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1 Introduction

COVID-19 has devastated the lives of millions of people around the globe. As
of June 2021, approximately 176 million people have contracted the virus and
about 3.8 million people have died from the virus [9]. While no one of a specific
stature or walk of life is immune to the virus, demographical statistics show
healthcare disparities and uneven COVID-19 case distributions across different
racial communities [5].

To combat the virus, virologists have recommended several measures one can
take, including wearing a mask and social distancing. However, once someone
has tested positive for COVID-19, contact tracing can help curtail the spread
of the virus.

Contact tracing is defined as the process of identifying persons who may
have come into contact with an infected person, and the subsequent collection
of further information about these contacts. According to the CDC, “Contact
tracing is a key strategy to prevent the further spread of COVID-19” [8].

Countries have taken different routes to facilitate contact-tracing: informa-
tional check-in apps, location monitors, and modified health-related security
and publicity policies. But as countries continue facilitating testing, contact
tracing, isolation, and quarantine, there have been public controversies over the
methods used to facilitate contact tracing. We can take the instance of South
Korea in the following case study.

Example 1.1. In 2019, after the first waves of COVID-19 cases, South Korea
responded with healthcare policies prepared since the 2015 MERS outbreak.
These policies included governmental transparency and revamping medical cen-
ter supply chains and materials. As per transparency, they also used contact
tracing software: individual software developers like Bae Won-Seok and Lee
Jun-Young created applications like Corona 100m and Corona Map respectively,
which ingeniously provide real-time updates with visual mapping [24]. The gov-
ernment, hospital, and district-based broadcasting systems have information on

1



close-contact information store based on individuals’ specific device locations
and exchanged signals.

However, by sacrificing privacy for the health of the nation, open location
disclosure and descriptions led to an up-rise in online bullying, harassment, and
slander [20]. Furthermore, the new application models which move through a
second-party filter to analyze government information and software structures
are susceptible to hacking and timed attacks, meaning the applications threat-
ened people’s security as well.

As highlighted by Example 1.1, maintaining privacy as well as security is
essential, and a challenge of digital contact tracing. This paper will deconstruct
the current contact tracing methods by pinpointing weaknesses and proposing
solutions to reinforce their security.

In Section 2, we explain how the Decentralized Privacy-Preserving Proxim-
ity Tracing or DP-3T algorithm for digital contact tracing works to retain the
anonymity of its users. Section 3 offers a security analysis of DP-3T by deter-
mining weaknesses and strengths of both the overall algorithm and its specific
parts. Finally, in Section 4 we propose solutions that could mitigate the effect
of the vulnerabilities discussed in Section 3.

2 DP-3T Algorithm

The DP-3T algorithm allows for digital contact tracing while protecting users’
privacy. The model of the algorithm presented in this paper is drawn from
[22]. Apps that utilize this algorithm are currently available on smartphones in
Austria, Belgium, Croatia, Germany, Ireland, Italy, the Netherlands, Portugal,
and Switzerland [14]. We begin with an overview of the algorithm before delving
into its specific parts.

2.1 Overview

First, the algorithm generates random keys or codes and takes note of them.
Next, when two smartphones come in close contact with each other for an ex-
tended period of time, they exchange these keys using Bluetooth. During this
exchange, the phones keep track of all codes that they say or send to the other
smartphone and hear or receive from the other smartphone.

If someone tests positive for COVID-19, then all the codes which their phone
said are uploaded to a back-end server or hospital database. All smartphones
regularly check this database to see if any codes it heard pop up. If a code the
phone heard shows up in the database, then the app alerts the user that they
are a close contact and should quarantine [22].

Let’s look at an example to better understand how this algorithm functions.

Example 2.1. Let Avia and Bai be two people who have downloaded the app.
Everyday, their phone will generate random keys. Avia and Bai go to a cafe
where they sit six feet apart from each other for fifteen minutes. Every ten
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minutes, their phones communicate, via Bluetooth, exchanging their respective
random keys. Both phones will keep track of which keys they heard and said.

The next day, Bai does not feel very well, and she tests positive for COVID-
19. She alerts the app, and her phone immediately posts her secret keys on
the hospital database. Avia’s phone will check this database periodically and
compare it against keys it heard. It will see Bai’s code and realize Avia came
in contact with someone with COVID-19. As a result, it will notify Avia that
they are a close contact, and they will quarantine.

Note that no personal information about Avia or Bai is required throughout
the entire process. Furthermore, the use of secret keys allows Bai to keep her
COVID-19 diagnosis private from others since she remains completely anony-
mous to Avia.

There are three key parts to the algorithm: generating the random keys,
exchanging and storing information between the devices, and reporting infec-
tions. In the following subsections, we break down how each of these three parts
function in more detail.

2.2 Generating Random Keys

There are three steps in the process of generating random keys [22]. The algo-
rithm for generating these keys inputs the current day and outputs the random
keys for that day.

Step 1: Calculating the Secret Key. Let t be the current day. The phone
will first produce a random initial daily seed or secret key, SKt, which will be
used to produce the ephemeral identifiers (EphIDs). EphIDs are the random
messages the algorithm will say to communicate with other smartphones. The
value SKt is calculated by the following:

SKt = H(SKt−1),

where H is a cryptographic hash function that maps SKt−1 to the value SKt

in a way that is difficult to guess what SKt−1 is [15]. The initial value, SK0

is generated using a secret key algorithm [22]. These steps ensure that SKt is
created securely to prevent the user from being traced.

