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Abstract. We discuss Tarski Monster Groups –infinite groups G
such that every non-trivial proper subgroup is of prime order. With
many applications to combinatorics, geometry, and topology, these
groups have many unusual properties that we will investigate. Af-
ter developing a geometric approach to the construction of proofs,
we will conclude with the proof of existence.

1. Introduction

Group Theory, as a branch of mathematics, is a chiefly the study of
symmetry. In nature objects have many beautiful symmetries: radial
symmetry, fractal symmetry, spiral symmetry, crystal symmetry, etc.
This exists in mathematics as well and group theory is the algebraic
language used to describe it. The groups that we will be dealing with in
this paper are of a more abstract variety however, the basic intuition
that comes from geometry is a helpful aid in understanding. This
section serves as a prelude to the fundamental concepts and principles
of group theory that will be useful in the discussion to come.

1.1. Basics of group theory. We will start with defining a group.

1.1.1. Definitions.

Definition 1. A group is an ordered pair (G, ∗) where G is a set and
∗ is an algebraic operation (binary operation) on G satisfying the fol-
lowing axioms:

• (a ∗ b) ∗ c = a ∗ (b ∗ c), for all a, b, c ∈ G.
• there exists an element e in G called an identity of G, such that
for all a ∈ G we have a ∗ e = e ∗ a = a

• for each a ∈ G thee is an element a−1 of G, called an inverse
of a, such that a ∗ a−1 = a−1 ∗ a = e.

If a group operation is commutative, we call the group an abelian
group (Norweigan mathematician Niels Henrik Abel). We see that if e
is identity for G then, f(e) is the identity of H, that H is Abelian if,
and only if, G is Abelian.
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Definition 2. A group G is called finite if G is a finite set. If not, we
say G is an infinite group. The number of elements in a finite group is
called its order. We write this as |G| = n for n elements in set G.

Definition 3. A group isomorphism is a bijective mapping f of a group
G onto a group H if for any x, y ∈ G if f preserves the group operation.
We write this as G ∼= H.

In other words, an isomorphism captures the notion that two groups
have identical algebraic structures, despite having different elements
and operations. To illustrate this, consider the symmetries of an equi-
lateral triangle (S3).

1.1.2. Cyclic groups & Cosets. A subgroup is a subset of a group that
forms a group itself, retaining the same group operation. More for-
mally,

Definition 4. A subgroup is a group G is a non-empty subset H ⊂ G
such that,

• the product ab is in H when a ∈ H and b ∈ H
• if a ∈ H then a−1 ∈ H.

There are two obvious examples of subgroups that every group, G,
has a subgroup e consisting of only the identity, improper subgroup,
and a subgroup containing all elements of G, proper subgroup.

Definition 5. A cyclic group is a group that can be generated by a
single element a. a is called the generator.

In number theory, congruence modulo allow us to study numbers
based on their remainders when divides by a given modulus. Cyclic
groups provide a natural framework to explore these congruence’s, in
particular, to the set of integers modulo n ( Z

nZ
).

Theorem 1. Every subgroup of a cyclic group is cyclic.

Proof. Consider a subgroup H of a cyclic group. Since H is a subgroup,
it must also satisfy the group axioms and contain the identity element
of the larger group. This means that it contains at least one element.
Now, let’s find a generator for H – an element that can produce all other
elements in H through repeated application of the group operation.
Since, the larger group is cyclic we can express its elements as power
of g. We know that H is closed so, we can examine the powers of g
within H.Since H is a subgroup, if we take the power of any element
in H, the result will also be in H. In other words, if we take gn, where
n is an integer, and gn is in H, then the powers of gn, such as (gn)2,
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(gn)3, and so on, will also be in H. Notice that the powers of gn within
H cover all of the element cover H. □

Next, our focus turns to cosets. Cosets and relations play an impor-
tant role in the factorization of groups and are often used to under-
standing subgroup structure.

Definition 6. Any subgroup H ⊂ H can be shifted to the left by an
arbitrary element a ∈ H. The subset aH is called a left coset of H ∈ G.
The same follows for the right coset.

