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Abstract

In this paper, we explore applications, examples, and representative theo-

ries of Symmetric groups in a symmetric group. All elements are all bijections

to the set itself, and the group operation is function composition. We begin by

discussing the definition of symmetry with a few basic examples and applica-

tions. We then introduce and define some real-world applications followed by

properties and special elements of symmetric groups. Lastly, we show the sub-

group structure of symmetric groups and some of the representative theories.

Figure 1: Example of a symmetric group
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1 Introduction

In this paper, we start with introducing some basic properties, actions and theo-

rems of the group.Then we will define symmetric groups in particular, providing

its properties and theorems. Next, we will look into examples of symmetric groups

and proofs of them. We then introduce the representative theorem - Cayley’s the-

orem - of symmetric groups with some historical background about Arthur Cayley

and the proof of his theorem.

2 Introduction to Groups

Definition 2.1 (Groups). A group is defined by the ordered pair (𝐺, ◦) where 𝐺

is a set and ◦ is a binary operation that maps 𝐺 × 𝐺 → 𝐺, satisfying the following

conditions:

• Closure: The binary operation ◦ is said to be closed on set𝐺 if for any elements

𝑎, 𝑏 ∈ 𝐺 𝑎 ◦ 𝑏 is also an element of 𝐺. Note that closure has been implied in

the definition ◦ 𝐺 × 𝐺 → 𝐺, but by convention we include closure as one of

the four criteria of a group.

• Associativity: The binary operation ◦ is associative such that for any elements

𝑎, 𝑏, 𝑐 ∈ 𝐺, (𝑎 ◦ 𝑏) ◦ 𝑐 = 𝑎 ◦ (𝑏 ◦ 𝑐).

• Identity: There exists a unique identity element 𝑒 ∈ 𝐺 such that for all 𝑎 ∈ 𝐺,

𝑒 ◦ 𝑎 = 𝑎 = 𝑎 ◦ 𝑒. The identity is often represented by 𝑒 or 1.

Definition 2.2 (Group Inverse). Agroup is a set𝐺 togetherwith a binary operation

on 𝐺, denoted "·", that combines any two elements 𝑎 and 𝑏 to form an element of

𝐺, denoted a · 𝑏.

• Associativity For all 𝑎, 𝑏, 𝑐 ∈ 𝐺, (𝑎 · 𝑏) · 𝑐 = 𝑎 · (𝑏 · 𝑐).
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• Identity element There exist an element 𝑒 in 𝐺 such that, for every 𝑎 in 𝐺

has 𝑒 · 𝑎 = 𝑎, and 𝑎 · 𝑒 = 𝑎. Such an element is called the identity element

of group.

• Inverse element For each 𝑎 in 𝐺, there exists an element 𝑏 in 𝐺 such that 𝑎

· 𝑏 = 𝑒 and 𝑏 · 𝑎 = 𝑒, where 𝑒 is the identity element.

For each 𝑎, the element 𝑏 is unique; it is called the inverse of 𝑎 and is com-

monly denoted 𝑎−1.

Definition 2.3 (Subgroups). For a group𝐺, a subset𝐻 of𝐺 is a subgroup, denoted

𝐻 ⩽𝐺, if𝐻 is a group under the operation of𝐺. (Specifically, check that𝐻 is closed

under the operation and includes the identity and inverses.) 𝐻 = 1 is the trivial

subgroup and all𝐻 ≠ 𝐺 are proper subgroups of 𝐺.

Group actions are fundamental for the group study. Every module is a special

case of a set acted upon by an (abelian) group. Therefore, in general, a group action

sort of encapsulates the state of a system when it is transformed with reversible

transformations.

Definition 2.4 (Group Action). A group action is a representation of the elements

of a group as symmetries of a set. Function 𝑓 ∶ 𝐺 ×𝑋 → 𝑋 satisfying the following

properties:

(1) 𝑓(𝑒𝐺 , 𝑥) = 𝑥 for all x ∈ X

(2) 𝑓(𝑔ℎ, 𝑥) = 𝑓(𝑔, 𝑓(ℎ, 𝑥)) for all g, h ∈ G and x ∈ X. When the action is clear,

the function 𝑓(𝑔, 𝑥) is often written as 𝑔 · 𝑥. Therefore, (1) 𝑒𝐺 · 𝑥 = 𝑥, (2) 𝑔·

(ℎ · 𝑥) = (𝑔ℎ) · 𝑥.