Step 2: Producing String of EphIDs. Next, the algorithm uses SKt

to produce the EphIDs. If the EphID changes every L minutes, a total of
n = (24 · 60)/L new EphIDs must be produced every day. In Example 2.1,
since the devices communicated every 10 minutes, we have L = 10, and each
phone would have to create n = (24 · 60)/10, or 144 EphIDs every day. In order
to create all the necessary EphIDs, the algorithm takes SKt as an input and
outputs a string with all the EphIDs. The device computes:

E = PRG(PRF (SKt, P )), (2.2)

where PRF is a pseudo-random function that produces random numbers, PRG
is a pseudo-random generator that turns a random seed into a longer pseudo-

3



random string, and P is a fixed public string. Note that this process is deter-
ministic, so inputting the same value of SKt will produce the same value of
E.

Step 3: Turning the String into Individual EphIDs. The computation
in Equation (2.2) prepares E, which is a string of all the EphIDs. E has length
16n, and it is split into n 16-bit sections that are the n EphIDs. The device
chooses a random order to broadcast the EphIDs for L minutes each.

This process allows for the creation of randomized EphIDs, which do not
convey any information about the user and thus protect their privacy. Further-
more, EphIDs are changed regularly to prevent the user from being traced by
them, protecting their security.

2.3 Device Interaction and Data Storage

Figure 1: Avia and Bai’s phones interact and exchange EphIDs over Bluetooth.
Figure created using [12] and [25].

Next, smartphones communicate via Bluetooth Low Energy (Bluetooth LE)1

to exchange their respective EphIDs, as shown by Figure 1 [22]. The random
letters said by each phone in Figure 1 represent EphIDs.

Phones send out beacons conveying its EphID to other phones, represented
by the speech bubbles in Figure 1. The device receiving the beacon stores:

1. The EphID,

2. A measurement of the exposure, and

3. The date.

In order to measure the exposure risk, the phone stores the strength of the
Bluetooth signal as an indicator of how far away the other person was. In

1See Section 3.5 for a more thorough explanation of Bluetooth LE.
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Example 2.1, this measurement would include that Avia and Bai sat 6 feet
apart for 15 minutes. Data is stored by EphID to maximize efficiency (since
there could be multiple received beacons for each EphID). An estimate of the
storage space required is 6.1 MB [22].

Furthermore, each phone stores its SKt value for the past 14 days, the same
length as the incubation period for the COVID-19 virus. This ensures that a
user can upload all the SKt values from the period of time they were infectious
should they test positive for COVID-19.

2.4 Infection Reporting

Finally, if someone contracts COVID-19, the algorithm has a secure method of
reporting infections to preserve privacy [22].

Step 1: Notify Application of a Positive Result. First, the user must
report to the app that they have tested positive for COVID-19. The positive
test result is self-reported, but see Section 4.1 for a method of verifying the user
actually has COVID.

Step 2: Upload Secret Key Values. Then, the SKt values for all the
days when the user was contagious, which could be determined by a medical
health expert or the user themselves, are sent to the back-end server.

Step 3: Delete Secret Keys from User Device. After reporting the
values of SKt, the user’s phone deletes those seeds and restarts the process
of generating random keys. Since the next value of SKt is dependant on the
previous one, this step prevents an attacker from tracking users by figuring out
their current SKt value and EphIDs.

Step 4: Devices Check Back-end Server. The server then reports the
values (SKt, t), which all phones with the app download. From this ordered
pair, the device can derive the user with COVID-19’s EphIDs during the time
when they were infectious. The device is able to compute the EphIDs from the
secret key value because the process of creating these EphIDs is deterministic.
These EphIDs are then cross-checked to the local database of EphIDs the device
heard to determine if the user was a close contact. Note the value t is necessary
to report because the app must make sure it came in contact with an EphID
before SKt was made public to avoid being tricked by an attacker broadcasting
those EphIDs after they are published.

Step 5: Alert Close Contacts. Finally, the algorithm alerts the user if
they were a close contact and what their exposure measurement is. With this
information, the user can then quarantine to mitigate the spread of the virus.

3 Security Analysis

In this section we take a closer look at DP-3T and its vulnerabilities and
strengths with respect to security and privacy. We begin by looking at different
impact scenarios in which the algorithm’s security is breached in Section 3.1.
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Next, we look at different attacker capabilities in Section 3.2. Then, we do a
general analysis of the algorithm in Section 3.3.

In the next few subsections, we deconstruct the different parts of the algo-
rithm mentioned in Section 2. In Section 3.4 we analyze the process of uploading
secret keys to the back-end server. We then look at security of the security of
Bluetooth Low Energy, the method the application uses to transmit information
in Section 3.5. Next, we look at vulnerabilities pertaining to individual devices
in Section 3.6. Finally, in Section 3.7 we look at other miscellaneous issues with
the algorithm.

3.1 Problem Cases and Impacts

While analyzing the DP-3T program’s security, we must also measure the impact
calculus of the situation and what problems arise in the following scenarios.

