
An Introduction to the Theory of Computation

Ryan Chao and Yakir Propp

April 2023

1 Introduction

For this paper, we will be discussing three classes of automata: Finite Automata, CFG & PDAs,
and Turing Machines. We will be providing the definition of all these automata, as well as their
properties and uses. We will go into depth on the equivalence theorems between different subtypes
of the same class.

2 Finite Automata

Let’s discuss the building blocks of Computation! Finite Automata are the simplest type of au-
tomata, creating the foundation for our ideas of Context Free Grammars (CFGs), Pushdown Au-
tomata (PDAs), and Turing Machines (TMs). An extremely high level definition of Finite Automata
is that they are a theoretical machine that takes in an input string, and then either accepts or rejects
it.

There are two types of finite automata: Deterministic Finite Automata (DFA) and Non-
deterministic Finite Automata (NFA). We will find that these two are actually equivalent com-
putation models.

2.1 Deterministic Finite Automata (DFA)

As explained earlier, a Finite Automata takes in an input string and either accepts or rejects it.
Now how does a Finite Automata know whether to accept or reject a string? Let us answer this
question in the case of DFAs.

Informal Definition 2.1. A DFA has a collection of states, which it can enter based on the input
string. There are transition functions that say which state the machine should enter depending on
what the contents of the string is. By the time the DFA finishes reading the string it will have gone
into either an accept or not an accept state, meaning it would have either accepted or rejected the
string.

Let’s take a look at an example of a DFA.

1



Figure 1: Finite Automata G1

Example 2.2. Say we were to input a string, 1100 for example. When we first take in 1100 it goes
straight to the start state denoted by an arrow coming in from nowhere, q1. Looking at the arrows,
which represent the transition functions, we see that starting from q1 we have two possible actions:
if the first character is 0, stay at q1, and if the first character is 1, move on to q2, which happens to
be the accept state notated by the double circle. We read the first character, a 1, so we move on to
q2. Then at q2 we read the next character, another 1, so according to the transition functions we
stay at q2. Then as we move on through the string we read a 0, making us go to q3 and finally a 0
again, causing us to end up in q2, an accept state, which means our machine G1 accepts the input
string 1100. Had the machine not ended up in the accept state then we would have rejected it.

Formally, we can describe a DFA as such:

Definition 2.3 ([1, Definition 1.5]). A Finite Automaton is a 5-tuple (Q,Σ, δ, q0, F ), where

1. Q is a finite set called the states,

2. Σ is a finite set called the alphabet ,

3. δ : Q× Σ → Q is the transition function ,

4. q0 ∈ Q is the start state , and

5. F ⊆ Q is the set of accept states.

In our example, Q = {q1, q2, q3}, Σ = {0, 1}, the accept state q0 is q1, and F = {q2}. We also
have that δ(q1, 0) = q1, δ(q1, 1) = q2, and so on.

Definition 2.4. A language is the set of strings that a finite automata accepts.

Definition 2.5. If the the language of machine M is A, i.e. L(M) = A, then we say M recognizes
A. For any set B where B ̸= A, M does not recognize B.

Definition 2.6 ([1, Definition 1.16]). A regular language is a language which is recognized by some
Finite Automata. Regular languages are vitally important to our study of Automata, as they can
show us the limits of state machines in accepting input.

The type of Finite Automata that is described in this section is called a Deterministic Finite
Automata (DFA), and this is because there is only one path you can follow with each string. If
there is such a thing as a Deterministic Finite Automaton, does this mean that there could be a
Nondeterministic Finite Automaton (NFA)? I’m glad you asked! Yes, there is! We will discuss this
in the next subsection.

2



2.2 Nondeterministic Finite Automata (NFA)

The key difference between a DFA and NFA is that an NFA can have multiple paths for an input.

Informal Definition 2.7. A Nondeterministic Finite Automata (NFA) is a Finite Automata in
which there may be multiple or zero transitions from any state for any given letter of the alphabet.

