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Abstract

This paper examines the properties of finite simple groups, which arise
from the decomposition of groups into normal subgroups and a quotient
group. Finite simple groups are identified by isomorphism to cyclic groups
of prime order, alternating groups, groups of Lie type, and sporadic groups.

1 Introduction

The comprehensive classification of finite simple groups is attributed to Daniel
Gorenstein in 1983. However, it was not declared complete until revisions were
made by Aschbacher and Smith correcting the proof, which initially totaled over
10,000 pages. In this paper, we explore the properties and applications of finite
simple groups. We begin by discussing basic definitions and theorems in group
theory. We proceed to examine normal subgroups and quotient groups, as well
as the isomorphism theorems. We discuss theorems relevant to the structure of
simple groups, including the Feit-Thompson Theorem, Jordan-Hölder Theorem,
and the classification theorem. Finally, we investigate the groups isomorphic to
finite simple groups, specifically the 26 outlying sporadic groups.

2 Groups and Subgroups

Definition 2.1. A group is a finite or infinite set G together with a binary
group operation ◦ : G×G −→ G that fulfill the group axioms:

(i) Closure: For all g, h ∈ G, the element g ◦ h ∈ G.

(ii) Associativity: For f, g, h ∈ G, we have

(f ◦ g) ◦ h = f ◦ (g ◦ h).

(iii) Identity: There exists an identity element e ∈ G, such that

e ◦ g = g = g ◦ e

for all g ∈ G.
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(iv) Inverse: For each g ∈ G, there exists an inverse element g−1 ∈ G such
that

g ◦ g−1 = e = g−1 ◦ g.

In the remainder of this paper, we omit the symbol ◦ for the group operation
for convenience. For example, g ◦ h may simply be written as gh.

Definition 2.2. The order of a group G is its cardinality. The order of G is
denoted by |G|.
Definition 2.3. Let G be a group. The subset H of G is a subgroup of G if
it satisfies the group axioms under the binary operation of G. This relation is
denoted as H ≤ G.

Definition 2.4. A homomorphism is a map ϕ : G −→ H such that

ϕ(xy) = ϕ(x)ϕ(y)

for all x, y ∈ G.

Definition 2.5. Given a homomorphism ϕ : G −→ H, the kernel of ϕ is defined
by kerϕ = {g ∈ G | ϕ(g) = eH}. In other words, the kernel consists of all of
elements of G that map to the identity element in H.

Subgroups and homomorphisms are important in group theory because they
preserve group structure and operation, respectively, while simplifying the given
group into a more manageable structure.

Definition 2.6. A homomorphism ϕ : G −→ H is an isomorphism if ϕ is a
bijection. This relation is denoted as G ∼= H. Isomorphic groups share the same
group structure.

Definition 2.7. A group G is cyclic if G can be generated by a single element,
that is, if there is some element g ∈ G such that G = {gn | n ∈ Z}. We say that
G is generated by g.

Intuitively, we understand that cyclic groups vary based on the order of the
generator. Accordingly, the below result demonstrates that the structure of a
cyclic group is distinguished by its order.

Theorem 2.8. Any two cyclic groups of the same order are isomorphic.

Proof. Let G1, G2 be cyclic groups of finite order n. Let

G1 = ⟨a⟩ = {a0, a1, a2, ..., an−1},

G2 = ⟨b⟩ = {b0, b1, b2, ..., bn−1}.
Define the bijection ϕ : G1 → G2 : ϕ(ai) → ϕ(bi). We prove that ϕ is a
homomorphism. Consider ar, as ∈ G1. Thus

ϕ(aras) = ϕ(ar+s) = br+s = brbs = ϕ(ar)ϕ(as).

Hence ϕ is a homomorphism. Since ϕ is also bijective, we have the result
G1

∼= G2.
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We often express the cyclic group of order n as Zn. Every infinite cyclic group
is isomorphic to the additive group of Z, the integers. Likewise, every finite
cyclic group of order n is isomorphic to the additive group of Z/nZ, the integers
modulo n.

