is multiplicative.
N(xy) = N(x) · N(y).

If n is composite, we can prime factorize it into it’s prime factors,
denoted: (pk1

1 )(pk2
2 )...(pkn

n ).
By utilizing the Norm’s multiplicative property, we can rewrite this

expression in terms of the Norm of elements zp ∈ Z[i].
n = (pk1

1 )(pk2
2 )...(pkn

n )
N(z) = N(zk1

1 )N(zk2
2 )...N(zkn

n )
We note all prime factors of n are the Norm of some element zp ∈ Z[i].

By Lemma 3.13, if the prime p is the Norm of some element in the
Gaussian Integers, it can be expressed as a sum of two squares. By
Theorem 2.4, if a prime p can be expressed as a sum of two squares,
it must be 2 or congruent to 1 mod 4. Thus, all prime factors of n must
be powers of 2 or congruent to 1 mod 4.

And so we can finally state that for a natural number n to be expressed
as a sum of two squares, n = 2kT , where k is a non-negative integer,
and T ≡ 1 mod 4.

However, we must account for the other prime factors that are simpli-
fied in (Z/4Z)2. For which 3 is not fully accounted for. By Theorem
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1.4, a prime factor of n cannot be congruent to 3 mod 4. However, we
propose that prime factors congruent to 3 mod 4, raised to even powers
are viable prime factors.

3x ≡ 3 mod 4, for x ≡ 1 mod 2.
31 ≡ 3 mod 4

3y ≡ 1 mod 4, for y ≡ 0 mod 2.
32 ≡ 1 mod 4

Since the prime factors congruent to 3 mod 4 raised to even powers
are congruent to 1 mod 4, they are acceptable prime factors and thus
can also be expressed as sums of two squares.

Example 3.15. 6 cannot be expressed as a sum of two squares, but 18
can.

6 = 21 · 31

6 ̸= a2 + b2

18 = 21 · 32

18 = 92 + 92

Utilizing the prime factorization of n in the integers, and the Norm’s
multiplicative property, we can finally give an appropriate expression
for n in terms of it’s prime factors.

For n = a2 + b2, {a, b, ∈ Z}
n = 2kPQ

n ∈ N
k ∈ Z

P = ∏
p|n, p ≡1 mod 4

Q = ∏
p|n(p ≡ 3 mod 4)s {2|s}

Example 3.16. Let’s put this into practice with an element from the
Gaussian integers and use the Euclidean Function to map it to the
natural numbers. We will then prime factorize its value when mapped
using the formula given. We shall use the element 15 + 13i. Taking the
norm of 15 + 13i we can determine that the natural number counterpart
is 394.

(15 + 13i)(15 − 13i) =
152 + 132 =

394
Now, let’s prime factorize 394, a sum of two squares. 394 can be factored
into 2 and 197, which are both primes. 2 = 21, so the value of k is 1.
197 ≡ 1 mod 4, so the value of P is 197. There is no prime factor of
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394 congruent to 3 mod 4, so we can treat Q as 1. Plugging this into
the formula, we get:

n = (21)(197)
n = 394

This example is quite trivial, but it gives us a good idea of how this
works in practice.

Now briefly we will discuss some other methods to solve Diophantine
equations. For the sum of two squares problem, we can take a more
abstract approach, by posing questions initially as x2 ≡ −1 mod p. As
we stated earlier in the residue of (Z/4Z)2, we can prove this is only true
when p ≡ 1 mod 4. Now this is one way to approach such a problem,
and we took a similar approach through our investigation of the residue
of N(z) = zz̄.

Now for other Diophantine equations, these methods may or may not
work. If such equations involve a quadratic expression, then these meth-
ods might work, but you must be clever about designing your Euclidean
domain. For example, another Euclidean domain the Eisenstein integers
(Z[ω]), are used in an approach to prove Fermat’s Last Theorem in the
case of n = 3. However, these approaches frequently don’t work, but
there are techniques, although slightly more advanced, that are com-
monly used. These include utilizing the discriminant and stereographic
projection, which are great tools we didn’t primarily showcase in our
proofs for other Diophantine equations.

3.3. Fermat’s Last Theorem. We will close with a brief history
of Fermat’s Last Theorem (recall Theorem 1.6), arguably the most
famous Diophantine equation, and one of the most notable equations in
Number Theory. Introduced in 1637 by French mathematician Pierre
de Fermat, this problem has lots of history surrounding it. During
his time, Fermat claimed to have devised a proof for his theorem, yet
no proof was ever published or discovered. Although his proof for the
general case of n > 2 was never published, he proved another theorem
essentially proving the case of n = 4. Even after Fermat’s passing in
1665, mathematicians still held an interest in this mysterious problem,
one of the most notable being Leonhard Euler. The case of n = 3
was eventually proven by Euler, utilizing some of Fermat’s methods.
Later on, he also proved the same result by using some other algebraic
techniques (with some gaps). However, even after the proof of the
case for n = 3, mathematicians were stuck for centuries to prove the
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general case of n > 2. The man to finally overcome this barrier was
Andrew Wiles, an English mathematician. Wiles found a correlation
between Fermat’s Last Theorem and the Taniyama–Shimura conjecture,
seemingly two extremely different fields of mathematics. Even though
both problems were seemingly "unprovable", after a long 6 years, he
proved the general case of Fermat’s Last Theorem in 1993. This proof
had a small error, but with the help of his former student, Richard
Taylor, Wiles worked out an accurate proof, published in 1995. Wiles’s
proof gained incredible popularity, and he was crowned with numerous
awards for his genius proof of the 300-year-old problem [4].

3.4. Real World Applications. Although Diophantine equations are
incredibly important in mathematical fields, especially Number The-
ory, they also have incredible usages in other fields, notably chemistry.
In chemistry, linear Diophantine equations are commonly used when
balancing tediously long chemical reactions. Using the process of Dio-
phantine equations and applying laws of conservation of mass, chemical
reactions can be treated as mathematical equations by associating chem-
ical elements with prime numbers. In practice, each chemical compound
is broken into its chemical components - just as integers can be factor-
ized into its prime factors. We use this relationship to express each
compound mathematically, where we can easily compute each integer
coefficient utilizing systems of Diophantine equations. We shall give an
example below to find the integer coefficients of the chemical reaction:

aKNO3 + bS + cC → dK2S + eN2 + fCO2

Firstly, we must associate each chemical element with a correlating
prime number (K = 67, N = 17, O = 19, S = 47, C = 13).

Since chemical reactions and prime factorizations utilize different
operations, we must make the following correlations to derive a mathe-
matical expression:

If there are different chemicals added together in a compound →
unique correlating prime numbers are multiplied together.

If there are multiples of the same element in a compound → they are
correlating powers of primes.

After applying these rules, we end with a mathematical expression of
the chemical reaction.

(67 · 17 · (19)3)a · 47b · 13c = ((672) · 47)d · (172)e · (13 · (192))f

We can derive a system of linear Diophantine equations by utilizing
the prime factorization on both sides of the equation.
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(a = 2d, a = 2e, 3a = 2f , b = d, c = f)
After using some basic algebra we find the solution to this system of

equations, which are of the following form in terms of a variable j.
(a = 2j, b = j, c = 3j, d = j, e = j, f = 3j)
Since we are only interested in the simplest of integer solutions, we can

take j = 1, and we end with our resulting balanced chemical equation:
2KNO3 + S + 3C → K2S + N2 + CO2

This example may seem quite simple, but when working with ex-
tremely long chemical reactions these processes are very tedious by
hand. By utilizing this formula, alongside some simple computing, we
can efficiently balance these chemical equations.[6].
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