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1. Introduction

The problem of expressing positive integers as sums of squares has been
considered since antiquity. It is known that any positive integer is the sum
of four squares, but classical proofs of this result are non-constructive. We
provide an explicit decomposition of n! = 1 ·2 · ... ·n into the sum of relatively
few squares, and link this decomposition with ideas from combinatorics and
representation theory, including partitions, Young tableau, and irreducible
representations of the symmetric group.

More precisely, we discuss the identity

n! =
∑
λ⊢n

|standard Young tableaux of shape λ|2

from two different perspectives: a combinatorial one and a representation
theoretic one. The combinatorial approach uses a surprising, generaliz-
able, and extremely useful bijection called the Robinson-Schensted corre-
spondence, while the representation theoretic approach studies irreducible
representations of the symmetric group, an accessible and interconnected
topic. This paper lays out a few preliminary definitions in Section 2 before
discussing the two approaches in Sections 3 and 4.

2. Definitions

First, we define a group.

Definition 1. A group G has a set S of elements and an operation ◦, and
respects these axioms:

(1) Closure: if a and b are in S, then a ◦ b is also in S.
(2) Associativity: for any a, b, and c in S, (ab)c = a(bc).
(3) Identity: there exists an identity element e in S such that for all a

in G, ae = ea = a.
(4) Inverse: for all a in G, there exists an inverse b such that ab = ba = e.

We claim that the set Z (which is the set of integers) and the operation
+ form a group, and the set R∗ (which is the set of real numbers excluding
0) and the operation · form a group as well.
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We check these alleged groups against the axioms.
For the set Z and the operation + :

(1) There is closure because the sum of any two integers is an integer.
(2) There is associativity because addition is an associate operation, so

for any integers a, b, and c, (a+ b) + c = a+ (b+ c).
(3) The identity element e is 0 because for all integers a, a+0 = 0+a = a.
(4) The inverse of any integer a is −a because a+ (−a) = (−a) + a = 0,

and 0 = e.

Therefore, the set Z and the operation + form a group.
For the set R∗ and the operation · :
(1) There is closure because for any two a, b in R∗, a · b is in R∗ as well.
(2) There is associativity because multiplication is an associative opera-

tion, so for any a, b, and c, in R∗, (a · b) · c = a · (b · c).
(3) The identity element e is 1 because for all a, in R∗, a · 1 = 1 · a = a.
(4) The inverse of a is 1

a because for all a, a · 1
a = 1

a · a = 1 = e.

Therefore, the set R∗ and the operation ◦ form a group.
(Note that 0 is specifically excluded from this set because if 0 were included

in this set, then not every element of this set would have an inverse because
1
0 is undefined.)
One type of groups is symmetric groups, Sn.

Definition 2. A bijection is a mapping that is both one-to-one and onto.
That is, there exactly one value in the range corresponding to each value in
the domain, and one value in the domain corresponding to each value in the
range.

Definition 3. A symmetric group Sn is a group with bijective functions
f : {1, 2, ..., n} → {1, 2, ..., n} as the elements and function composition as
its operation.

This kind of bijective function is called a permutation.

Definition 4. A permutation maps the elements of the set {1, 2, . . . , n} to
the set {1, 2, . . . , n} in a way that is invertible.

For example, S3 is the set of permutations of {1, 2, 3}.
There are three ways to denote permutations: two-line notation, one-line

notation, and cycle notation.
The simplest is two-line notation. On the first line, the elements of the

domain are written in numerical order, and on the second line, the elements
of the range that correspond to the elements of the domain are written.

For example, if 1 corresponds to 3, 2 corresponds to 5, 3 corresponds to
4, 4 corresponds to 1, 5 corresponds to 2, and 6 corresponds to 6, then the
two-line notation is
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(
1 2 3 4 5 6
3 5 4 1 2 6

)
The first line is predictable and redundant because it is just the numbers

in numerical order, so in one-line notation, the first line is deleted and only
the second line is written.

Then for the previous two-line notation, the equivalent one-line notation
is

354126.