Here is an example of an NFA:

q1start

q2

q4

q3

q5

ϵ

0

0,1

ϵ

1

1
0,1

1

1

We can see from this example that NFAs exhibits many properties that DFAs don’t. First of all,
there may be multiple or zero of the same type of arrow going out from each state. From example,
state q3 has two 1-arrows going out from it, but zero 0-arrows. In addition, there is a new type of
arrow introduced, called an epsilon arrow. An epsilon arrow is an arrow which transitions while
taking in the epsilon symbol i.e no input. Thus an arrow from qi to qj can be thought of as putting
us in states qi and qj simultaneously. We compute by moving along all possible arrows, rather than
just the one path for a DFA. If any of the states that we could end in after processing the input is
an accept state, we accept.

The following is the formal definition of an NFA.

Definition 2.8 ([1, Definition 1.37]). A Nondeterministic Finite Automaton (NFA) is a 5-tuple
(Q, Σ, δ, q0, F ), where

1. Q is a finite set of states

2. Σ is a finite alphabet

3. δ : Q× Σϵ → P(Q) is the transition function

• Σϵ notation just means Σ ∪ ϵ = {0, 1, ϵ}. In other words, ϵ arrows are available as well
as 0, and 1 arrows.

3



• The ϵ arrow is a transition function which takes in no input symbol and moves to the
corresponding state.

• P(Q) is the Powerset of {Q}, which is the set of all subsets of Q (Q is considered a
subset of Q as is ∅).

4. q0 ∈ Q is the start state

5. F ⊆ Q is the set of accept states.

Note that every DFA is also an NFA, since having exactly one transition for every letter in every
state counts under the definition of a NFA. While DFAs are the simplest kind of automata, it is
often more natural to model a situation using NFAs. This definition of an NFA should be very easy
to understand based on the definition of Deterministic Finite Automaton. The only condition that
is changed is condition 3. The range is now the Powerset of Q, since the output of any state will
be a set of states (this includes the null), rather than just a single state. This definition motivates
the following theorem:

Theorem 2.9 ([1, Theorem 1.39]). Any NFA has an equivalent DFA, which means that they
recognize the same language.

Proof. For a NFA with states Q, and alphabet Σ, we can construct a DFA whose states is R :=
P(Q). Then, for each letter of the Σ for every set in R, Ri, take the union of the delta functions
for Σ for the subsets of Ri. Now write a transition between Ri and this new set. This is a DFA,
since there is example one transition for every Ri. The union represents the possible states that
the automaton could end up on after one transition, starting from a certain number of states
(represented as a set of those states).

This theorem is a very powerful result in the theory of computation. Since DFA’s have been
shown to be equivalent to NFA’s, then the following result about regular languages (a property
of DFA’s) can be proven using NFA’s: regular languages are closed under the union, concatenate
and star operations. In other words, for these operations, if there exists an NFA which recognizes
the input(s) of the operation, then there also exists an NFA which recognizes the output of the
the operation. First we will show the construction of the NFA which recognizes the union of two
regular languages.

4



Figure 2: Construction of an NFA N to recognize A1 ∪ A2

[[1, Theorem 1.45]]

Example 2.10. We have regular languages A1 and A2 and our goal in to prove that A1 ∪ A2 is reg-
ular. We can take two NFAs, N1 and N2 for A1 and A2, and then combine then into one new NFA
N. We combine N1 and N2 by creating two ϵ arrows coming from a new start state and pointing to
each respective start state of N1 and N2 as shown in Figure 2. This nondeterministically simulates
a new NFA that recognizes A1 ∪ A2, meaning that A1 ∪ A2 must be regular.

