
Data Structures and Graph Algorithms

Gael Medina Matheus Moreira
Mentor: Carlos Alvarado

Abstract

Data Structures and Algorithms are integral parts of our day to day lives. From the
GPS in our cars to the routers connecting our computers, algorithms are fundamental.
This paper goes over several types of data structures and how they connect to the Dijkstra
shortest path algorithm. This paper will also go over how different data structures are
connected to one another and how they compare using time complexity.

Contents

1 Introduction 2

2 Algorithms and Efficiency 2
2.1 What is an Algorithm? . 2
2.2 Algorithm Efficiency . 2
2.3 Explicit Examples . 3

2.3.1 Insertion Sort . 4
2.3.2 Merge Sort . 4
2.3.3 Counting Sort . 4

3 Data Structures 5
3.1 What are Data Structures? . 5
3.2 Why use them? . 5
3.3 Useful Structures . 6

3.3.1 Data Trees . 6
3.3.2 Max Heap . 7

4 Graph Algorithms 7
4.1 Dijkstra’s Algorithm . 7
4.2 Examples . 8
4.3 A formal proof of Dijkstra’s algorithm . 9
4.4 Bellman Ford’s Algorithm . 9

1

1 Introduction
We will be going over various different graph algorithms, how they compare to one another,

and how we interact with them in the real world. We will also be covering how these algo-
rithms store information and how different ways of storing information are more or less efficient
depending on the information.

We interact with algorithms everyday without even realizing it, and one such example is the
GPS. A GPS needs an algorithm so it knows what directions to give, and in this paper we will
be going over the base algorithm that a GPS might run on, Dijkstra’s algorithm. We will also
be explaining the importance of data structures and how they relate to algorithms, and more
specifically, the importance of a Fibonacci heap when using Dijkstra’s algorithm.

2 Algorithms and Efficiency

2.1 What is an Algorithm?
An algorithm is a set of instructions or rules that detail or explain how to do something. It’s

like a recipe in the way that it lays a specific set of steps or rules that must be abided by to
solve some problem. An algorithm is comparable to a cake recipe. The recipe provides a series
of instructions that include things like how to combine the ingredients, how long the cake should
bake at a specific temperature, etc.

Definition 2.1 (Algorithm). Any well-defined computational procedure that takes an input value
or set of values and produces an output value or set of values is known as an algorithm. Thus, a
sequence of computational steps that convert the input into the output is an algorithm. [CLRS01].

Another example is how many people multiply. When learning multiplication, many of us
learn to use the procedure / algorithm known as long multiplication. We get our two numbers
we are multiplying and put them above each other. We then start from the rightmost digit of
the bottom number and multiply it by all the digits of the top number and place them below
both of our numbers. We then move on to the next right most digit, but this time we add a
zero in front and redo our first step. To complete the multiplication using this method, we must
follow a clear set of steps that lead to our outcome, which is exactly what an algorithm does.
It takes in some input, this case being two numbers, and follows a clear and well-defined set of
steps that leads us to some outcome.

2.2 Algorithm Efficiency
Not all algorithms are as fast as each other, and a good way to compare the quality or speed

of two separate algorithms is by checking their efficiency, more importantly how long it takes
for the algorithm to run in the worst case scenario. The time it takes for a computer program
to complete an algorithm is called the run time. The run time for a computer program can be
affected by many different things, such as the size of the data your algorithm is working with
and the overall efficiency of your algorithm. When dealing with large amount of information,
it is important to figure out what algorithms would work best. Some algorithms might work

2

better than others with less input, but worse with larger input, so having a way to see what
algorithms work better over large amounts of information is paramount to choosing whats best
for the problem we are solving.

Definition 2.2 (Big O Notation). Let f and h be functions from the positive integers to the
nonnegative real numbers. We say that h(n) is O(f(n)) if there exists a positive constant B such
that h(n) ≤ Bf(n)for all sufficiently large n. In this case we say that h grows no faster than f
or, equivalently, that f grows at least as fast as h. [BW13]

When describing an algorithm’s worst-case run time, big O notation can be very useful. It
gives us a way to group different algorithms based on their efficiency regardless of how large a
data set is given. The notation is based on how the time required to solve a problem grows as the
input data size grows. The run time of an algorithm can be represented as a function of input
size using the big O notation, which gives an upper bound. If we had an algorithm in which the
run time grew linearly in respect to the size of the input data, then the algorithm would have
a time complexity of O(n). The algorithm’s run time would at most double if the size of the
input data also doubled. Some of the common run times we encounter O(1) for constant time
complexity and O(logn) for logarithmic time complexity. In general, if the worst-case run time
of the algorithm is O(nk) where k is an integer, computer scientists will deem the problem as
tractable and the algorithm as "good."

2.3 Explicit Examples

Above is a table with the names of various different people and their birthday days in months.
For this example assume they were all born in the same year. Say that you were playing a board
game with these people and you had to order them from oldest to youngest to get the proper
playing order. How would you do it? There are various algorithms that you or a computer can
use to figure this out.