Now we explain how to write this permutation in cycle notation. The
first cycle starts at 1 : the 1 is written down, the number that 1 maps to is
written down, the number that that number maps to is written down, and
so on until 1 is mapped back to. That cycle is then placed in parentheses.

If the whole cycle contains the whole set, then we are done, but more
likely, the cycle does not contain the whole set. Then the second cycle starts
at the next smallest and available number, and so on until the cycles contain
the whole set (every element of the set is in a cycle).

Then for the previous one-line notation, cycle notation is

(134)(25)(6).

This is found by first finding the first cycle. Starting at 1, it maps to 3,
which maps to 4, which maps back to 1, so the first cycle is (134). The next
smallest and available number is 2, so starting at 2, it maps to 5, which maps
back to 2, so the second cycle is (25).

Now the next smallest and available number is 6. (Note that although 3, 4,
and 5 are smaller than 6, they are not available because they are already in
cycles.) Starting at 6, it maps back to itself, so the third cycle is (6). Now
every element is in a cycle, we are done.

(Note that any cycle with only one element can be omitted, so here, (6)
can be omitted and the cycle notation would be (134)(25). Therefore, if a
cycle notation does not include every element, then we can assume that the
unincluded elements form individual cycles and map to themselves.)

Now that we can denote permutations, we can compose permutations
(also known as multiply permutations) as well. The permutations can be in
one-line notation. The first permutation is written, then for each number,
the number that the first permutation maps to in the second permutation
is written. (Note that the numbers of the first permutation are likely not in
numerical order, so this is likely not the number of the second permutation
verbatim.) This can be done multiple times, and the last line is the final
product.
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For example, to compose 2431 and 2314, the first permutation is written

2431.

The first number of the first permutation maps to 2, and the 2 maps to 3 in
the second permutation, so the first number of the product is 3. Then the
second number of the first permutation maps to 4, and the 4 maps to the 4
in the second permutation, so the second number of the product is 4. And
so on. Therefore, the product of 2431 and 2314 is1 2 3 4

2 4 3 1
3 4 1 2


which simplifies to

3412

One example of a symmetric group are the Sn groups. Its n! elements
are all of the permutations of 1, 2, . . . , n (these are all bijective functions),
and its operation is function composition. (It is also possible to define a
symmetric group on an infinite set, but we do not need this idea for the
paper.)

The identity element of Sn is 12 . . . n.
Now we define partitions.

Definition 5. A partition (λ1, λ2, . . . , λk) of n is a k tuple that sums to n.

For example, the partitions of 4 are (4), (3, 1), (2, 2), (2, 1, 1), and (1, 1, 1, 1).
These partitions can be illustrated by Young diagrams.

Definition 6. Given a partition (λ1, λ2, . . . , λk), a Young diagram is a col-
lection of

∑
i λi boxes so that row i has λi boxes.

Here are the partitions of 4, illustrated as Young diagrams. By convention,
we left-justify the boxes.

Definition 7. Given a partition (λ1, λ2, . . . , λk), a standard Young tableau
is a diagram with k rows with λ1, λ2, . . . , λk boxes, respectively. Each box is
assigned with exactly one value such that the values increase top to bottom
in columns and left to right across rows.
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For example, the partition (2, 2) of 4 has 2 standard Young tableaux:

1 3

2 4

1 2

3 4

And the partition (3, 1) of 4 has 3 standard Young tableaux.

1 2 3

4

1 2 4

3

1 3 4

2

The partition (2, 1, 1) of 4 also has 3 standard Young tableaux.

1 2

3

4

1 3

2

4

1 4

2

3

Notably, each standard Young tableaux of (2, 1, 1) is a standard Young
tableaux of (3, 1) that has been reflected over the top-left to bottom-right
diagonal. In fact, if we reflect any standard Young tableaux over the top-left
to bottom-right diagonal, then we get another standard Young tableaux.

