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Abstract
In this expository article, we introduce the basics of knot theory. We

then discuss several invariants appearing in knot theory including linking
number, tricolorability, the bracket polynomial, and the Jones polynomial.

1 Knot Theory

In this expository article largely [Ada94], we introduce the basics of knot the-
ory. In Section 1 we define knots, knot projections, and introduce Reidmeister
moves. In Section 2 we define what an invariant is then discuss several invariants
appearing in knot theory including linking number, tricolorability, the bracket
polynomial, and the Jones polynomial.

1.1 Introduction

Definition 1.2. A knot is a knotted loop of string, except that we think of the
string as having no thickness, its cross-section being a single point. The knot is
then a closed curve in space that does not intersect itself anywhere.

Figure 1: The unknot

Definition 1.3. A knot projection is a picture of the knot but in 2D where it is
flattened and each crossing is shown by layering the knot on different levels. The
projections below represent single-crossing knots which are knots that contain
only one crossing.
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Figure 2: Projections of the unknot

1.4 Reidmeister Moves

Definition 1.5. Planar isotopy is a deformation of a knot projection if it de-
forms the projection plane as if it were made of rubber with the projection drawn
upon it.

Figure 3: Example of planar isotopy

Example 1.6.

However, there are obviously some ways to change the crossings of a knot.
Any possible change in crossings is one of three distinct categories, called Rei-
demeister moves. A type I Reidemeister move allows us to create or destoy a
twist in the knot as shown. A type II Reidemeister move adds or removes two
crossings as seen in this example. The final Reidemeister move, the type III,
slides a strand of a knot over a crossing.
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Figure 4: Reidmeister Move 1

Figure 5: Reidmeister Move II

Figure 6: Reidemeister Move III

2 Invariants

2.1 Introduction to Invariants

In mathematics, an invariant is a property of an object that isn’t changed
by certain types of transformations. In knot theory, these objects are knot
projections, and the transformations are Reidemeister moves and planar isotopy.
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2.2 Linking number

A link is combination of multiple knots. To orient a link, simply assign a direc-
tion to the string of each knot. The linking number of a link is an invariant
we can use to distinguish between oriented links. It is found by assigning a
value of 1 or −1 to crossings involving both knots, then adding them up. Any
possible crossing can be found by rotating one of these diagrams.

Figure 7: Linking number associated to each crossing

We can quickly prove that this is an invariant by checking to see if any of the
Reidemeister moves, the only things that change can change crossings without
changing the link, have an effect on the linking number.

Proposition 2.3. Linking number is an invariant of knot diagrams.

Proof. Reidemeister I only involves one knot, so we cant automatically rule
it out. As for Reidemeister II, the two crossings created or destroyed by it
will always have opposite linking numbers, as shown in the example. As for
Reidmeister III, the crossings created have the same net value as the crossings
destroyed.

2.4 Tricolorability

We have have now proved an invariant of link diagrams, but what about an
invariant that distinguishes knots? The first step to finding this invariant, called
tricolorability, is to identify each part of the knot that runs from one under-
crossing to the next under-crossing as a separate strand. We the assign on of
three colors to each strand in the knot. Now we say that a knot is tricolorable
if it’s crossings involve only 1 or 3 different colors. This will allow us to prove
that, for example, the unknot cant be tangled into the above knot, because
with no crossings, the unknot can’t be tricolorable. However, we still have to
run through the Reidemeister moves to prove that tricolorabilty is an invariant.
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Figure 8: Reidemeister II move preserves linking number

Figure 9: Reidemeister III move preserves linking number

Proposition 2.5. Tricolorabilty is an invariant of knot diagrams.

Proof. When we twist or untwist the knot in a Reidemeister I move, we can
leave all the strands the same color, thus preserving tricolorability. With a
Reidemeister II, either all the strands are the same color, or the crossings created
or destroyed have 3 colors. Either way, tricolorabilty is unaffected. Finally, as
with the previous moves, if the strands involved in a Reidemeister III move are
all same color, it won’t affect tricolorabilty. Even if they aren’t, the move still
preserves tricolorability.

Since the trfoil is tricolorable but the unknot isn’t, tricolorability distin-
guishes these two knots as different knots. In other words, the trefoil cannot be
untangled into the unknot.
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Figure 10: A tricolorable projection of the trefoil

Figure 11: Reidemeister I move preserves tricolorability

Figure 12: Reidemeister II move preserves tricolorability
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Figure 13: Reidemeister III move preserves tricolorability

2.6 Definition of Polynomial

Definition 2.7. A polynomial is an expression consisting of variables and
coefficients, that involves only the operations of addition, subtraction, multipli-
cation, and non-negative integer exponentiation of variables. There are different
types of polynomials as well such as the Laurent Polynomial, which can have
both positive and negative powers of t.