Next we will show the construction of an NFA, which represents the concatenation of two lan-
guages. Concatenation example: {1, 4, 5} ◦ {2, 3, 6} = {12, 13, 16, 42, 43, 46, 52, 53, 56}

Figure 3: Construction of an NFA N to recognize A1 ◦ A2

[[1, Theorem 1.48]]

As we can see, this new machine, N , works by first simulating N1. Only the strings that are
accepted by N1 get passed into N2 via the epsilon arrows, which must then connect to a string

5



which is accepted by N2. In this way, we have constructed an NFA which recognizes all pairwise
concatenations of accepted strings of N1 and N2, which is exactly A1 ◦A2.

3 Context Free Grammar (CFG) and Pushdown Automata (PDA)

In this section, we will introduce Context Free Grammars (CFGs) and Pushdown Automatas
(PDAs), and show that they are equivalent.

3.1 Context Free Grammars (CFG)

A Context Free Grammar (CFG) is as a more powerful method of describing languages, which were
introduced in the previous section. CFG’s are associated with Context Free Languages (CFL). We
can define our grammar as a set of substitution rules. Each rule comprises of a variable pointing to
a string, and each string can be made up of variables and other symbols which are called terminals.
We also have one variable which is called the start variable and usually resides at the top of our
grammar definition. So, why are these CFGs equivalent to languages?

Well, we can use our substitution rules to create all the strings that would otherwise be described
by a language. We can perform a sequence of substitutions to derive a string that is recognized by
an Automata. For example, lets say we had a CFG G1 which was defined as:

A → 0A1

A → B

B → #

(1)

To derive the string 000#111 in Grammar G1 we could do

A ⇒ 0A1 ⇒ 00A11 ⇒ 000A111 ⇒ 000B111 ⇒ 000#111 (2)

We can say that all strings which are made in this manner are called the language of grammar G1,
or L(G1)
Now for a formal definition of a CFG, we can say that:

Definition 3.1 ([1, Definition 2.2]). A context-free grammar is a 4-tuple (V , Σ, R, S), where

1. V is a finite set called the variables

2. Σ is a finite set, disjoint from V , called the terminals

3. R is a finite set of rules, with each rule being a variable and a string of variables and terminals,
and

4. S ∈ V is the start variable

3.2 PDA

A Pushdown Automata is a type of Finite Automaton that uses a data structure called a stack.
A stack uses the LIFO philosophy (last in first out). Imagine a stack of plates at a restaurant
sitting in bin. The waiter can add plates to the top and “push down” which would move each of
the plates one plate-height downwards, or remove a plate from the top of the stack. The advantage
of the Pushdown Automata over regular DFAs and NFAs is it has a “memory,” or a place to

6



store in Each plate can take on values contained with the stack alphabet, Γ, which can consist
of any symbols. The transition function has to take into account as well as the states machine,
symbols being deleted from or added to the stack. This leads us to the following definition.

Definition 3.2 ([1, Definition 2.13]). A Pushdown Automaton is a 6-tuple (Q, Σ, Γ, δ, q0, F ),
where Q, Σ, Γ, and F , are all finite sets, and

1. Q is the set of states,

2. Σ is the input alphabet,

3. Γ is the stack alphabet,

4. δ : Q× Σϵ × Γϵ → P(Q× Γϵ) is the transition function

5. q0 ∈ Q is the start state

6. F ⊆ Q is the set of accept states.

As we can see, this definition is similar to that of NFAs (here we are considering NPDAs),
however, the NPDA (nondeterministic pushdown automaton) must take into account how the stack
alphabet changes in step 4. If for example, we were to add the symbol, b, during the transition,
the stack would go from ϵ to b. If we wanted to remove the top symbol b, the stack goes from b to
ϵ. We can also swap out the top of the stack in the transition by going from symbol a to symbol
b. This can be thought of as a two-step process of removing a and adding b.

Theorem 3.3 ([1, Theorem 2.20]). A language is context free iff some Pushdown Automaton
recognizes it.

The proof of this theorem can be broken down into two parts

Lemma 3.4 ([1, Lemma 2.21]). If a language is context free, then some Pushdown Automaton
recognizes it.