3. Robinson-Schensted Correspondence

The Robinson-Schensted Correspondence is a bijection between permuta-
tions and pairs of standard Young tableaux (SYT). The two standard Young
tableaux are called the Insertion Tableaux, P, and the Recording Tableaux,
Q. To get a better understanding of what this means, let’s look at an exam-
ple. Suppose we have some permutation

(123)(45)

. First, we convert to one-line notation, and get

23154

. We use this one-line notation to create the standard Young tableaux
through the Schensted Algorithm, like this:

First, take the first element, 2, and draw it in the top-left corner. Then,
proceed left-to-right, inserting each new number x in the one-line notation
with the following rules:

(i) If x is smaller than all the numbers already placed, put it in the
top-left corner and then bump every other number in that column
down one cell.

(ii) If x is bigger than the number at the rightmost end of the top row,
place it to the right of the top row so it becomes the new rightmost
element and the length of the top row increases.

(iii) If x is bigger than the number in the top-left corner but smaller than
a different number in the top row, find the smallest number in the
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top row that is bigger than x and place x in it’s position. Then,
bump each other number in the column down one cell. If this results
in any element in any row having a gap between it and the element(s)
to it’s left, then move the element to the left so that no row has any
gaps in it.

This method of making standard Young tableaux is well-defined because
there is only one way to do it, and the Young tableaux it produces are
standard. Namely, the rows are in ascending order from left to right, because
of the specifications in rules (ii) and (iii). The columns are ascending from
left to right because of the specifications in rules (i) and (iii).

So, for our example, after we insert the 2, we next need to insert the 3.
By rule (ii), we place it at the end of the top row.

2 3

Next, we need to insert 1, so we apply rule (i).

1 3

2

Then, we need to insert 5, so we apply rule (ii) again.

1 3 5

2

Finally, we need to insert (4), so we apply rule (iii).

1 3 4

2 5

We have produced one standard Young tableaux. This is the Insertion
Tableaux, P . However, the Schensted Algorithm produces a pair of standard
Young tableaux. To get the second standard Young tableaux, we simply
invert the permutation. That is, we write a permutation such that this
permutation multiplied by our original permutation yields the identity. An
easy way to do this is to write each cycle backwards in cycle notation, then
find the one line notation again.

Our original permutation was (123)(45), so our inverted permutation is
(321)(54) = (132)(45). In one-line notation, this is (31254).

Now, we repeat the same process to find the second standard Young
tableaux, the Recording Tableaux, Q.

First, we insert the 3. Then, we insert the 1, using rule (i). Then, we
insert the 2, using rule (iii). Then, we insert the 5, using rule (ii). Finally,
we insert the 4 using rule (iii).

1 2 4

3 5
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According to the Robinson-Schensted correspondence, P and Q have the
same shape and the same size.

There is another interpretation of the relationship between P and Q,
which is that Q records the order in which the boxes in P are inserted, and
P records the order in which the boxes in Q are inserted. This illuminates
another way to construct Q given P : if you construct P , and then separately
write down the order that each cell is filled in, you will also get Q. Going
back to our example:

First, we filled the top-left cell, so the top-left cell is marked with 1. Then,
we filled the cell to its right, which becomes marked with 2. Then, we filled
the leftmost cell in the second row, which is marked 3. Then, we filled the
the third cell in the top row, which is marked 4. Finally, we filled the second
cell from the left in the bottom row, which is marked 5.

4. Irreducible representations of the symmetric group

Definition 8. A general linear group is the set of all n × n matrices with
a non-zero determinant under the group operation of matrix multiplication.
GLn(R) is the general linear group with all real matrices, while GLn(C) de-
notes the matrices that have complex entries.

Remark: GL(n,R) is another way of denoting GLn(R)

So,

[
1 2
3 4

]
would be an example of an element in GL2(R), while[

1
2 + i

√
3
2

]
would be an element of GL(1,C).

In representation theory, the general linear group is a very important
group to define. Based on Cayley’s Theorem, which states that every group
is isomorphic to a permutation group (a subgroup of a permutation group)
and the fact that we can always express a permutation group as a matrix,
we can represent every group as a general linear group.