3

2.3.1 Insertion Sort

One way the computer could sort these would be by going through each person and comparing
them with everyone one else on the list, and when it finds someone that has a birthday before the
chosen person, the computer would switch their places on the table. This method, while simple,
would be very slow. If the computer started with Ava and went down, it would immediately
switch Ava with Asiya. Then the computer would compare Asiya with everyone else and it would
keep switching places until the table was sorted. In the worst case, the computer would have to
compare every person with every other person, meaning that this algorithm runs in O(n2).

Algorithm 1 Insertion Sort
Require: L the list holding our names and birthdays.

n = length(L)
for i between 0 and n-1 do

j = i
while j > 0 do

if L[j-1] > L[j] then
Swap the two
j = j-1

end if
end while

end for

2.3.2 Merge Sort

While insertion sort is definitely a feasible way to sort through a set of data, it isn’t really as
efficient as it could be. Merge sort is a clever way to sort data by splitting the data into half’s.
The algorithm starts by splitting the total data into two half’s. It continues splitting the data
into half’s until the program is left with multiple sub lists that only contain 1 element. Since
these lists only have 1 element, they are sorted lists. The program then starts grouping these
sub lists in groups of 2 and starts comparing the elements within and placing the sorted elements
into a new sorted list. Comparing 2 sorted lists runs in O(n) since only one comparison must
be made between each element in one sorted list to another. The total number of comparisons
to sort the list is proportional to the number of times the list can be divided in half until each
sub list has 1 element, which is given by log2(n). By combining the time it takes to split the
data into sub lists and the time it takes to compare elements, we find that Merge Sort runs in
O(nlog2(n)).

2.3.3 Counting Sort

A clever way to make a faster algorithm would be to use another list. Instead of just having
our initials list with all the people and their birthdays, we could have the computer create
another list that held 365 empty spaces for each birthday. The computer would then place the
name of the person in their corresponding box. This would allow us to now have an ordered list
of all the people and their birthdays. Since the program only has to move each item once, this
runs in O(n).

4

Algorithm 2 Counting Sort
Require: L is a list that holds the name of each individual and their birthday

F = [0]*365 ▷ This means we make a list of length 365 where every entry is 0.
n = length(L)
L’ = [] ▷ This is an empty list that will hold our order later
for x between 0 and n-1 do

i = L[x][1] ▷ This will hold the birthday of the person
if F[i] equals 0 then

F[i] receives L[x][0]
end if
Else: ▷ If two people have the same birthday, then their names will be added together
F[i] receives F[i]+", "+L[x][0]
EndElse

end for
for j between 0 and the length of F do

If F[j] is not empty:
add F[j] to L’

end for

3 Data Structures

3.1 What are Data Structures?
Definition 3.1. A data structure is a way to store and organize data in order to facilitate access
and modifications. No single data structure works well for all purposes, and so it is important
to know the strengths and limitations of several of them. [CLRS01]

Data structures are ways of organizing information that allow the data stored to be easily
accessed and used. Some data structures are easier to make, while others are more difficult but
are faster. There are various different types of data structures ranging from arrays to trees to
heaps, and they all vary in how to make them and also how they work.

3.2 Why use them?
Data structures have a wide range of uses and are extremely helpful throughout our day to

day. Think about your various social media platforms. In almost all of them you have your
personal profile and then you have a list of friends you have added or something along those
lines like followers. Something needs to keep track of this information, and that is where a
data structure like a list or a graph would be helpful. Lists and graphs would store all of that
information neatly, and a graph or a tree would allow one to see connections between information,
like weather or not someone is following you.

5

3.3 Useful Structures
3.3.1 Data Trees

Definition 3.2 (Data Tree). A data tree is a type of data structure that represents a hierarchical
connection between different bits of information. Data trees are very much like family trees, where
each member is represented as a node(the circles in the image above) and each node is connected
to each other by lines know as edges.[Gee23]

The topmost node in a data tree is known as the root, and each node can have from 0 to an
infinite amount of child nodes. Child nodes are nodes that branch from another node. Nodes
that have the same parent node are called siblings, and siblings always lie at the same height of
the tree. Each node in the tree can have only 1 parent, with the exception of the root that has
no parents.

Data trees have a variety of important uses, and can help a lot when working with large data
sets. A cool way to use a data tree would be to use one to solve a Rubik’s cube. Your ‘root’ for
this tree would be the starting position of your cube. Each child node would be a possible move
you code make to the Rubik’s cube from the starting position. Each and every move could be
represented on this tree, and you could look down a series of branches to the leaves of the tree
to figure out a way to solve a Rubik’s cube.

6

3.3.2 Max Heap

Definition 3.3. A max heap is a type of tree where the root of the tree is always the maximum
number in the data set, and each parent node is always larger than the children nodes. These
heaps can be extremely useful when you have to sort through a lot of data and you are trying to
find the maximum value in a given data set.

Say you were given the task to sort through a list of purchases your company made throughout
the year, and you had to figure out what the most expensive purchase was. A max heap would
work great here as using a computer to build it would mean all that information could be sorted
through quickly and you would have a new set of arranged data that you could look through to
see what the most expensive purchase was.