Proof. Let A be a CFL with language L. By definition, A must have a CFG, G, generating it.
The goal is to construct a PDA, P , which simulates the rules of G. If we are to accept when the
terminal symbols have been reached, then we will accept an element of L. P works as follows:

1. Place the marker symbol $ and the start variable on the stack

2. Repeat the following steps forever.

(a) If the top of stack is a symbol A, nondeterministically select one of the rules for A and
substitute A by the string on the right-hand side of the rule. If not, proceed to step 2.

(b) If the top of stack is a terminal symbol, t, read the next symbol from the input and
compare it to t. If they match, go back to step a. If they do not match, reject on this
branch of the nondeterminism.

(c) If the top of stack is the symbol $, enter the accept state. Doing so accepts the input if
it has all been read.

7



The proof is fairly easy to understand. We convert our start variable into terminal variables,
bit by bit. We verify if the terminals match the strings in the language that we want to recognize,
and keep converting until they are all terminals.

Lemma 3.5 ([1, Lemma 2.22]). If a Pushdown Automaton recognizes some language, then it
is context free.

We first have to simply P to construct the grammar which generates the language. Here are
the following three simplifications:

1. It has a single accept state, qaccept.

• This can easily done by attaching ϵ arrows from all of the accept states from the PDA,
to a new state, which will become the accept state. This PDA would obvious recognize
the exact same language and thus be equivalent.

2. It empties its stack before accepting.

This could easily be implemented, and would not change what languages the PDA
accepts.

3. Each transition either pushed a symbol onto the stack (a push move) or pops on of the stack
(a pop move), but it does not do both at the same time.

The way this is done is we replace the transitions that pop and push simultaneously
with a two-step transition between states. For transitions which neither pop or push,
we create a two-step transition which pushes and then pops and arbitrary symbol.

Proof. Say that P = (Q,Σ,Γ, δ, q0, {qaccept}) and construct G. The variables of G are {Apq|p, q ∈
Q}. The start variable is Aq0,qaccept . Now we describe G’s rules in three parts.

1. For each p, q, r, s ∈ Q, u ∈ Γ, and a, b ∈ Σϵ, if δ(p, a, ϵ) contains (r, u) and δ(s, b, u) contains
(q, ϵ), put the rule Apq → aArsb in G.

2. For each p, q, r ∈ Q, put the rule Apq → AprArq

3. Finally, for each p ∈ Q, put the rule Apq → ϵ in G.

The way this works is that since the machine either pops or pushes a symbol for each transition,
between two states p and q, the symbol first pushed could be popped getting to state q, or in-
between, represented by rules 1 and two 2 respectively.

4 Turing Machine (TM)

If you like computers, this is the section for you! Turing Machines are the first version of modern
day computers, and are what this section will be discussing.

8



4.1 Deterministic Turing Machine (DTM)

The Turing Machine ’s significance and importance is best highlighted by something called the
Church-Turing Thesis, which states that

Definition 4.1. Any real-world computation can be translated into an equivalent problem involving
a Turing Machine

At a high level this is saying that anything a human could do a Turing Machine could as
well, hence our computers which are so darn good at, well, computing. Turing Machines take
us all the way back to Finite Automata, except with a few main differences. First and foremost,
they are infinite, meaning that they can store infinite memory (if only my devices did). The way
they accomplish this is by having an infinite tape , and on this tape there are input strings which
the Turing Machine can read. Turing Machines keep track of where they on this tape by having a
tape head , which it can move around the strings. To put this all together, we say that:

Definition 4.2 ([1, Definition 3.3]). A Deterministic Turing Machine is a 7-tuple (Q, Σ, Γ,
δ, q0, qaccept, qreject), where Q, Σ, Γ are all finite sets and

1. Q is the set of states,

2. Σ is the input alphabet not containing the blank symbol ⊔,

3. Γ is the tape alphabet, where ⊔ ⊆ Γ and Σ ⊆ Γ,

4. δ : Q× Γ → Q× Γ× {L,R} is the transition function,

5. q0 ⊆ Q is the start state,

6. qaccept ⊆ Q is the accept state, and

7. qreject ⊆ Q is the reject state, where qreject ̸= qaccept.