Definition 7. A group homomorphism is a map f : G → H between
two groups such that the group operation is preserved.

A relation of two sets is a subset of the Cartesian product of their
elements which consists of all possible ordered pairs. They describe
the connection and association between elements of one or more sets.
Defining a notion of equivalence in group theory, equivalence relations
provide a way to classify elements into distinct equivalence classes based
on certain shared properties or characteristics.

Definition 8. An equivalence relation on a set G is a binary relation
that satisfies three properties

• Reflexivity: every element in G is related to itself.
• Symmetry: If two elements x and y are related, then y is also
related to x.

• Transitivity: if two elements x and y are related, and y and z
are related, then x and z are also related.

1.2. Types of groups. Groups frequently arise as permutations or
symmetries of collections of objects. For instance, consider the rigid
motions in R2 that preserve a particular regular n-gon.This collection
of actions is called a Dihedral group. Other examples includes:

1.2.1. p-groups. A p-group is a specific type of group characterized
by its order and certain properties related to a prime number, denote
p. In a p-group, the order of the group (the number of elements it
contains) is a power of prime p. More formally, if G is a p-group, then
the order of G is pn for some non-negative integer n. . P-groups are
often significant in the study of modular arithmetic, congruence, and
the study of primes.

1.2.2. Free Burnside problem. The Free Burnside Problem, is a famous
problem in group theory that originated from the work of British math-
ematician William Burnside in the early 20th century.
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Definition 9. A free group is one for which no relation exists between
its group generators other than the relationship between an element and
its inverse required as one of the defining properties of a group.

Definition 10. A free Burnside group is a free group in the variety of
Abelian group. In other words, B(A, n) = F/F n where F = F (A).

A simple formulation of the Burnside problem is as follows: I. If G is
a finitely generated group with exponent n, is G necessarily finite and
II. for which positive integers m,n is the free Burnside group B(m,n)
finite?

No complete solution has yet been produced for this problem how-
ever, advances were made in the 1960s by Golod, Kostrikin, Novikov,
and Adian. Famously it was said ”this paper is possibly the most dif-
ficult paper to read that has ever been written on mathematics.” I will
not be presenting their arguments here. However, it is important to
recognize the innovation of their approach, namely their geometriza-
tion. This method now becomes available to a wider range of problems
in combinatorial group theory such as the one we will be discussing.

2. Geometric Approach

This approach to looking at relations in groups will be more clear if
we first formally define a number of topological concepts:

2.1. Two-dimensional topology.

Definition 11. A Family of sets is a collection F of subsets of a given
set, S. This is also called a family of sets over S.

Definition 12. A topological space is an arbitrary set G with a distin-
guished family of subsets N such that

• G ∈ N , and the null set is in N
• the union of any family of sets in N is also in N, and
• the intersection of a finite family of sets in N is also in N.

We say something is a metric space when a mathematical structure
consists of a set together with a distance function that satisfies certain
properties. This provides a framework for measuring distances between
elements and studying convergence. We call some topological space a
quotient space when it is formed from gives spaces X and Y by past-
ing them together and identifying two homomorphic subspaces. We
can do something similar by introducing an equivalence relation and
identifying equivalent points.
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2.1.1. The Jordan curve theorem. Note that a closed curve in a topo-
logical space is a subspace homeomorophic to a circle, a Jordan arc
in that space is a subspace homeomorphic to a closed interval, and
the points of a subset which do not lie on its boundary are called it’s
interior points. Knowing this, the Jordan curve theorem states that

Theorem 2. For any closed curve C in the Euclidean plane R2, its
complement consists of two connected components such that C is their
common boundary. If C is an arc in the plane, then its complement is
connected.

This leads us finally to the combinatorial definition of a surface.

2.1.2. Combinatorial Definition of a Surface. Without reference to any
specific geometric embedding or coordinate system, we define a surface
by constructing it from a collection of polygonal regions and specifying
how these regions are glued together.

By specifying the faces, their edges, and the ”gluing instructions” a
combinatorial surface can be completely described. The result is a com-
binatorial abstraction of a surface that captures its connectivity and
local structure without explicitly considering its geometric properties.