1. Close Contacts Not Notified. In this scenario, the user is a close
contact but they are not notified. Given particular close contacts are not
notified, the virus continues to spread and the contact tracing objective
of the algorithm is not achieved.

2. False Positives. The user is not a close contact but they are notified.
This means the user will have to go through testing and possibly quaran-
tine procedures which takes time and energy. For some users, this could
be detrimental to their working status and financial situation.

3. Denial of Service. In this case, as the hackers upload mass entries of
random strings and EphIDs, it may overload the server and block out
the ”true” EphIDs. Users are ultimately unable to access and use the
application.

4. Tracing Users. If an attacker is able to figure out a user’s secret key
and generate all their EphIDs from that secret key, they can predict which
EphIDs the user will say throughout the day. This allows the attacker to
track the user whenever one of these EphIDs appear.

3.2 Attack Models

An attack model describes the attacker’s capabilities. For example, an attacker
with access to the app poses a different security threat than an attacker who can
only see people’s EphIDs. For each of the following attack models, we explain
the attacker’s abilities as they relate to the algorithm [22]:

Definition 3.1. A passive attacker is an attacker who can only view informa-
tion but cannot change it in any way.

Definition 3.2. An active attacker can manipulate information in some way.

Definition 3.3. A regular user only has access to the application as it appears
to all ordinary users.
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Definition 3.4. An eavesdropper is a passive attacker that can “eavesdrop” or
intercept communication but cannot disrupt it.

Definition 3.5. A whitehat hacker is a passive attacker that can view the
application’s code, information stored on a user’s phone, and communication
with the back-end server.

Definition 3.6. A malicious hacker is an active attacker able to share EphIDs,
make adjustments to the protocols, and overload the system so that it is un-
available to users.

Depending on how active or passive an attacker is, different security stan-
dards must be upheld. In the subsections that follow, we will see how DP-3T
fares against these attack models.

3.3 General Analysis

Even though DP-3T preserves location privacy, there are still vulnerabilities
present. The DP-3T algorithm is informationally insecure because an attacker
with infinite computing power could crack the algorithm. Such an attacker could
implement a brute force method, testing all the possible keys and comparing
them against the received EphIDs. While there are multiple keys that produce
the same EphIDs, the attacker can test all of these keys to track the person.

This brute force algorithm has a time complexity of 2n, where n is the
length of SKt. For large values of n, this is impractical to calculate with current
technology. Moreover, with the added restraint that an attacker only has a 24-
hour time slot to discover the secret key before it changes, it is impossible for
them to figure out a user’s secret key.

However, with the advent of quantum computing, DP-3T could be put at
risk. Quantum computers have qubits that can store much more information
than a normal computer bit. This allows for significantly faster computing times,
and could make a brute force algorithm feasible. Fortunately or unfortunately,
quantum computers are still far away from becoming a reality [2]. Nonetheless,
in Section 4.7 we describe some of the ways DP-3T can be fortified in a post-
quantum world.

On the other hand, DP-3T is an indistinguishable protocol, which means the
information being sent out (EphIDs) is indistinguishable from a random string.
Indistinguishability increases the security of the protocol because if an attacker
was given values of SKt and EphIDs, they would not be able to tell which
EphID matches with which value of SKt. Thus, additional information would
be required to extract values of SKt from the EphIDs, making it significantly
harder for an attacker to do so.

3.4 Back-end Server Vulnerabilities

DP-3T’s decentralized system means that positive results for COVID-19 are
self-reported. Thus, an attacker could lie about having COVID to have their
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key uploaded to the hospital database. This would notify people who are not
close contacts to quarantine.

The case study CVE-2020–15957 revealed an oversight in the code for the
back-end server which allowed people to upload their secret keys to the hospital
database without authorization [7]. DP-3T uses a JSON Web Token (JWT)
to exchange information. JWT is secure because it requires a digital signature.
However, it is not entirely impervious to attacks. There is a “none” algorithm
in JWT that assumes the information being transmitted was already verified.
When an attacker uploads a secret key with the label “none,” they are able to
upload secret keys to the back-end server without the proper authorization. This
means that even with methods to verify if someone has tested positive COVID-
19 (such as the one explained in Section 3.5) there are loopholes attackers can
use to continue uploading faux secret keys.

There are also more invasive attacks that an attacker can carry out. An
advanced attacker could hack into the hospital database and change or delete
some of the codes, thus exploiting patients’ medical data and secret keys. This
reflects one of the drawbacks to randomness: because the codes are random, if
someone were to change or add a code there would be little to no way of telling.
The impact of this would be even more grave, as someone who is actually a
close contact would not be alerted.

3.5 Connection Encryption Security Analysis

The usage of Bluetooth LE in DP-3T, which uses AES-CCM encryption, ensures
further security. The counterpart E0 Bluetooth communication algorithm for
data transmission is a 128-bit symmetric stream cipher. Before moving further,
let’s go over some important terms from [2].

Definition 3.7. A plaintext is the original message prior to any encryption.

Definition 3.8. A ciphertext is the result of a plaintext being encrypted by an
encryption algorithm or cipher.

Definition 3.9. In symmetric encryption, a private key is shared among both
the sender and recipient and is used to both encrypt and decrypt a message.

Definition 3.10. In asymmetric encryption, or public-key encryption, a user
can distribute their public key widely and keep their own private key. Other
parties can use the public key to encrypt messages and the user can use the
private key to decrypt these messages.