Definition 9. A homomorphism is a mapping ϕ : G → H that preserves
the group operation. Therefore, for all g1, g2 ∈ G,ϕ(g1g2) = ϕ(g1)ϕ(g2).

Let’s look at an example of a homomorphism.

Take the group GL2(R). Then, we can have a map ϕ : G → R∗ by
ϕ(n) = det(g) where g ∈ G. Then, we can check if this is a homomorphism
by using general elements g1 and g2 from G and seeing if it maps to an
element of R∗.
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ϕ(g1g2) = det(g1g2) = det(g1)det(g2) = ϕ(g1)ϕ(g2).

Therefore, the mapping is a homomorphism.

Note: By convention, “R∗” is used to denote the R/0.

Now, let’s talk about how we can represent some groups as matrices. To
do that, we will need to use GL groups.

Definition 10. A representation of a group G is a homomorphism ϕ : G → GL(V )
where GL is a general linear group over the vector space V .

Remark: In this paper, we will only consider representations of a finite
group over a finite-dimensional vector space.

Definition 11. A character of a representation is a function χ on a general
linear group such that χρg = Tr(ρ(g)), where ρ is a function mapping the
elements of the group to its corresponding matrix.

Definition 12. A dimension of a representation is the dimension of V .

Now, let’s look at an example and see how we would define each of these
terms.

Let’s take the map: ϕ : Z/3Z → GL1(R).

We will define our functions:
ρ1(g) :

[
id
]
(the trivial representation)

ρ2(g) : e
2πi
3

g

ρ3(g) : e
4πi
3

g

Then, this map is a representation of the group G.
Character χ1: χ1(0) = 1, χ1(1) to 1, χ1(2) = 1.

Character χ2: χ2(0) = 1, chi2(1) = −1
2 + i

√
3
2 , chi2(2) = −1

2 − i
√
3
2 .

Character χ3: χ3(0) = 1, chi3(1) = −1
2 − i

√
3
2 , chi3(2) = −1

2 + i
√
3
2 .

Finally, the dimension of each representation is 1, since the dimension of V
is 1.

Using all of this information, we can create something called a character
table to help us visualize this a bit easier. The top row is elements of Z/3Z
and the first column is characters.
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0 1 2
χ1 1 1 1

χ2 1 −1
2 + i

√
3
2 −1

2 − i
√
3
2

χ3 1 −1
2 − i

√
3
2 −1

2 + i
√
3
2

Let’s look at another example:
ρ1 : S3 → GL(1,C)
ρ2 : S3 → GL(1,C)
ρ3 : S3 → GL(2,C)

We will define our functions:
ρ1(g) = 1 (the trivial representation)
ρ2(g) = sgn(g) (the sign representation)

ρ3(g): e 7→
(
1 0
0 1

)
, (1 2) 7→

(
0 1
1 0

)
, (1 3) 7→

(
−1 0
−1 1

)
,

(2 3) 7→
(
1 −1
0 −1

)
, (1 2 3) 7→

(
0 −1
1 −1

)
, (1 3 2) 7→

(
−1 1
−1 0

)
.

Then, the characters would be
χ1: χ1(g) = 1 for all g ∈ S3.
χ2: χ2(g) = 1 if g is even and −1 if g is odd.
χ3: χ3(e) = 2, χ3(g) = 0 if g is a 2-cycle, χ3(g) = −1 if g is a 3-cycle.

So, our character table would be

Conjugacy Classes
Representations e (a b) (a b c)
χ1 1 1 1
χ2 1 -1 1
χ3 2 0 -1

Now, let’s define a few more terms.

Definition 13. A reducible representation ρ is a representation V is one
that can be written as the direct sum of proper representations (one that is
not the original representation) where V = V1 ⊕ V2. Therefore, the matrices
in the image of ρ are conjugate to block matrices, and each block corresponds
to a proper subrepresentation.
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Notice that we can always represent V = V1 ⊕ V2 with V1 in the upper
left corner and V2 in the lower right, with 0s all around.

rep
V1

0

0
rep
V2

Definition 14. An irreducible representation is one that is not reducible.