The transition function, δ, is saying that the tape head can move either left (L), right (R),
or not move at all (N). We can see this better illustrated if we follow an example computation
involving a Turing Machine. Our example Turing Machine going to look exactly how we described,
and will have an input string on the tape ready to go

Control

1 0 0 1 0 1 0 ⊔ ⊔ ⊔ …

Figure 4: Example Turing Machine

9



If we were to really fully draw out a Turing Machine it would be a mess of states and transition
arrows, but to better understand and visualize what a Turing Machine is we have made a ”Control”
box. The ”Control” box is meant to symbolize the states and transition functions that would control
the tape head and mechanics of the machine. The arrow is representing the tape head, and we
can see that the head is pointing to the first symbol in the input string ”1001010”, a ”1”. Also on
the tape are the blank symbols ⊔, and after the tape there is a ”...” reminding us that the tape is
infinite. Now that we’ve set up the schematic of a Turing Machine let’s actually solve a problem
with it.

Example 4.3. Suppose we had to find whether or not an input had an equal number of 1’s and
0’s. Well, to do that we’d have to create a Turing Machine to compute it, and to build a Turing
Machine to compute it we’d have to change around what is in the ”Control” box. We will do this
by writing an algorithm that that describes a Turing Machine Meq. Meq should decide the language
A = {w ∈ {0, 1}∗ | where w contains an equal number of 1’s and 0’s}.

We can now say that Meq = ”On input string w:

1. Scan left to right across the tape

2. Replace the first 1 with an ”x” and the first 0 with an ”x”

3. If the entire string is full of x’s, accept

4. If all non-x symbols are the same, reject

5. Return the head to the left end of the tape

6. Go to stage 1”

Our first step, scanning left to right across the tape, is simply reading the input string so that we
may manipulate it how to we want so as to achieve our goal. The idea behind the next few steps
is that if we keep replacing a 1 with an x and a 0 with an x each iteration we will hopefully end
up with a string entirely filled with x’s, meaning we had an equal number of 1’s and 0’s. If there
were a few more 1’s than 0’s (or 0’s than 1’s) then we’d be left with a string filled with x’s and a
few 1’s (or 0’s) at the end. In that case we’d have to reject the string because it would not have
an the same number of 1’s and 0’s. Step 4 is done is by creating a state for the first non-x symbol,
and from there, keep track of whether the subsequent non-x symbols differ while traversing the
tape. Lastly, iterate by performing the last two steps, returning the head to the beginning and
then repeating until we accept or reject.
Running Meq on the input string that we saw earlier, ”1001010”, we see that we end up with an
extra 0, meaning there was not an equal number of 1’s and 0’s so we would reject it.

The Turing Machine described in this example and the previous definitions all fall under the
category of ”Deterministic” Turing Machines, however as we will see in the next section there are
actually many other variants of Turing Machines.

5 Variants

In this section we will discuss two varients of Turing Machines, the Multitape Turing Machine and
Nondeterministic Turing Machine. We will go into more depth on their relationship and equivalence
as well.

10



5.1 Multitape Turing Machine (MTM)

The Multitape Turing Machine and Deterministic Turing Machine are actually very similar, except,
as the name suggests, the MTM has multiple tapes whereas the Deterministic Turing Machine has
only one. Each of these tapes has it’s own tape head, which the machine can operate simultaneously.
This means we have to change up our old transition function to accommodate for the tapes. Our
new one would be

δ : Q× Γk → Q× Γk × {L,R,N}k.

where k is the number of tapes. We raise Γ and {L,R,N} to the power of k to show movement
over each of the k tapes. If we were to picture a Multitape Turing Machine it would look as you
would imagine, exactly like a Turing Machine just with multiple heads pointing to multiple tapes.