Definition 3.11. A pseudorandom cipher digit stream, or a key stream, is gen-
erated from a random seed value using digital shift registers and is statistically
defined as random but produced through exact mathematical procedures.

Definition 3.12. A stream cipher is a symmetric key cipher where plaintext
digits are combined with a pseudorandom cipher digit stream in order to produce
a ciphertext.
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Each encryption is based off of the cipher’s current state and the combination
operation for digits use the exclusive-or (XOR) operation. In essence, the 128-bit
data file encryption technique is a popular method in encryption algorithms, but
cryptoanalysts have determined that the Bluetooth protocol could be breached
by time complexity of 264 operations. E0 is vulnerable to certain plaintext
attacks.

On the other hand, Bluetooth LE uses a combination of Advanced Encryp-
tion Standard (AES) and Counter With Cipher Block Chaining Message Au-
thentication Code (CBC-MAC or CCM mode) which provides authentication
methods while remaining secure and keeping data confidential.

3.6 Individual Vulnerabilities

Further downsides lie in the person-to-person device handling and personal data
security, where hackers may intercept the Bluetooth broadcast and alter the
“heard” and “said” random strings. As a result, one who may have been a close
contact is not listed as one.

A third party or hacker can hijack the Bluetooth connection between two
parties and operate a Man-in-the-Middle (MitM) attack. MitM is a tactical
method used to secretly intercept communications and eavesdrop or modify
traffic between two targets, re-encrypting values along the way to remain unno-
ticed [21].

Example 3.13. In this scenario, Avia and Bai are exchanging data over Blue-
tooth at the cafe. What they are unaware of is that eavesdropper Eve is listening
in to the connection from a few tables away and recording the exchanged data.

Eve can eavesdrop on the conversation in a few ways.

• Networking. Eve may have interfered with legitimate networks or cre-
ated fake networks to control. Compromised traffic can be stolen, altered,
or rerouted.

• SSL Stripping. Eve can establish an HTTPS connection between herself
and the server but set up an unsecured HTTP connection with the user,
which means information doesn’t become encrypted.

• Evil Twin Attack. Eve can emulate a legitimate WiFi networking site
and control data flow so that she can collect large amounts of data between
two parties.

Currently, most devices use the AES-CMM Bluetooth protocol. Although
it is one of the most reliable encryption techniques amongst modern encryption
methods, it is still susceptible to cyber-attacks like some versions of the MitM
attack. Simply listening in on a connection and harvesting data may not sound
dangerous as it does not actively augment the values or cut off data flow, but a
third party can utilize these data records to backtrack and pinpoint the EphID
re-seeding algorithm or encryption security mechanism.
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The input, which we’ll call PT , is XOR’ed with some unknown number of
bytes into the system, and thus difficult to control. We will use the ⊕ sym-
bol to denote the XOR operation. As one continues to attack the same block
by resetting the device to reset the AES state and run through the first block
multiple times, the input generation pattern is solvable as the number of un-
known bytes are constant. The third party can mathematically determine the
encryption algorithm for an upper layer. Although one cannot determine the
value of encryption key k, k ⊕ CBCm−1 is still determinable, where CBCm−1
is the output of the previous-block ciphertext. All constant inputs are run into
a modified key, then used to determine the second-round “true” key [19].

Before a more detailed explanation of the attack sequence, we must go over
some terminology used in the attack sequence to crack an AES-CCM [10].

Definition 3.14. An inverse cipher is the function which reverses the trans-
formation of a given cipher with the same cryptographical key.

Definition 3.15. A block cipher applies a deterministic algorithm with a sym-
metric key to encrypt a text block rather than encrypting one nit at a time like
stream ciphers (explained further in 3.5).

Definition 3.16. A round key is one of the ten outputted permutations when
the AES algorithm expands the main key to multiple parts by a key schedule
round. Adding these 128-bit keys is what makes the algorithm a block cipher.

Definition 3.17. The AddRoundKey function is what transforms the cipher
and inverse cipher by adding a round key using an XOR operation. It is the
only stage in AES encryption which directly interacts with the round key.

The AES-CCM attack works through the following steps.

1. One recovers the value k′ = k ⊕ CBCm−1.

2. AddRoundKey is applied to the AES algorithm to get AddRoundKey(a, b) =
AddRoundKey(k,CBCm−1⊕PT ) = a⊕b, or simply AddRoundKey(k′, PT )
for the modified key.

3. Finally, roll back the key schedule to determine the first-round key in
relation to the second-round key.

In summary, one can attack the AES algorithm’s second round and deter-
mine the inputs based on our modified key to then figure out the known plaintext
values and uncover the algorithmic encryption pattern for the first round.

3.7 Additional Issues

We can find further potential inefficiencies in DP-3T regarding (1) its vulnera-
bility to targeted identification attacks, (2) potential problems of Pseudorandom
Number Generators (PRNG) which Bluetooth LE uses, and (3) possible “false
positive” collisions.
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Regarding (1), researchers have carried out theoretical attacks on DP-3T.
Hackers can bypass the earlier DP-3T models by tracking users who voluntar-
ily upload their identifiers. Once a third party amasses Bluetooth LE devices
around the target, as long as the target is part of a centralized system for
contact-tracing, devices exchange user identifiers and the hacker can collect the
ones transmitted by the target to disperse elsewhere. Although such methods
don’t work with newer models where the identifiers are relayed through en-
cased states of keys or seeds, the method highlights problems regarding hackers
exploiting Bluetooth linkability to disrupt normal exchange of identifiers.