Definition 2.9. For any H ≤ G and any g ∈ G, a left coset is obtained by
multiplying H on the left by a fixed element g. A left coset is denoted as
gH = {gh | h ∈ H}. Similarly, a right coset is denoted as Hg = {hg | h ∈ H}.
The index of a subgroup H in G, denoted by [G : H] is the cardinality of the left
(or right) coset space G/H.

Cosets are significant, as they partition a group into equivalence classes. Obser-
vations of cosets help us to prove one of the most applicable theorems in group
theory, Lagrange’s Theorem.

Theorem 2.10 (Lagrange). If G is a finite group and H ≤ G, then the order

of H divides the order of G. The number of cosets of H in G is |G|
|H| .

Proof. Let H ≤ G. Each left coset of H in G has the same cardinality as H,
so ∀g ∈ G, we have |gH| = |H|. Since left cosets are identical or disjoint, each
element of G is in exactly one coset. By definition of index of a subgroup, there
are [G : H] left cosets. Hence |G| = [G : H]|H| and the result follows.

Now let G be of infinite order. If [G : H] is finite, then |H| is infinite. If
|H| is infinite, then [G : H] is finite.

Corollary 2.11. If G is a group of prime order p, then G is cyclic and G ∼= Zp.

Proof. Let g ∈ G, g ̸= eG. Thus |⟨g⟩| > 1 and |⟨g⟩| | |G|. Since |G| is prime we
have |⟨g⟩| = |G|. Hence G = ⟨g⟩ is cyclic. Theorem 2.8 completes the proof.

Definition 2.12. The symmetric group Sn is the group of permutations on n
elements under the operation of function composition. The elements of Sn are
given by bijective functions σ : {1, 2, . . . , n} → {1, 2, . . . , n}.

Definition 2.13. A transposition is a 2-cycle. The sign of σ is denoted by ϵ(σ).
A permutation of a finite set is even if it can be written as an even number of
transpositions, when ϵ(σ) = 1. A permutation is odd if it can be written as an
odd number of transpositions, when ϵ(σ) = −1.

Remark 2.14. Transpositions are all odd permutations and ϵ is a surjective
homomorphism.

Theorem 2.15. A permutation of a finite set of two or more elements is a
product of transpositions. In other words, every element of Sn may be written as
a product of transpositions. In particular, no permutation in Sn may be written
as both an even and odd number of transpositions.

Definition 2.16. The alternating group of degree n, denoted by An, is the group
of even permutations of a finite set. Note that by Theorem 3.4 (First Isomorphism
Theorem), Sn/An

∼= ϵ(Sn) = {±1}. It follows that |An| = 1
2 |Sn| = 1

2 (n!).
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3 Normal Subgroups and Quotient Groups

The study of cosets motivates discussion of normal subgroups and quotient
groups, which are central to the isomorphism theorems, the first of which is
presented in this section.

Definition 3.1. The set gNg−1 = {gng−1 | n ∈ N} is the conjugate of N by
g. If gNg−1 = N , the element g is said to normalize N . The subgroup N of a
group G is normal if gNg−1 = N , or equivalently gN = Ng, for all g ∈ G, i.e.
if every element of G normalizes N . This relation is denoted as N ⊴G.

Example 3.2. Let G be a group. Then {eG} and G are normal subgroups of G.

Proof. To show that {eG} is normal, let g ∈ G. The only element of {eG} is eG,
and geGg

−1 = eG ∈ {eG}. Hence {eG} is normal.

To show that G is normal, let g, n ∈ G. Then ∀n ∈ G we have gng−1 ∈ G.
Therefore G is normal by definition.

Definition 3.3. Given a group G and a normal subgroup N , the quotient group
G/N is the set of cosets of N in G.

Theorem 3.4 (First Isomorphism Theorem). Let G, H be groups, and let
ϕ : G −→ H be a homomorphism. Then kerϕ⊴G and G/ kerϕ ∼= ϕ(G).

Proof. We first verify gng−1 ∈ kerϕ ∀g ∈ G and n ∈ kerϕ. To show that the
identity element of G is an element of kerϕ, consider ϕ(eGg) = ϕ(eG)ϕ(g). Since
ϕ(eGg) = ϕ(g), we have

ϕ(eG)ϕ(g) = ϕ(g) ∀g ⇒ ϕ(eG) = eH ⇒ eG ∈ kerϕ.