2.2. Van Kampen Diagrams. In 1933, Van Kampen published a
paper presenting a combinatorial tool to be used in algebraic topology
to visualize and compute groups of topological spaces. He did this by
representing them as unions of simpler spaces through decomposing a
given space into a collection of simpler subspaces. In the next section we
will show how this is use in the geometrical deduction of consequences
of relations in groups.

Definition 13. A word refers to a sequence of elements from a given
group.

2.2.1. Example. If the relations a3 = 1 and bab−1 = c hold in some
group, then it obviously follows that c3 = 1. This deduction can be
represented as a circuit a triangular cell yielding the ”word” a3 and a
circuit of each of the 4-sided cells yielding cba−1b−1. On the bound-
ary of the whole figure we read c3, which is the left-hand side of the
given consequence of the relations a3 = 1 and cba−1b−1. We can now
formalize this with the following definition:

Definition 14. A diagram on a surface M over a presentation is any
diagram α over the alphabet β whose cels are all γ-cells or 0-cells for
some γ.
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3. Proof for the Existence of Tarski Groups

To understand the idea behind Olshanskii’s approach, let us first
consider the concept of a Tarski group. A Tarski group is a finitely
generated group with the property that it is isomorphic to its proper
subgroup. The key idea of this proof is to find a certain pattern within a
diagram that allows the construction of an infinite sequence of words,
each representing an element in the group. These words generate a
subgroup that is isomorphic to the original group. Thus The Tarski
problem is formulated as

3.1. Tarski’s Problem. Do there exist infinite groups all proper sub-
groups of which are of fixed prime order p?

Definition 15. Quasi-finite groups are infinite groups where all proper(of
prime order) subgroups are finite.

3.2. Construction of Non-Abelian quasi-finite groups. LetG(∞)
be a group with the relations defined by a set of conditions R that must
be satisfied. For the sake of simplicity, we will not go into all of these
and their justifications but the full proof may be referenced. This re-
lation is of the form T1A

nT2 · · ·ThA
n = 1.

Theorem 3. If |A| > 1, then G(∞) is infinite.

Theorem 4. The centralizer of a non-trivial element X ∈ G(∞) is
cyclic. Every abelian or finite subgroup H of G(∞) is cyclic.

Definition 16. A relator is a type of relation that involves a word or
an equation formed by generators.

For example, consider a group presentation with generators a,b, and
c and the following relator: ab2c = 1. This relator imposes a constraint
on how these generators can be combined. We define an alphabet A
composed of a1 and a2 and start by imposing restriction on it. We
introduce the following relation

An = 1.

For each period A ∈ x we fix a maximal subset y such that:

• if T ∈ y, the 1 ≤ |T | < d|A|
• each double coset of subgroups of G(i) contains at most one
word in y with a minimal length representing this double coset.

It then follows from its definition, that every word in y is minimal in
rank i−1 and is not equal in rank i−1 to a power of A. We now proceed
to verify each of the conditions for R by induction. Again, for the sake
of simplicity and with the aim of conveying the overall approach we will
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not cover each step here. This is an example of a constructive proof
which establishes the existence of an object by explicitly constructing
the desired object.

Lemma 1. The presentations of the groups G(i) satisfy condition R.

We can now generate pairs for G(∞).

Lemma 2. All proper subgroups of G(∞) are abelian.

Proof. Let H be a non-abelian subgroup. We may assume that H
contains elements F and that satisfy |T | < 3|F | < d|F |, if follows
from the definition of the relations that a1, a2 ∈< F, T >⊂ H. So,
H = G(∞). □

Theorem 5. G(∞) is an infinite group all of whose proper subgroups
are cyclic of prime order p.

Proof. By Lemma 1 the infiniteness of G(∞) follows from Theorem
4. Furthermore, by Lemma 2, it is sufficient to consider only abelian
subgroups of G(∞). By Theorem 3, such a subgroup is of necessity
cyclic. A generator X satisfies the equation Xp = 1 by Theorem 3,
since in the definition of G(∞) all nA are equal to n0 = p. By this
construction, Tarski groups exist. □