To expound on the PRNGs from (2), any lacking in the following traits
would mean the PRNGs are deterministic to a point they would fail a statisti-
cal pattern-detection test: relatively short periods for certain “weak” seed states
(DP-3T changes the Eph-ID’s 144 times per day); lack of distribution unifor-
mity and equal probability per each possibly value, also known as low entropy ;
correlation between consecutive values; poor dimensional distribution of output
sequence.

While Bluetooth LE uses a cryptographically secure PRNG (CSPRNG),
short periods and improving computational algorithms risk the efficacy of pseu-
dorandom generators.

Finally, (3) expounds on RPI collision cases over Bluetooth. The Apple-
Google protocol [13], a similar program to DP-3T, starts by generating a Tem-
porary Exposure Key (TEK), one per day, and passes its TEK and current time
block organized by 10’s to a central server. Other devices can download the
TEKs and times from the central server and check their RPIs against ones they
listened to throughout the day.

The problem appears once a TEK-timestamp pair gets hashed to the same
RPI as another user’s, both ending with the same RPI. 16-byte identifiers yield
low probability for collisions while keeping device data storage requirements low,
but does not prevent collisions from occurring at all. Let’s bring Avia and Bai
back into the picture. Avia’s TEK-timestamp pair and Bai’s derive the same
RPI. If Avia tests positive for COVID-19, their TEK-timestamp information
will enter the Diagnosis Keys. As Bai’s data codes to the same RPI, she will be
given a false positive.

4 Proposed Solutions

In this section, we analyze solutions as a well as offer some of our own solutions
to some of the security concerns for DP-3T mentioned in the previous section.

4.1 Positive Test Verification

Additional protocols could be put in place to verify a user has actually tested
positive. This prevents users from arbitrarily uploading secret key values to
the back-end server, resulting in false positives. One possible protocol that is
described in [23] utilizes an authorization code.
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Step 1: Getting Tested. As part of the testing process, users are given an
authorization code. This could either be generated by their device or given to
them by a health official. If it is the former, the user must give this code to the
health official when getting tested. This authorization code remains inactive for
now.

Step 2: Positive Result Secret Key Upload. If the user tests positive
for COVID-19, the health official notifies them and activates their authorization
code. Then, the user will give the device the authorization code. Once it is
accepted by the back-end server, the device uploads the user’s secret keys for
the time when they were contagious (which they can determine with the help
of the health official). The user’s phone deletes the authorization code after
completing the upload.

Disrupting this method requires attackers or users who have considerable
skills. A long enough authorization code makes a brute-force attack method
impossible. However, an attacker could steal a user’s authorization key as it is
on their phone for a long window of time while they are waiting for their test
results. This could allow them to upload fake secret keys should the user test
positive for COVID-19.

The authorization code can be hidden from the user throughout the entire
process, which prevents the average user from changing the code or uploading
different secret keys from another device. However, the system is not entirely
infallible; a user with strong technical skills could find and edit the code.

Nevertheless, this verification algorithm prevents any malicious actions on
the part of the health official. It also preserves the user’s privacy since the
authorization code is used as soon as it is sent to the back-end server. This
prohibits an attacker from tracking a user through their authorization code.

4.2 Fortifying the Back-end Server

An algorithmic defense mechanism can be put in place for a hospital database
in order to avoid attackers accessing centralized bounties of data. Five gen-
eral steps can be taken in order to increase the cybersecurity levels of hospital
databases [6].

• Endpoint Security Layer. All staff devices and back-end servers must
use cybersecurity tools, including those from TrendMicro, Symantec, Mi-
crosoft and Cisco to provide protection.

• Network Security Layer. Hospitals should monitor closely and deter-
mine whether an attack has happened, either through an inspired version
of the BB-84 2 or through scanners like Nessus, Microsoft Advanced Threat
Analytics and Cisco Stealthwatch.

• Perimeter Security Layer. Firewalls and basic public-facing security
layers must be in place to avoid hackers accessing the database section
entirely.

2See Section 4.7.
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• Application Security Layer. There should be security policies and
procedures in place and facilitated by the hospital IT department.

• Physical Security Layer. Physical access will risk important data
and network access. To prevent a physical breach, hospitals must fol-
low HIPAA guidelines for physical security safeguards and control access
to server and network appliances with protected health information like
contact cases and secret keys.

4.3 Dummy Traffic

Sending dummy traffic involves sending fake messages to mask the true infor-
mation being exchanged. It could be an effective strategy to prevent an eaves-
dropper from compromising the security and privacy of DP-3T. This strategy
could be used at two parts of the algorithm: sharing EphIDs and uploading
secret keys to the back-end server.

When sharing EphIDs, sending dummy traffic would mean sharing real as
well as fake EphIDs. The device and back-end server would have a method
of differentiating between random and fake EphIDs when recording the data.
However, to an eavesdropper all codes shared would appear to be random 16-bit
strings, and thus they would not be able to glean anything from intercepting
these EphIDs.