Similarly, we show that inverses are in the kernel. For any n ∈ kerϕ, we have

ϕ(n−1) = ϕ(n)ϕ(n−1) = ϕ(nn−1) = ϕ(eG) = eH

⇒ ϕ(n−1) = eH ∀n ∈ kerϕ ⇒ n−1 ∈ kerϕ.

The kernel is closed since ∀n,m ∈ kerϕ, we have

ϕ(nm) = ϕ(n)ϕ(m) = eH ⇒ nm ∈ kerϕ.

We complete the first part of the proof by demonstrating that every element of
G normalizes the kernel:

ϕ(gng−1) = ϕ(g)ϕ(n)ϕ(g−1) = ϕ(g)ϕ(g−1) = ϕ(gg−1) = ϕ(eG) = eH

⇒ gng−1 ∈ kerϕ ∀g ∈ G,n ∈ kerϕ ⇒ kerϕ⊴G

For simplicity, in the second part of this proof, we express kerϕ as K. Now we
consider the quotient group G/K = {gK | g ∈ K} under coset multiplication.
Consider the homomorphism ϕ̃ : G/K −→ ϕ(G) defined by gK 7→ ϕ(g). In order

4



for G/K to be isomorphic to the image of G, the function must be bijective.
Since any function is surjective into its image, it remains to show that the
function is injective. Let aK, bK ∈ G/K be such that ϕ(aK) = ϕ(bK). Then

ϕ̃(a) = ϕ̃(b) ⇒ ϕ̃(b−1a) = eH ⇒ b−1a ∈ K.

We write b−1a = k ∈ K so that a = bk ∈ bK. Hence a ∈ aK ∩ bK. It follows
that aK = bK. This completes the second part of the proof.

4 Finite Simple Groups

The classification of finite simple groups is one of the most fundamentally
important achievements in algebra. For every group that is not simple, its
normal subgroups and quotient group can eventually be decomposed into simple
composition factors analogous to the prime factorization of integers. Thus a
statement regarding a group is reduced to a problem of its simple constituents.

Definition 4.1. A nontrivial group G is simple if its only normal subgroups
are the identity and itself.

Definition 4.2. A composition series in group G is a sequence of subgroups

{e} = H0 ≤ H1 ≤ H2 · · · ≤ Hk−1 ≤ Hk = G

for which Hi ⊴Hi+1 and each composition factor Hi+1/H is a simple group for
0 ≤ i ≤ k − 1.

Example 4.3. The cyclic group Z12 satisfies the following composition series:

{e}⊴ Z3 ⊴ Z6 ⊴ Z12

Composition factors: Z12/Z6
∼= Z2, Z6/Z3

∼= Z2, Z3/Z1
∼= Z3

{e}⊴ Z2 ⊴ Z6 ⊴ Z12

Composition factors: Z12/Z6
∼= Z2, Z6/Z2

∼= Z3, Z2/Z1
∼= Z2

{e}⊴ Z2 ⊴ Z4 ⊴ Z12

Composition factors: Z12/Z4
∼= Z3, Z4/Z2

∼= Z2, Z2/Z1
∼= Z2.

Theorem 4.4 (Jordan-Hölder). Let G be a nontrivial finite group. Then G
has a composition series and the composition factors in a composition series are
unique.

Theorem 4.5 (Feit-Thompson). If G is a simple group of odd order, then
G ∼= Zp for some prime p.

Theorem 4.6 (Classification Theorem, Gorenstein). Every finite simple group
is isomorphic to one of the following:
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(i) A cyclic group of prime order;

(ii) An alternating group;

(iii) A member of one of sixteen infinite families of groups of Lie type; or

(iv) One of 26 sporadic groups not isomorphic to any of the above groups.

Theorem 4.7. Simple abelian groups are cyclic groups of prime order.