4 Graph Algorithms

4.1 Dijkstra’s Algorithm
Dijkstra’s algorithm is a graphical algorithm that finds the shortest path problem for a

weighted, directed graph. In other words, it finds the shortest path from a starting vertex to all
other vertices in the graph. The algorithm works by maintaining a set of vertices whose shortest
distance from the starting vertex is already known. Initially, the starting vertex is added to this
set with a distance of zero, and all other vertices are added with a distance of infinity. Then, the
algorithm repeatedly selects the vertex with the smallest distance from the starting vertex that
has not yet been added to the set, adds it to the set, and updates the distances of its neighboring
vertices. (with non-negative weights). if there are negative edge weights, the algorithm may not
find the shortest path or may not even terminate at all. If there is a negative loop, Dijkstra’s
algorithm will continue going through that loop infinitely in which case it will never terminate.
Because of this, the algorithm won’t consider negative weights which in some cases may prevent
it from finding the shortest path. In such cases, other algorithms such as Bellman-Ford would
be appropriate.

7

4.2 Examples

Say the computer started at point A and wanted to use Dijkstra’s to find the shortest path
to point C. It would start by traversing to point D and storing the information that the shortest
path to point D is 1. It would then do a similar procedure from A to B and store that. Continue
this process from D to E, then D to B. However, because the algorithm has found a new shortest
path to get to B, it will replace the number it had previously stored (in this case that being 6)
with the new number 3. Note that it won’t substitute the stored values if the new "shortest"
path isn’t actually shorter; in this instance 3 < 6 but that won’t always be the case. Eventually,
the system will conclude that the shortest path from A to C would be of length 7, that being
from A to D to E to C.

In the second case (the figure in green), Dijkstra’s algorithm wouldn’t be able to find the
shortest path from A to B. Even though to the human eye it’s obvious that 6 - 3 < 5, so the
shortest path would be 3, the algorithm wouldn’t detect this. It would see that the shortest path
from A to C is 6, and because it assumes that there are no negative weights for edges it would
make the conclusion that there exists no weight from C to B to make the total path length less
than that of directly from A to B.

8

4.3 A formal proof of Dijkstra’s algorithm
Let S be the set of visited nodes and d(v) be the current shortest distance from the starting

node to node v. Initially, S contains only the starting node, and d(start) = 0. We want to
prove that at any iteration of the algorithm, the node selected as the current node has the
shortest distance among all unvisited nodes. Assume that there exists an unvisited node v such
that d(v) < d(u) for all other unvisited nodes u. Let w be the node that connected v to the
visited nodes in S, i.e., the node with the smallest weight edge (v, w). Then we have: d(w) <=
d(v) + weight(v, w) (by the triangle inequality) d(w) <= d(v) + l(v, w) (since all weights are
non-negative) Therefore, we have: d(w) < d(u) + l(u, w) (since d(v) < d(u) for all unvisited
nodes u). Since d(w) is the smallest possible distance to node w, we must have w already visited
before. But this contradicts the assumption that v is an unvisited node. Thus, the node with
the smallest distance to the starting node among all unvisited nodes is always selected as the
current node, and its distance is the shortest possible distance. Therefore, once the destination
node is marked as visited, its distance is the shortest possible distance from the starting node.

4.4 Bellman Ford’s Algorithm
Bellman-Ford’s algorithm also solves the shortest path to each vertice, but it’s able to detect

negative cycles. Because of this, it doesn’t assume all weights are non-negative and therefore
has more versatile applications. Bellman-Ford’s algorithm keeps track of the iterations and
detects a negative cycle when there have been V iterations (where V is the number of vertices
in the graph). This is because once there have been V iterations, a vertice must have been
passed through twice because the starting node is given to have a path length of 0 and doesn’t
require an iteration. Because Dijkstra’s algorithm assumes all weights are non-negative, it’s more
efficient than Bellman-Ford’s algorithm for graphs with non-negative edge weights. Bellman-
Ford’s algorithm is necessary for graphs with negative edge weights or when detecting negative
weight cycles is required.

Acknowledgements
We would like to thank the MIT Math Department for this opportunity, our mentor Carlos for

his teachings, and Marisa Gaetz and Mary Stelow for coordinating and managing the program.

9

References
[BW13] E.A. BENDER and S.G. Williamson, Mathematics for algorithm and systems analysis, Dover Books

on Mathematics, Dover Publications, Incorporated, 2013.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to algo-
rithms, 2nd ed., The MIT Press, 2001.

[Gee23] GeeksforGeeks, Introduction to tree – data structure and algorithm tutorials, 2023.

10

	Introduction
	Algorithms and Efficiency
	What is an Algorithm?
	Algorithm Efficiency
	Explicit Examples
	Insertion Sort
	Merge Sort
	Counting Sort

	Data Structures
	What are Data Structures?
	Why use them?
	Useful Structures
	Data Trees
	Max Heap

	Graph Algorithms
	Dijkstra's Algorithm
	Examples
	A formal proof of Dijkstra's algorithm
	Bellman Ford's Algorithm