Another key interaction is when COVID-positive users upload their secret
keys to the back-end server. Eavesdroppers could easily figure out which users
are COVID-positive as well as their secret keys when these users upload to the
hospital database. This interaction is even more crucial than the prior one; if
an attacker can determine which users are COVID-positive, this destroys the
algorithm’s privacy protection. Furthermore, a malicious hacker could tamper
with that user’s information and prevent close contacts from being notified. To
avoid these scenarios, all users can upload keys to the hospital database, but
most of them would be fake [22].

The fake data that is created must appear randomized. This way, a simple
pattern analysis would not reveal which keys are fake and which ones are real.
A secure encryption model like the one we present in Section 4.5 would help
randomize the appearance of the fake keys. However, a skilled eavesdropper
might be able to determine the mechanism and figure out the true information
being sent. Nonetheless, this would take considerably longer and require an
attacker with more skills and resources, meaning that sending dummy traffic
could still be an effective strategy against a range of attackers.

4.4 Derivation of Secret Key Values

In the DP-3T algorithm, each secret key is derived from hashing the previous
one. Therefore, just discovering one of these secret keys could allow an attacker
to figure out the ones from that day on wards. In April of 2020, Apple and
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Google proposed an Exposure Notification (EN) algorithm similar to DP-3T
that remedies this problem [13].

The EN algorithm randomly generates a key every single day instead of the
different keys being dependant on one another. This way, if an attacker got
one of the keys, it would only be active for a 24-hour period or if the user tests
positive for COVID and that key is uploaded to the back-end server.

While the EN algorithm does provide a user a little more security than DP-
3T, it does have its cons as well. A user must upload all values of SKt to
the back-end server instead of simply the SKt value for the first day they were
contagious. Aside from taking up more space and thus requiring more resources,
a larger data upload is more likely to be intercepted or disrupted by an attacker
because it takes a longer amount of time. Therefore, while EN might be more
effective than DP-3T at ensuring a user’s privacy at the individual level, its
benefits might not necessarily outweigh the costs.

4.5 AES-RSA Encryption

Figure 2: The AES-RSA encryption scheme uses AES to encrypt the original
message and RSA to encrypt the AES key, forming a complex message. Figure
adapted from [18].

As explained earlier in Section 3.5 and Section 3.6, the Bluetooth LE AES-
CMM encryption method is effective but still faces attack vulnerabilities. We
can strengthen the security of AES-CMM by implementing RSA.

The Rivest-Shamir-Adleman (RSA) algorithm is one of the most widely-
used encryption algorithms for much of our important information, such as bank
accounts, mail, and online transactions. Cracking RSA is at least as hard as
factoring very large numbers, a computation that takes hundreds of thousands of
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years with modern technology. Hence, RSA is practically impossible to decrypt
and thus a secure encryption scheme [2].

Part of RSA’s security comes from the fact that is an asymmetric method, so
the key used to encrypt messages can be shared publicly, whereas the key used
to decrypt is only known to the person receiving messages. Since the private key
is never exchanged, RSA’s security is much less vulnerable to attack compared
to a symmetric encryption scheme in which a secret key has to be exchanged
[2]. Hence, combining RSA’s asymmetric method with AES would be highly
efficient.

The process described below is from [18].
As shown in Figure 2, AES is used to encrypt the EphID since AES en-

cryption requires less time than RSA. This creates the ciphertext of the EphID.
However, since AES is a symmetric encryption scheme, the recipient needs to
be sent an AES key in order to decrypt the EphID. We use RSA to encrypt the
AES key, forming the ciphertext of the key. The recepient is then sent a complex
message which includes the ciphertext of the AES key and the ciphertext of the
EphID.

Thus, the AES-RSA encryption model is a secure way to transmit informa-
tion, and it would improve the security of DP-3T.

4.6 Improving PRNGs With Machine Learning

One of the downsides of DP-3T mentioned in Section 3.7 is the insufficient
randomness of PRNGs. It is near impossible to achieve true randomness in
machines, as True Random Number Generators (TRNGs) rely on natural phe-
nomena like thermal noise, cosmic background radiation, or radioactive decay.
Such measurements are highly expensive. On the other hand, a PRNG attempts
to emulate TRNGs mathematically. A PRNG generates a sequence of bits and
manipulates a starting state, or seed, with a certain algorithm. We call the state
St, as shown in Figure 3, and the starting state will be called S0. The algorithm
outputs following states and continues the process with the new states until a
full cycle, or period, is achieved when the output value returns to S0.

A good PRNG’s goal is to maximize the periods so that it would be time-
costly and near-impossible for hackers to determine the reseeding algorithm
which creates the “random” values. One of the greatest challenges is to create
long-enough periods. A commonly-used but not cryptographically secure PRNG
in computer science is called the Mersenne Twister. This PRNG is named after
the length of its period, which equates to a Mersenne prime. A Mersenne prime
is a prime number one less than a power of 2. This particular algorithm’s
advantage is that it has a relatively large period, with a value of 219937 − 1.