Figure 5: Example Multitape Turing Machine

The Multitape Turing Machine M above has three tapes, each holding a different input string
and each with their tape head in a different position.
Looking at Multitape Turing Machines it may be easy for you to make the assumption that they
are more powerful than Deterministic Turing Machines, however that is not the case! They are
actually equivalent!

Theorem 5.1 ([1, Theorem 3.13]). Every Multitape Turing Machine has an equivalent single-tape
(Deterministic) Turing Machine

Proof. The idea begind this proof is that if we can simulate a Multitape Turing Machine on a
single-tape Turing Machine then we can therefore say that they recognize the same language and
for that reason they would be equivalent. The way we do this is best represented by a picture, as
shown below:

Figure 6: Multitape Turing Machine simulated on a single-tape Turing Machine

11



We can see the same Multitape Turing Machine M from Figure 4 along with a single-tape
Turing Machine S. S is holding each of the tapes from M and is seperating them by using the
”#” symbol. We can also notice that there is a dot above some of the symbols. This is how S is
keeping track of where each of the tape heads from M were. It is in this way that we can simulate a
Multitape Turing Machine M on a single-tape Turing Machine S, hence showing how Deterministic
and Multitape Turing Machines are equivalent.

5.2 Nondeterministic Turing Machine

Nondeterministic Turing Machines are also quite similar to Deterministic Turing Machines except
that they have nondeterminism, which was introduced in Finite Automata. To incorporate that idea
of nondeterminism in Turing Machines we must change the transition function of the Deterministic
Turing Machine such that the Nondeterministic Turing Machine can move to any of the states
available and the tape head can have many possibilities for where it can go next. We do this by
making it the Powerset of Q× Γk → Q× Γk × {L,R}k

δ : Q× Γk → P(Q× Γk × {L,R}k)
This should remind you of the difference between NFA’s and DFA’s. The next thing we can say
about Nondeterministic Turing Machines and Deterministic Turing Machines should as well! It
may surprise you, but Nondeterministic Turing Machines, Like Multitape Turing Machines, just as
powerful as Deterministic Turing Machines.

Theorem 5.2 ([1, Theorem 3.16]). Every Nondeterministic Turing Machine has an equivalent
Deterministic Turing Machine

Proof. We prove this by simulating a Nondeterministic Turing Machine on a Multitape Turing
Machine. Once we do this we can say that Nondeterministic Turing Machines are equivalent to
Deterministic Turing Machines because of Theorem 5.1 where we stated that Deterministic Turing
Machines are equivalent to Multitape Turing Machines. The way we do this simulation is by
representing a Nondeterministic Turing Machine N as a Multitape Turing Machine D having 3
tapes. One tape, called the input tape, is where we always store the input string. A second tape,
called the simulation tape, is where we store a copy of N’s tape when it’s on some branch of its
nondeterministic computation. And on the third and final tape, called the address tape, keeps
track of where D is in N’s nondeterministic computation. The simulation is illustrated below

Figure 7: Nondeterministic Turing Machine N being simulated on a Multitape Turing Machine D

Therefore we can say that Nondeterministic Turing Machines and Multitape Turing Machines
are equivalent, hence proving that Nonderministic Turing Machines and Deterministic Turing Ma-
chines are equivalent. This mirrors the equivalence relationship relationship between nondetermin-
ism and determinism seen earlier in Finite Automta.

12



References

[1] Sipser, M. (2013). Introduction to the theory of Computation (3rd ed.). Course Tech-
nology Cengage Learning.

13


	Introduction
	Finite Automata
	Deterministic Finite Automata (DFA)
	Nondeterministic Finite Automata (NFA)

	Context Free Grammar (CFG) and Pushdown Automata (PDA)
	Context Free Grammars (CFG)
	PDA

	Turing Machine (TM)
	Deterministic Turing Machine (DTM)

	Variants
	Multitape Turing Machine (MTM)
	Nondeterministic Turing Machine


