
PRIMES
Introduction to Cryptography

Liubov Slesarenko and Chloe Zhong

Spring 2023

Abstract

In this paper, we will research the fundamental rules that cryptography is based on to better under-
stand the mathematics standing behind it. Then we will describe a foundational algorithm in cryptog-
raphy: the Diffie-Hellman key exchange protocol. This algorithm enables public-key encryption, which
means two parties can communicate privately over a channel without ever having to meet to share a secret
key. We will build up to this cryptosystem by first talking about secret-key encryption and introducing
the necessary tools in number theory, group theory, and complexity theory.

Contents
1 Euclid’s algorithm 2

1.1 The Division Algorithm . 2
1.2 The proof of the Euclidean Algorithm . 2
1.3 The fast powering algorithm . 3
1.4 Fermat’s little theorem . 4
1.5 The Fundamental Theorem of Arithmetic . 4

2 Discrete Logarithms and Diffie–Hellman 5
2.1 Diffie-Hellman key exchange . 5
2.2 The discrete logarithm problem . 5

3 An Overview of the Theory of Group 6
3.1 Lagrange’s Theorem . 6

4 Acknowledgements 8

1

1 Euclid’s algorithm
The importance of this algorithm for our research is that it is the key to unlocking many of the deeper
properties of natural numbers. These properties are interesting in themselves and pivotal in appreciating
the applications of number theory to cryptography.

1.1 The Division Algorithm
If a, b ∈ Z, b > 0, then there exist unique q, r ∈ Z such that a = qb + r, 0 ≤ r < b. Here q is called the
quotient of the integer division of a by b, and r is called the remainder.

Given two integers a, b, b ̸= 0, we say that b divides a, written b | a, if there is some integer q such that
a = bq: b | a ↔ ∃q, a = bq . We also say that b divides or is a divisor of a, or that a is a multiple of b.

There are a number of elementary divisibility properties, some of which we list in the following propo-
sition. Let a, b, c ∈ Z be integers.
(a) If a | b and b | c, then a | c.
(b) If a | b and b | a, then a = b.
(c) If a | b and a | c, then a | b+ c and a | b− c.

A positive integer d is called a common divisor of the integers a and b if d divides a and b. The greatest
possible such d is called the greatest common divisor of a and b, denoted gcd(a, b). If gcd(a, b) = 1 then a, b
are called relatively prime.

Example 1. The set of positive divisors of 12 and 30 is 1, 2, 3, 6. The greatest common divisor of 12 and
30 is gcd(12, 30) = 6.

1.2 The proof of the Euclidean Algorithm
Now we examine an alternative method to compute the gcd of two given positive integers a, b. It is based
on the following fact: given two integers a ≥ 0 and b > 0, and r = a mod b, then gcd(a, b) = gcd(b, r).

The Euclidean algorithm is as follows. First, we divide a by b, obtaining quotient q and a remainder r.
Then we divide b by r, obtaining a new quotient q1 and a reminder c1 . Next, we divide r by c1 , which gives
a quotient q2 and another remainder c2. We continue dividing each reminder by the next one until obtaining
a zero reminder, at which point we stop. The last non-zero remainder is the gcd.

Proof : The Euclidean algorithm consists of a sequence of divisions with remainder Let d = gcd(a, b),
and assume it takes three steps to finish the algorithm, then

a = bq1 + c1

b = c1q2 + c2

c1 = c2q3 + 0

(1)

So we know d | c2, WTS that c2 | b :
Let’s replace c1 by c2q3 into the second equation, then we have b = c2(q2q3 + 1). We can see that c2 | b .
Repeat the same with the first line, so that a = c2(q1q2q3 + q1 + q3), and c2 | a. Therefore, c2 | a and c2 | b ,
which means that c2 | d.

After proving the Euclidean algorithm, we illustrate it with an example.

Example 2. Assume that we wish to compute gcd(500, 222). Then we arrange the computations in the
following way:

2

500 = 2 · 222 + 56 → c0 = 56

222 = 3 · 56 + 54 → c1 = 54

56 = 1 · 54 + 2 → c2 = 2

54 = 27 · 2 + 0 → c3 = 0

(2)

The last non-zero remainder is c2 = 2, hence gcd(500, 222) = 2.

1.3 The fast powering algorithm
The fast powering algorithm, also known as exponentiation by squaring, is an efficient algorithm for com-
puting large powers of a number. It works by repeatedly squaring the base and reducing the exponent by
half until the exponent becomes 0.