Proof. (⇒) If G is a simple abelian group, then the order of G is prime.
Suppose that G is a simple abelian group. Then G is a nontrivial group by
definition. We first show that G is a finite group. Let g ∈ G be a nonidentity
element. Then ⟨g⟩ ≤ G. Since G is abelian, every subgroup of G is normal.
Since G is simple, we must have ⟨g⟩ = G. If the order of g is not finite,
then ⟨g2⟩ is a proper normal subgroup of ⟨g⟩ = G, but G is simple. Thus
the order of g is finite. Hence G = ⟨g⟩ is a finite group. Let |g| = |G| = p.
FSOC assume that p = mn is a composite number with integers m > 1, n > 1.
Then ⟨gm⟩ is a proper normal subgroup of G, but G is simple, so p must be prime.

(⇐) If the order of G is prime, then G is a simple abelian group.
Now suppose that the order of G is a prime. Let g ∈ G be a nonidentity element.
Then |⟨g⟩| | |G|. Hence |⟨g⟩| must be p. Therefore we have G = ⟨g⟩, and G is
a cyclic group and in particular an abelian group. Since any normal subgroup
H ≤ G has order 1 or p, H must be either trivial or G itself. Hence G is simple.
Thus G is a simple abelian group.

Theorem 4.8. An is a simple group for n ≥ 5.

We outline the proof of the above theorem:

1. For n ≥ 3, An contains every 3-cycle.

2. For n ≥ 3, An is generated by the 3-cycles

3. Let r, s be distinct fixed elements of {1, 2, ..., n} for n ≥ 3. Then An is
generated by the n 3-cycles of the form (r, s, i) for 1 ≤ i ≤ n, i ̸= r, i ̸= s.

4. Let N ⊴An for n ≥ 3. If N contains a 3-cycle, then N = An.

5. Let N be a nontrivial normal subgroup of An for n ≥ 5. Then one of the
following cases must hold. In each case, N = An.

Case I. N contains a 3-cycle.

Case II. N contains a product of disjoint cycles, at least one of which
has length greater than 3.

Case III. N contains a disjoint product of the form σ = µ(a4, a5, a6)(a1, a2, a3).

Case IV. N contains a disjoint product of the form σ = µ(a1, a2, a3)
where µ is a product of an even number of disjoint 2-cycles.

Case V. N contains a disjoint product σ of the form σ = µ(a3, a4)(a1, a2)
where µ is a product of an even number of disjoint 2-cycles.

6



5 Sporadic Groups

Of the 26 sporadic groups, the 20 subquotients of the monster group are referred
to as the “Happy Family,” whereas the remaining 6 as “Pariah groups.” Before
describing the first generation of the Happy Family known as Mathieu groups,
we will provide background on transitive group actions.

Definition 5.1. A group G acts on a set S when there is a map G× S −→ S
such that the following conditions hold for all s ∈ S.

(i) Identity: The action of the identity element in G on every element s ∈ S
gives S.

eGs = s

(ii) Associativity: For g, h ∈ G and s ∈ S,

g(hs) = (gh)s

Definition 5.2. The orbit of an element s ∈ S is orb(s) = {gs | g ∈ G},
equivalently the set of objects that each s is sent to under the action of G.

Definition 5.3. A action of a group on a nonempty set is transitive if there is
exactly one orbit. For any x1, y1 ∈ S, ∃g such that y1 = gx1. If, for every two
pairs of points x1, x2 and y1, y2, there is a group element g such that yi = gxi,
then the group action is 2-transitive. In general, a group action is k-transitive
if every set {x1, ..., yk} of 2k distinct elements has a group element g such that
yi = gxi.

Example 5.4. For n ≥ 1, the usual action of Sn on {1, 2, . . . , n} is transitive
since there is a permutation sending 1 to every other number in the set. Thus
the orbit of 1 is {1, 2, . . . , n}.

Example 5.5. For n ≥ 3, the usual action of An on {1, 2, . . . , n} is transitive
since the 3-cycles (12n), (13n), . . . , (1(n − 1)n), (1n2) send 1 to every other
number, so the orbit of 1 is {1, 2, . . . , n}.

Example 5.6. If |S| = 2, every non-trivial action of G on S is 2-transitive. Let
S = {s1, s2}. Then the only ordered pairs of distinct elements are (s1, s2) and
(s2, s1). The identity in G sends each pair to itself, and an element of G that
acts non-trivially on S must send each ordered pair to the other.