2.1 Injection, Surjection, and Bijection

• A function is injective (one to one) if each possible element of the co-domain

is mapped to only one element. The function 𝑓 : 𝑋 → 𝑌 is injective, if for all
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Figure 2: Figure 2: visual example of injection, surjection, and bijection

𝑥, 𝑥′ ∈ 𝑋, 𝑓(𝑥) = 𝑓(𝑥′) ⇒ 𝑥 = 𝑥′ .

• A function is surjective (onto) if each element of the co-domain is mapped to

by at least one element of the domain. The function 𝑓 : 𝑋 → 𝑌 is surjective,

if for all 𝑦 ∈ 𝑌, there is 𝑥 ∈ 𝑋 such that 𝑓(𝑥) = 𝑦.

• A function is bijective if it is both injective and surjective. It is also called a

bijection or a one-to-one correspondence. The function 𝑓 : 𝑋 → 𝑌 is bijective,

if for all 𝑦 ∈ 𝑌, there is a unique 𝑥 ∈ 𝑋 such that 𝑓(𝑥) = 𝑦.

2.2 Homomorphisms and Isomorphisms

The Greek roots "homo" and "morph" mean "same shape". In Abstract Algebra, ho-

momorphism is a special correspondence between elemenst of two groups. Whereas

Isomorphism is a function that captures a one-to-one relationship between two

groups. If there exists an isomorphism between two groups, then the groups are

called isomorphic. An isomorphism is a special type of homomorphism.

Definition 2.5. A homomorphism is a function 𝜙 : 𝐺 → 𝐻 between two groups

satisfying 𝜙(ab) = 𝜙(a)𝜙(b), for all a,b ∈ 𝐺.

A group isomorphism isomorphism is a group homomorphism which is a bijec-

tion.

Example 2.6 (Logarithm and exponential). Let ℝ𝑥 be the multiplicative group of

positive real numbers, and let ℝ be the additive group of real numbers. The loga-
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rithm function log : ℝ𝑥 → satisfies that log(𝑥𝑦) = log(𝑥) + log(𝑦) for all 𝑥, 𝑦 ∈ℝ+,

so log is a group homomorphism. The exponential function exp : ℝ→ ℝ𝑥 satisfies

𝑒𝑥𝑝(𝑥 + 𝑦) = (𝑒𝑥𝑝𝑥) + (𝑒𝑥𝑝𝑦) for all 𝑥, 𝑦 ∈ℝ so exponential function is also a ho-

momorphism.Logarithm and exponential function are inverse of each other. Since

log is a homomorphism that has an inverse (𝑒𝑥𝑝) that is also a homomorphism, both

log and (exp) are isomorphisms between ℝ𝑥 and ℝ.

3 Introduction to Symmetric Groups

Definition 3.1 (Symmetric group).

• The elements of the group are permutations on the given set (i.e., bijective

maps from the set to itself).

• The product of two elements is their composite as permutations, i.e., function

composition.

• The identity element of the group is the identity function from the set to itself.

• The inverse of an element in the group is its inverse as a function.

Example 3.2. The standard example of a group action is when 𝐺 equals the sym-

metric group 𝑆𝑛 (or a subgroup of 𝑆𝑛) and 𝑋 = 1, 2,… , 𝑛. Then G acts on X by the

formula 𝑔 ⋅ 𝑥 = 𝑔(𝑥).The properties are clear: 𝑒 ⋅ 𝑥 = 𝑒(𝑥) = 𝑥𝑒 × 𝑥 = 𝑒(𝑥) = 𝑥

when e is the identity of 𝑆𝑛, and 𝑔 ⋅ (ℎ ⋅ 𝑥) = 𝑔 ⋅ ℎ(𝑥) = 𝑔(ℎ(𝑥) = (𝑔◦ℎ)(𝑥).

For example, 𝐷𝑛 is generated y an n-cycle 𝜎 and a 2-cycle 𝜏 satisfying the condition

𝜎𝑛 = 𝜏2 = 1, 𝜏𝜎𝑛−1. For example, n=3, take 𝜎 = (123) and 𝜏 = (23). Then 𝐷3 = id,

(12), (13), (23), (123), (132). [?]
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4 Theorems

4.1 Cayley’s theorem

Arthur Cayley was a famous British Mathematician in the 19th century. His most

importantworkwas in developing the algebra ofmatrices andwork innon-euclidean

and 𝑛-dimensional geometry. As early as 1849 Cayley had written a paper linking

his ideas on permutations with Cauchy’s. He gives the ’Cayley tables’ of some spe-

cial permutation groups but, much more significantly for the introduction of the

abstract group concept, he realised that matrices and quaternions(complex num-

ber applied in mechanics to calculate the 3-D rotations) were groups. [3]

Figure 3: Figure 3: Cayley’s table

2.2.1. Cayley’s Table

The cayley table describes the structure of a finite group by arranging all the possi-

ble products of all the group’s elements in a square table reminiscent of an addition

or multiplication table.