Algorithm:
Given a base b and an exponent n, the fast powering algorithm is as follows:

1. If the exponent n is 0, return 1.

2. If the exponent n is odd, return b times the result of the fast powering algorithm with the base b, the
exponent n− 1, and halved (i.e. compute b · (b(n−1)/2)2).

3. If the exponent n is even, return the result of the fast powering algorithm with the base b2, the exponent
n/2, and halved (i.e. compute (b2)n/2).

Explanation:
The fast powering algorithm takes advantage of the fact that bn can be expressed as (b2)n/2 for even n,

and b ·bn−1 for odd n. By repeatedly squaring the base and halving the exponent, we can reduce the number
of multiplications needed to compute bn. For example, to compute b13, we can do the following:

1. Compute b2, which is b times b, and set n to 6.

2. Compute (b2)3, which is (b2)2 times b2, and set n to 3.

3. Compute b · (b2)2, which is b times (b2)2, and set n to 1.

4. Compute b · (b2)2 · b, which is b times b · (b2)2, which gives us b13.

Using the fast powering algorithm, we were able to compute b13 with only 3 multiplications, rather than
the 12 multiplications that would be required using the naive algorithm.

Examples:
Here are some examples of using the fast powering algorithm to compute large powers of a number:

• Compute 220: Using the fast powering algorithm, we can compute 220 as follows: 220 = (22)10 =
410 = ((42)2)2 = 164 = ((162)2)1 = 65536.

• Compute 325: Using the fast powering algorithm, we can compute 325 as follows: 325 = 3 · (32)12 =
3 · (96)2 = 3 · (531441)2 = 3 · ((5314412)1) = 847288609443.

As we can see, the fast powering algorithm allows us to efficiently compute large powers of a number
using only a small number of multiplications.

3

1.4 Fermat’s little theorem

Theorem 1. Let p be a prime number and let a be any integer. Then ap−1 ≡

{
1(mod p), ifp ∤ a
0(mod p), ifp | a

Proof. If p | a, then it is clear that every power of a is divisible by p. And it means that ap−1 ≡ 0(mod p).
So we only need to consider the case that p ∤ a. To prove this theorem let’s show that xp−1 ≡ 1(mod p),
x ∈ Z/{0}.

The list x, 2x, 3x, ..., (p − 1)x contains p − 1 numbers, and clearly, none of them are divisible by p.
Suppose that we take two numbers jx and kx in this list, and suppose that they happen to be congruent
jx = kx (mod p).
Then p | (j − k)x, so that p | (j − k), since we are assuming that p does not divide x. We know that if a
prime divides a product then it divides one of the factors. On the other hand, we know that 1 ≤ j, k ≤ p− 1,
so | j − k |< (p− 1). There is only one number with an absolute value less than p − 1 that is divisible by
p and that number is zero. Hence, j − k = 0. This shows that different multiples in the list x, 2x, 3x, ...,
(p− 1)x are distinct modulo p.

So we now know that the list x, 2x, 3x, ..., (p− 1)x contains p− 1 distinct nonzero values modulo p. But
there are only p− 1 distinct nonzero values modulo p. Hence, the list x, 2x, 3x, ..., (p− 1)x and the list 1,
2, 3, ..., (p− 1) must contain the same numbers modulo p.

This means that
x, 2x, 3x, . . . , (p− 1)x = 1, 2, 3, . . . , (p− 1) (mod p)

xp−1(p− 1)! ≡ (p− 1)! (mod p)

xp−1 ≡ 1 (mod p)

(3)

1.5 The Fundamental Theorem of Arithmetic
Theorem 2. Every positive integer greater than 1 can be uniquely expressed as a product of primes.

Proof. We prove the theorem by induction. Let n be a positive integer greater than 1.
Base case: If n is a prime number, then it can be expressed as a product of primes in a unique way

(itself).
Inductive step: Suppose that every positive integer less than n can be expressed as a product of primes

in a unique way. We need to show that n can also be expressed as a product of primes.
If n is prime, then we are done. Otherwise, there exist positive integers a and b such that n = ab,

1 < a ≤ b < n. By the induction hypothesis, a and b can each be expressed as a product of primes in a
unique way. Therefore, n = ab can also be expressed as a product of primes in a unique way.

To prove uniqueness, suppose that n = p1p2 · · · pr = q1q2 · · · qs are two different factorizations of n into
primes. Without loss of generality, we may assume that p1 ≤ p2 ≤ · · · ≤ pr and q1 ≤ q2 ≤ · · · ≤ qs. Since p1
divides n and n is a product of primes, p1 must be equal to one of the qi. Similarly, p2 must be equal to one
of the remaining qj , and so on. Since the pi’s and qi’s are in increasing order, the two factorizations must
be identical after a suitable reordering. Therefore, the factorization is unique.