In order to further randomize results with longer periods, researchers have
used various Machine Learning (ML) methods. ML itself is often based off
of the idea of randomness, as algorithms achieve better mapping when they
use randomness to learn from a data sample. Currently, ML technologies use
Neural Networks (NNs), in particular Deep Neural Networks (DNNs) where the
layers are hidden, to train ML models for image recognition, natural language
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Figure 3: The reinforcement learning mechanism has an autonomous agent take
actions to maximize rewards and traverse recurrent neural networks to model
sequential data. Figure adapted from [17].

processing, protein modelling, and crafting effective PRNGs. Some research
groups used Recurrent Neural Networks (RNNs) to create PRNGs [17]. RNNs
are useful for mapping out sequential data and maintaining an internal state, or
memory, while training itself. The RNN mends relationships between inputs and
thus become advantageous for programs like reseeding algorithms, where one
state derives the next. Another group used a Generative Adversarial Network
(GAN), an unsupervised-learning framework designed in 2014, which contains
a generator that generates additional training data based on the same statistics
of the training set [16].

Recently, a group introduced the idea of taking a Reinforcement Learning
(RL) approach in order to create a PRNG from scratch. See their published
paper [17] for more details. In brief, RL is where a machine optimizes an action
by accumulating as much reward from the environment as possible through a
Markov Decision Process (MDP). An MDP is a “discrete-time stochastic con-
trol process,” where outcomes are partially random and partially influenced
systematically by some decision maker.

Outcome-wise, the RL approach opened up potential in multiple areas:

• No input data is required so it is guaranteed that the generated PRNG
is a novel algorithm. Based on the characteristics of RL, the generated
PRNGs are likely different from each other after each training process.

• RL policies are stochastic, which means that they are randomly deter-
mined. Thus, a single seed can create a non-deterministic PRNG.

• NNs, especially the DNN hidden layers, are black-box operations. There-
fore, RL policies are a black-box, and since they give rise to the PRNG
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algorithm, the PRNG algorithm itself becomes a black-box. There is no
human insight in the PRNGs algorithmic functions which makes it difficult
for hackers to determine.

• Experiments such as those from [17] prove the approach is feasible and
RL techniques are valid.

Based off of this novel approach using RL, we propose using an RNN-series
Machine Learning model which trains through RL and generates bit-by-bit se-
quences with periods long enough to sufficiently be called “random.” The model
will be a combination of RL and Long-Short Term Memory (LSTM) architec-
ture. LSTM specializes in observing temporal consecutive data values and mas-
terfully extracts data characteristics [3]. This way, we can create PRNGs with
longer periods that rely on less energy to process over Bluetooth LE.

ML is a promising solution to improve not only PRNGs but overall encryp-
tion security. It can create non-deterministic algorithms, employ side-channel
analysis to uncover errors in security proofs, simulate new attack techniques to
then create follow-up security proofs and defenses, and do an in-depth crypto-
analysis. By creating better PRNGs, we ensure security in the Bluetooth LE
and the encrypted packages and EphIDs being passed along over the Bluetooth
connection.

4.7 BB84

Figure 4: Avia and Bai’s twins, Alice and Bob, are also exchanging data; their
devices mend both a classic and quantum channel to use BB84. Figure taken
from [1].
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Quantum computing is a powerful tool that makes a variety of algorithms
vulnerable—including the “unhackable” RSA encryption scheme—due to its
enhanced computing speed and power [2]. Therefore, in a post-quantum world,
or a world in which quantum computers exist, new protocols must be used to
retain the security of the DP-3T algorithm. One of these protocols is BB84, the
first quantum cryptography protocol developed by Charles Bennett and Gilles
Brassard in 1984.

For more details on the mathematics behind the algorithm, check Appendix A.
The process described below is from [4].

Returning to example Example 3.13, Avia wishes to send an EphID to Bai’s
device without Eve listening in on their conversation. Avia will randomly pro-
duce a string a and a base b, both of which are n bits long. They use a and b
to produce quantum bits or qubits.

Qubits mainly differ from a classical computer bit because of the quantum
mechanics law of superposition. According to this law, a qubit has no definite
value, and instead takes on different states simultaneously. Whereas a classical
computer bit is either 0 or 1, a qubit only takes on a definite value when it is
measured using a base [11].

Avia will transmit these qubits to Bai over a quantum channel as shown in
Figure 4. In order for Bai to turn the qubits into definite values, she randomly
produces a base b′. Bai will “run” the qubits through this base, and it will
produce definite values. If for some index i we have bi = b′i, Avia and Bai will
produce the same definite value. However, if bi 6= b′i, then Bai has a 1/2 chance
of producing the same definite value as Avia.

In this manner, Bai constructs a′, a string of definite values. Avia and Bai
then publicly share b and b′. If for some index i, if we have bi = b′i, that means
ai = a′i. Otherwise, if bi 6= b′i, there is a chance that ai 6= a′i, so Bai and Avia
reject these values. In the end, Avia and Bai are left with two strings, which we
will denote as ka for Avia and kb for Bai. Since this string only includes values
where their bases matched, we will have ka = kb.

If a third party, eavesdropper Eve, is listening in, the situation becomes
more complex. The act of Eve measuring Avia’s qubits will change their values
because of superposition. Furthermore, according to the no-cloning theory there
is no way for Eve to make a copy of Avia’s qubits because of their complex
and erratic nature [26]. Thus, if Eve is intercepting the messages, Bai does not
receive the message Avia sends her, but instead receives a different set of qubits.