Theorem 4.1 (Cayley’s theorem). In group theory, Cayley states that every Group 𝐺

is isomorphic to a subgroup of a symmetric group. Specifically, 𝐺 is isomorphic to a

subgroup of the symmetric group whose elements are the permutations of the under-

lying set of 𝐺. [4]
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Proof. Given 𝑔 ∈ 𝐺, we define a map 𝜆𝑔 :𝐺 → 𝐺 by 𝜆 𝑔(𝑥) = 𝑔𝑥 for all 𝑥 ∈ 𝐺. This

is a well-defined mapping. Indeed, if 𝑥 = 𝑦 then 𝑔𝑥 = 𝑔𝑦 so that 𝜆 𝑔(𝑥) = 𝜆 𝑔(𝑦).

Next, we show that 𝜆𝑔 is one-to-one. To see this, suppose that 𝜆𝑔(𝑥) = 𝜆𝑔(𝑦). Then

𝑔𝑥 = 𝑔𝑦 and by the left-cancellation property 𝑥 = 𝑦.To see that 𝜆𝑔 is onto, let 𝑦 ∈

𝐺. Then 𝑔−1𝑦 ∈ 𝐺 and 𝜆𝑔(𝑔1𝑦) = 𝑦. Hence, 𝜆𝑔 ∈ 𝑆𝑦𝑚(𝐺). Next, We define Λ : 𝐺

→ 𝑆𝑦𝑚(𝐺) by Λ(𝑔) = 𝜆𝑔. This is a well-defined mapping. For if 𝑔1 = 𝑔2 then 𝑔1𝑥

= 𝑔2𝑥 for all 𝑥 ∈ 𝐺, that is, 𝜆𝑔1(𝑥) = 𝜆𝑔2(𝑥) for all 𝑥 ∈ 𝐺 and hence 𝜆𝑔1 = 𝜆𝑔2, i.e.

𝜆(𝑔1) = 𝜆(𝑔2).

Now, given 𝑔1, 𝑔2 ∈ 𝐺 we have 𝜆𝑔1𝑔2(𝑥) = (𝑔1𝑔2)𝑥 = 𝑔1(𝑔2𝑥) = 𝜆𝑔1(𝑔2𝑥) = 𝜆𝑔1

𝜆𝑔2(𝑥) for all 𝑥 ∈ 𝐺. Thus, Λ(𝑔1𝑔2) = 𝜆𝑔1𝑔2 = 𝜆𝑔1 𝜆𝑔2 = Λ(𝑔1) Λ(𝑔2), and so Λ is a

homomorphism. Finally, we show that Λ is one-to-one. Indeed, if Λ(𝑔1) = Λ(𝑔2)

then 𝜆𝑔1(𝑥) = 𝜆𝑔2(𝑥) for all 𝑥 ∈ 𝐺. In particular, 𝜆𝑔1(𝑒) = 𝜆𝑔2(𝑒). That is, 𝑔1𝑒 = 𝑔2𝑒

or 𝑔1 = 𝑔2. Therefore, 𝐺 ≈ Λ(𝐺).

Cayley’s theorem was historically important. Cayley’s theorem was initially

strange but retroactively instinctive idea. It promotes symmetries of an object to

the status of an object in their own, is an early example of the formal style typical

of later algebra, and it helps prepare the ground psychologically for working in an

abstract or axiomatized mode that was new in the 19th century.

5 Discussion and Application

Other than mathematical fields, group theory and symmetric groups can also be

used in creating digital holograms(Image rendering, or reconstruction of object

data is performed numerically from digitized interferograms, i.e. CCD camera).

The problem of creating digital holograms depends on three components, namely:

the image, the transform, and the hologram. Each one of these components has its

own symmetry properties, which can be helpful to reduce the computational com-
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plexity. The use of group theory and image symmetry properties allow the reduc-

tion of the computational complexity in the creation of digital holograms. There-

fore, the characteristics of symmetric group can also be applied in real life. [5]
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