Proof of the Fundamental Theorem of Arithmetic

Proof. Suppose that an integer n has two prime factorizations:

n = pa1
1 pa2

2 · · · pam
m = qb11 qb22 · · · qbkk , (4)

where p1, p2, . . . , pm, q1, q2, . . . , qk are all prime numbers, and a1, a2, . . . , am, b1, b2, . . . , bk are all positive
integers.

4

Without loss of generality, assume that p1 ≤ q1. Then p1 divides the left-hand side of the equation, so it
must also divide the right-hand side. Since q1 is prime, either p1 = q1 or p1 divides one of the other qi’s.

If p1 = q1, then we can divide both sides of the equation by pa1
1 and qb11 , and we are left with:

pa2
2 · · · pam

m = qb22 · · · qbkk . (5)

By repeating this argument, we can cancel all of the common prime factors from both sides of the
equation, and we are left with 1 = 1. Thus, the two prime factorizations are identical. If p1 divides one of
the qi’s, say qj , then we can divide both sides of the equation by pa1

1 and q
bj
j , and we are left with:

pa2
2 · · · pam

m qb11 · · · ˆ
q
bj
j · · · qbkk = qb11 · · · ˆ

q
bj
j · · · qbkk , (6)

where the hat over q
bj
j indicates that it has been removed from the product. Again, by repeating this

argument, we can cancel all of the common prime factors from both sides of the equation, and we are left
with 1 = 1. Thus, the two prime factorizations are identical. Therefore, any integer n > 1 can be uniquely
expressed as a product of primes, up to the order in which the prime factors appear.

2 Discrete Logarithms and Diffie–Hellman

2.1 Diffie-Hellman key exchange
Diffie-Hellman is an algorithm to generate a shared secret. It is named after two inventors, Whitfield Diffie
and Martin Hellman, who published this idea of using a private key and a corresponding public key in 1976.
This encryption algorithm was a major breakthrough in the history of cryptography as it was one of the first
algorithm to implement public key cryptography.

1. Setup: Alice and Bob agree on a prime number p and a base g such that g is a primitive root modulo
p. These values are made public.

2. Alice’s Private Key: Alice chooses a secret integer a, and calculates A = ga mod p. She sends A to
Bob and Charlie.

3. Bob’s Private Key: Bob chooses a secret integer b, and calculates B = gb mod p. He sends B to
Alice and Charlie.

4. Charlie’s Interception: Charlie intercepts the values A and B sent by Alice and Bob. However, he
cannot compute the shared secret key sAB without knowledge of either Alice’s or Bob’s secret key a
or b, due to the discrete logarithm problem.

5. Shared Secret: Alice computes the shared secret key with Bob as sAB = Ba mod p. Bob computes
the shared secret key with Alice as sBA = Ab mod p. Since g is a primitive root modulo p, both Alice
and Bob will arrive at the same value for sAB and sBA, which they can use as a symmetric encryption
key.

2.2 The discrete logarithm problem
Let g be a primitive root for Fp and let h be a nonzero element of Fp. The Discrete Logarithm Problem
(DLP) is the problem of finding an exponent x such that

gx ≡ h(mod p) (7)

The number x is called the discrete logarithm of h to the base g and is denoted by logg(h).
The discrete logarithm problem is a well-posed problem, namely to find an integer exponent x such that

gx = h. However, if there is one solution, then there are infinitely many because Fermat’s little theorem tells

5

us that gp−1 ≡ 1(mod p). Hence if x is a solution to gx = h, then x+ k(p− 1) is also a solution for every
value of k, because

gx+k(p−1) = gx(gp−1)k ≡ h · 1k ≡ h(mod p) (8)

3 An Overview of the Theory of Group
Definition. A group consists of a set G and a rule, which we denote by ⋆, for combining two elements a, b ∈ G
to obtain an element a⋆b ∈ G. The composition operation ⋆ is required to have the following three properties:

• Identity Law:
There is an e ∈ G such that e ⋆ a = a ⋆ e = a for every a ∈ G.

• Inverse Law:
For every a ∈ G there is a (unique) a−1 ∈ G satisfying a ⋆ a−1 = a−1 ⋆ a = e.

• Associative Law:
a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c for all a, b, c ∈ G.