Definition 5.7. An action is free if ∀s ∈ S, gs = s implies g = eG. Hence, only
the identity element fixes any s.

Definition 5.8. An action is sharply transitive if it is transitive and free.
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5.1 First Generation: Mathieu Groups

The discovery of the earliest sporadic groups is attributed to Émile Léonard
Mathieu in the period 1861-1873. The Mathieu groups were introduced due to
interest in multiply transitive permutation groups apart from symmetric groups
and alternating groups.

Group Order Transitivity

M11 24 · 32 · 5 · 11 sharp 4-fold

M12 26 · 33 · 5 · 11 sharp 5-fold
M21 26 · 32 · 5 · 7 2-transitive
M22 27 · 32 · 5 · 7 · 11 3-transitive
M23 27 · 32 · 5 · 7 · 11 · 23 4-transitive
M24 210 · 33 · 5 · 7 · 11 · 23 5-transitive

The list of known sporadic groups remained sparse until the latter half of the
20th century.

5.2 Second Generation: Leech Lattice

The Leech lattice Λ24 was discovered by John Leech in 1967 while working on
the kissing number problem – to optimize sphere packing in higher dimensions.
In 1968, John Conway found that the automorphism group (isometries fixing
the center) of the Leech lattice is a group of order

|Aut(Λ24)| ≡ |Co0| = 222 · 39 · 54 · 72 · 11 · 13 · 23.

Although Co0 itself is not simple, it has simple subquotients that form sporadic
groups. We do not elaborate but include below the orders of the second generation
sporadic groups.

Group Order

Conway1, Co1 221 · 39 · 54 · 72 · 11 · 13 · 23
Conway2, Co2 218 · 36 · 53 · 7 · 11 · 23
Conway3, Co3 210 · 37 · 53 · 7 · 11 · 23

Higman-Sims, HS 29 · 32 · 53 · 7 · 11
McLaughlin, McL 27 · 36 · 53 · 7 · 11

Hall-Janko, HJ or J2 27 · 33 · 52 · 7
Suzuki, Suz 213 · 37 · 52 · 7

5.3 Third Generation: Monster Group

The monster M , constituting the top of the third level of sporadic groups, is the
largest and is related to 20 of the 26 sporadic groups. Bernd Fischer and Robert
Griess were both instrumental to the construction of the Monster, which was
completed in 1982. Hence it is also known as the Fischer-Griess monster. Fischer
was also responsible for the baby monster B and another triplet of sporadics
consisting of Fi22, Fi23 and Fi24, which are analogous to the second Mathieu
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Figure 1: Relationships between the sporadic simple groups.

series consisting of M22, M23, and M24.

Notably, the monster and baby monster are respectively of the orders

|M | = 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 ≈ 8.08× 1053,

|B| = 241 · 313 · 56 · 72 · 11 · 13 · 17 · 19 · 23 · 31 · 47 ≈ 4.15× 1033.

Group Order

Monster, M ≈ 8 · 1054
Baby Monster, B ≈ 4 · 1033
Fischer24, Fi24 ≈ 1 · 1024
Fischer23, Fi23 ≈ 4 · 1018
Fischer22, Fi22 ≈ 6 · 1013

Harada–Norton, HN ≈ 2 · 1014
Thompson, Th ≈ 9 · 1017

Held, He ≈ 4 · 109

5.4 Pariahs

Each of the 20 members of the Happy Family is considered a subquotient of
the Monster group. Still, there exist six Pariah groups that share no significant
relationship with the aforementioned sporadic groups. The Pariah groups are
exhibited below.
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Group Order

Rudvalis, Ru 214 · 33 · 53 · 7 · 13 · 29
O’Nan, ON 29 · 34 · 5 · 73 · 11 · 19 · 31
Lyons,24, Ly 28 · 37 · 56 · 7 · 11 · 31 · 37 · 67
Janko4, J4 221 · 33 · 5 · 7 · 113 · 23 · 29 · 31 · 37 · 43
Janko3, J3 27 · 35 · 5 · 17 · 19
Janko1, J1 23 · 3 · 5 · 7 · 11 · 19
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