Therefore, we will only use the irreducible representations for the charac-
ters. For example, for Z2 → GL(2,C), we would not use

ρ(g) =

[
1 0
0 (−1)g

]
.

Instead, we use ρ1(g) =
[
1
]
and ρ2(g) =

[
(−1)g

]
Theorem 1. There is a bijection between the irreducible representations of
the group Sn and the conjugacy classes of Sn.

Proof. Let us begin by defining Schur’s lemma.

Schur’s Lemma: Let V,W be irreducible representations of a finite group
G over an algebraically closed field K of characteristic 0. Then, every homo-
morphism V 7→ W of representations is either 0 or an isomorphism. Every
homomorphism V 7→ V is a multiplication by a constant.

Now, we can look at the representation K[G] of the group G. We can
then let C[G] ⊆ K[G] generated by elements of the form

∑
g∈C g where C is

a conjugacy class of G. Then, all elements of C[G] commute with all other
elements of K[G], so they are homomorphisms of the representations of G.
We then have a K-algebra homomorphism,

C[G] 7→ ⊕
V irreducible

K

whose component that corresponds to V sends an element of C[G] to its
action on V , which is a scalar due to Schur’s Lemma. So, if we split K[G]
into the irreducible representations of G, the kernel of the homomorphism
is just 0, which means that the number of irreducible representations of G
is at least the number of conjugacy classes of G.

To prove that the number of conjugacy classes of G is at least the num-
ber of irreducible representations of G, just consider the representation,
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Hom(V,W ) (the vector space of all linear mappings from V to W with
dimension mn).

Therefore, the character table is square. Since the irreducible represen-
tations are the rows of the character table and the conjugacy classes are
the columns, the number of irreducible representations of Sn is equal to the
number of conjugacy classes of Sn. □

There is also a bijection between partitions and conjugacy classes since
two permutations in Sn are conjugate if and only if they have the same cycle
structure. There is a natural way of corresponding each irrep of Sn with a
partition.

Theorem 2. The dimension of an irreducible representation equals the
number of ways to turn the corresponding partition into a standard Young
tableaux.

There is a proof of this result in Fulton and Harris’ Representation Theory.

Definition 15. A left regular representation can be defined as a linear map
λg, with g ∈ G and h being the basis vectors of the representation, such that

λg : h 7→ gh,∀h ∈ G.

Definition 16. An inner product of functions G → k is

⟨α, β⟩ := 1

|G|
∑
g∈G

α(g)β(g).

Theorem 3. The size of a group equals the sum of the squares of the di-
mensions of its irreps.

Proof. Let G have irreps ρ1 to ρr with characters χ1, χ2, ...χr and dimensions
d1, d2, .....d4. We want to show that d21 + d22 + ....d2r = |G|.

Let ρ be a left regular representation. Let α be the character of ρ.
Because multiplication by elements that are not the identity has no fixed

points other than the identity, we can say that α(identity) = |G| and
α(g) = 0 ∀g ̸= the identity. The inner product < α,χi >= di, because
we are only multiplying the identity.

So α =
∑r

i=1 < α,χi > χi =
∑r

i=1 diχi

Therefore, α(identity) =
∑r

i=1 d
2
i , and α(identity) = |G|, so

∑r
i=1 d

2
i = |G|.

□

So, since the number of Standard Young Tableau that we can make is
equal to the number of partitions of n, which is also equal to the number
of conjugacy classes of group Sn, the number of Standard Young Tableau
is equal to the number of conjugacy classes of Sn. We also have that the
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number of irreducible representations is equal to the number of conjugacy
classes of Sn and that the size of a group equals the sum of the squares of
the dimensions of its irreducible representations, which means that n!, which
is the size of Sn would be equal to the sum of the squares of the standard
young tableaux that can partition n. Therefore, we get the formula we set
out to show in our introduction.
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