If G has finitely many elements, we say that G is a finite group. The order of G is the number of elements
in G; it is denoted by |G| or #G.

Example 3. Here are a few examples of groups:

1. G = Z and ⋆ = addition. The identity element is e = 0 and the inverse of a is −a. This group G is
an infinite group.

2. G = R∗ and ⋆ = multiplication is a group since all elements have multiplicative inverses inside R∗.

3. However, G = Z and ⋆ = multiplication is not a group, since most elements do not have multiplicative
inverses inside Z.

3.1 Lagrange’s Theorem
Let G be a finite group. Then every element of G has finite order. Further, if a ∈ G has order d and if
ak = e, then d|k. Using this we can prove the following proposition, which is also called Lagrange’s Theorem.

Theorem 3. Let G be a finite group and let a ∈ G. Then the order of a divides the order G. More precisely,
let n = |G| be the order of G and let d be the order of a, i.e., ad is the smallest positive power of a that is
equal to e. Then an = e and d|n.

Proof. Since G is finite, we can list its elements as G = {g1, g2, . . . , gn}.
We now multiply each element of G by a to obtain a new set, which we call Sa:

Sa = {a ∗ g1, a ∗ g2, . . . , a ∗ gn} (9)

We claim that the elements of Sa are distinct. To see this, suppose that a ∗ gi = a ∗ gj . Multiplying
both sides by a−1 yields gi = gj . Thus, Sa contains n distinct elements, which is the same as the number
of elements of G. Therefore, Sa = G, so if we multiply together all of the elements of Sa, we get the same

6

answer as multiplying together all of the elements of G. (Note that we are using the assumption that G is
commutative.) Thus,

(a ∗ g1) ∗ (a ∗ g2) ∗ . . . ∗ (a ∗ gn) = g1 ∗ g2 ∗ . . . ∗ gn (10)

We can rearrange the order of the product on the left-hand side (again using the commutativity) to obtain

an ∗ g1 ∗ g2 ∗ . . . ∗ gn = g1 ∗ g2 ∗ . . . ∗ gn (11)

Now multiplying by (g1 ∗ g2 ∗ . . . ∗ gn)−1 yields an = e.
Now, multiplying by (g1 ·g2 · . . . ·gn)−1 on both sides of the equation a ·g1 ·g2 · . . . ·gn = g1 ·g2 · . . . ·gn yields:

(a · g1 · g2 · . . . · gn) · (g1 · g2 · . . . · gn)−1 = (g1 · g2 · . . . · gn) · (g1 · g2 · . . . · gn)−1 (12)

Simplifying both sides using the properties of inverses, we have:

a · (g1 · g2 · . . . · gn) · (g1 · g2 · . . . · gn)−1 = e (13)

Since (g1 · g2 · . . . · gn) · (g1 · g2 · . . . · gn)−1 = e (the inverse of a product is the product of inverses), we can
rewrite the equation as:

a · e = e (14)

Therefore, we have a = e. This shows that an = e for some positive integer n, which means that a has
finite order.

Moreover, since ak = e for some positive integer k, by Lagrange’s theorem, we know that the order of a,
denoted as d, divides n. Therefore, d divides the order of the group G. Hence, the order of a divides the
order of G, as required.

Hence, Lagrange’s Theorem is proved.

7

4 Acknowledgements
We want to express our gratitude to our advisor Aparna, for her invaluable help and support throughout our
investigation into cryptography. Your guidance and expertise have been instrumental in our understanding
and analysis of mathematical concepts and in improving our knowledge of cryptography, and we greatly
appreciate all your time and dedication.
We would also like to extend many thanks to the organizers Mary and Marisa for providing us with the
wonderful opportunity to explore math through the PRIMES Circle program. The resources, guidance, and
encouragement provided by this program have been invaluable to our growth as math enthusiasts, and we
are grateful for the chance to be a part of this community.
Thank you again, Aparna, Mary, and Marisa, for all that you have done for us. We look forward to continuing
our journey in math and hope to collaborate with you in the future.

References

[1] Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman. An Introduction to Mathematical Cryptography.
Undergraduate Texts in Mathematics, 2014.

8

	Euclid's algorithm
	The Division Algorithm
	The proof of the Euclidean Algorithm
	The fast powering algorithm
	Fermat's little theorem
	The Fundamental Theorem of Arithmetic

	Discrete Logarithms and Diffie–Hellman
	Diffie-Hellman key exchange
	The discrete logarithm problem

	An Overview of the Theory of Group
	Lagrange’s Theorem

	Acknowledgements