As a result, even if for some index i we have bi = b′i, we will not necessarily
have ai = a′i because the qubits might be different. Thus, ka 6= kb. In order
for Avia and Bai to determine if a third party is listening in, Avia will publicly
share a random selection of bits from ka. If these bits match with Bai’s, they
can conclude they are on a secure channel and use the unshared bits of ka as a
secret key to encrypt their EphIDs and exchange data. If the bits do not match,
Avia and Bai form a new quantum channel and start the process over again.

Hence, once the BB84 mechanism is placed as an automatic precursor to
EphID exchange over Bluetooth, third-party interception can be spotted at an
early stage and security measures can be taken without having revealed any of
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the close contact data, much less leave the data open for alteration.

5 Conclusion

While DP-3T is a highly-effective solution for carrying out contact tracing while
protecting location privacy, we underscore multiple weaknesses in the algorithm.
These weaknesses could cause contact-tracing exchanges or data leakage, which
then would result in economic, social, and political troubles at both an individual
and national scale.

We also explain a diverse combination of both pre-existing and novel so-
lutions. These include an algorithm to verify if a user contracted the virus,
technical methods for increasing the security of the back-end server, sending
dummy traffic to confuse malicious attackers, deriving secret keys, and using
an AES-RSA encryption scheme to exchange information. We also introduce
a machine learning model for improving PRNGs inspired by pre-existing solu-
tions, and we introduce a “futuristic” solution: a quantum computing algorithm,
BB84, for transmitting data securely.

Continual experimentation with these encryption mechanisms and solutions
may greatly improve contact tracing systems for COVID-19, as well as for future
pandemics or epidemics, in terms of both privacy and security.

Technology has allowed us to stay connected despite the 6-feet social dis-
tancing barriers that have become a norm during the pandemic era. Our in-
vestigations into DP-3T serve as testament to the electronic inter-connectivity
and digital health systems that exist in the modern world. Furthermore, DP-3T
takes such technologies and attempts to find a middle ground in the spectrum
between security and privacy.

A Appendix: The Mathematics Behind BB-84

The BB84 protocol logic is based on the quantum property that information
gain, or a hacker’s observation of secret keys, is only possible if the signal of
the two states is disturbed in one way or another. These observational signal
disturbances are often the case for symmetric encryption methods. This is when
one party attempts to securely communicate a private key to another through
a one-time pad encryption (OTP).

OTP is an encryption technique which requires a pre-shared key between
parties which meet the following fundamental rules of strong encryptions: (1)
the key is truly random, (2) the key is at least as long as the plaintext, (3)
the key is never reused in whole or in part, and (4) the key is kept completely
secret. Condition (4) becomes difficult once hackers are able to intercept and
“open” the message sent between the parties. This is where BB84 comes into
play. In this appendix section, we will further explain the mathematics behind
the BB84 protocol already covered in Section 4.7.

In quantum computing, qubits are characterized with amplitudes, which are
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complex numbers in the form a+ bi. Here, a and b are real numbers and i is the
imaginary equal to

√
−1. Each qubit contains two amplitudes A and B, and

the “|〉” notation denotes vectors in a quantum state. It also tells us that the
qubit will appear as 0 with probability A2 and 1 with probability B2 [2].

As in Example 3.13, Avia wishes to send a private key to Bai. Avia starts
with two strings a and b, each n bits long. They encode the two strings as a
tensor product of n qubits,

|ψ〉 =

n⊗
i=1

|ψaibi〉 ,

where ai and bi are the i-th bits of a and b respectively. With two states
total, ai bi provide four qubit states total after evaluating the equation above:

|ψ00〉 = |0〉 ,
|ψ10〉 = |1〉 ,

|ψ01〉 = |+〉 =
1√
2
|0〉+

1√
2
|1〉 ,

|ψ11〉 = |−〉 =
1√
2
|0〉 − 1√

2
|1〉 .

For these states, we see that the probabilities for 0 and 1 are both 1/2 since
( 1√

2
)2 is equal to 1/2. Additionally, because the qubit states are not mutually

orthogonal, or their vector dot products do not equal 0, it becomes impossible
to determine all values without knowing the value for b.

As explained in Section 4.7, Avia sends |ψ〉 over a public and authenticated
quantum channel E to Bai, who receives a state E(p) = E(|ψ〉 〈ψ|). Here, E
represents the numerical interpretation of noise in the channel and effects of
eavesdropping by eavesdropper Eve.

Avia, Bai, and Eve each have their own qubit states’ values. Currently,
only Avia knows the value b, while Bai and Eve find it virtually impossible to
distinguish the qubit states. Eve can attempt to measure Avia’s qubit states,
but in the process risks disturbing a qubit with probability 1/2 if she guesses
the wrong basis.

After, Bai generates a random bits string b′ of the same length as b and
measures the string she received from Avia, a′. Bai sends a public channel to
Avia to determine which bi an b′i aren’t equal. Both Avia and Bai discard their
qubits in a and a′ where the b and b′ don’t match.

For the remaining k bits, Avia randomly chooses k/2 bits to disclose over the
public channel and both check whether more than half the numbers agree. Once
the check is confirmed, Avia and Bai continue to use information reconciliation
and privacy amplification techniques to create shared secret keys an exchange
data. Otherwise, the process is repeated again with new random values until
there is a confirmed secure connection.
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