2.8 Bracket Polynomial

Definition 2.9. A bracket polynomial is a polynomial developed for knots by
mathematicians. It isn’t an invariant of knots but it is still important.

Here’s rule 1.
〈◦〉 = 1

Rule 2 is given by the following.Given a crossing in our link projection, we
split it open vertically and horizontally, in order to obtain two new link projec-
tions, each of which has one fewer crossing. We make the bracket polynomial of
our own link projection a linear combination of the bracket polynomials of our
two new link projections, where we have decided the coefficients to be A and
B.

Rule 3 is given by the following. Finally we would like a rule for adding in
a trivial component to a link (the result of which will always be a split link).

2.10 Bracket Polynomial and Reidemeister Moves

For bracket polynomials, for them to be an invariant of knots, they must be
unchanged by Reidemeister moves. They remain the same for Reidemeister II
adn II moves, but are changed by Reidemeister I. For example, here is a proof
showing that Reidemiester II moves don’t change the bracket polynomial.
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Figure 14: Bracket Polynomial Rule 2

Proposition 2.11. Reidemiester II preserves the bracket polynomial.

Proof. To do that, here’s what we need to prove:

Now we can use rule 2 on top crossing of the left polynomial.

Next we use rule 2 on the bottom crossing and add the result to the top
crossing.

We can then use rule 3 on the bracket with a circle in it.

Now we can just simplify.

To make these two expressions equal, we need to make B = A−1 and C =
−A2 −A−2. This changes our rules, but not fundamentally.
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2.12 Writhe

Writhe is really just the same concept as linking numbers, except they apply
to one-part knots as well. That means our Reidemeister II and III proofs still
apply, but Reidemeister I moves change the writhe of knot, meaning its not an
invariant. It can still be used for our polynomial knot invariant, however.

2.13 Jones Polynoimal

This polynomial knot invariant is called the Jones polynomial, and it will remain
unchanged for all 3 Reidemeister moves. This will use the bracket polynomial
of a knot, which we will call 〈K〉, so we start out with 〈K〉. But we must add a
new rule to make it an invariant, so we will multiply something by 〈K〉. It will
involve the writhe of the same polynomial which we write as w(L), This new
rule is going to be (−A3)−w(L) ∗ 〈K〉.

2.14 Reidemeister moves

Both writhes and bracket polynomials are unchanged by Reidemeister moves II
and III, so we only have to prove that the Jones polynomial remains the same
for Reidemeister I moves.

Proposition 2.15. Reidemeister I preserves the Jones polynomial.

Proof. To show this, we have the Jones polynomial of K ′, the same knot but
with a Reidemeister I move that increases the writhe by 1.

(−A3)−w(K′) ∗ 〈K ′〉

Because this move increases the writhe by 1, we can rewrite w(K ′) as w(K)+1.
Reidmeister I moves multiply the bracket polynomial of a knot by (−A)3, so we
can rewrite 〈K ′〉 as (−A)3 ∗ 〈K〉.

(−A3)−(w(K)+1) ∗ (−A)3 ∗ 〈K〉

Now we can distribute the negative sign at the beginning of −(w(K)+1), giving
us −w(K)− 1.

(−A3)−w(K)−1 ∗ (−A)3 ∗ 〈K〉

We can now use exponent rules to rewrite (−A3)−w(K)−1 as (−A3)−w(K) ∗
(−A3)−1.

(−A3)−w(K) ∗ (−A3)−1 ∗ (−A)3 〈K〉

(−A)3 is equal to (−A3)1, therefore can now use exponent rules to add them
together, getting (−A3)0 = 1.

(−A3)−w(K) ∗ 1 ∗ 〈K〉

Multiplying by 1 doesn’t affect the equation, so we end up back where we
started.
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This proves that the Jones polynomial is a knot invariant. But there is one
more step to turn this equation into the Jones Polynomial: replace A with t−

1
4 .

This is the final version of the Jones polynomial.

Definition 2.16. The Jones polynomial of a knot diagram is given by

(−(t−
1
4 )3)−w(K) ∗ 〈K〉

2.17 Applications

We now have an invariant that works for all knots. This allows us prove that
plenty of pairs knots are distinct, but it isn’t known whether the Jones polyno-
mial distinguishes all knots from the unknot. However this has been proven for
each possible knot with at most 24 crossings [TS21].
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