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Abstract

Curve-shortening flow (CSF) is a geometric heat flow with a variety
of applications in mathematics and physics that acts on each point of
an immersed curve inwards at a speed proportional to its curvature.
In this paper, we explore the behavior of curve-shortening flow and
answer questions regarding its existence and uniqueness for an arbitrary
curve. We define, apply, and analyze the Gage-Hamilton, Grayson, and
Huisken Theorems in the context of the curve shortening flow. Lastly,
we explore special (self-similar) solutions of CSF.

1 Introduction

Curve shortening flow (CSF), aside from being a precursor to higher dimen-
sional curvature flows, has applications in shape analysis and a connection
to the well-studied heat equation. It is the one-dimensional case of the mean
curvature flow, which is useful in geometry, topology, and general relativity.
CSF is often studied as an introduction to complex geometric flows and for
its beautiful mathematical properties.

First, we define the curve shortening flow equation as follows:

Definition 1.1. Suppose that γ : [0, T ) × [0, 2π) → R2 is a family of time-
dependent curves on the plane such that γ(0, x) is an embedded curve. Denote
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by k(t, x) and N(t, x) the scalar curvature and normal vector, respectively.
Then, the curve shortening flow equation is defined as

∂tγ = kN (1)

Figure 1 illustrates the evolution of a closed curve modified by CSF. We
can see that the curve’s area decreases at a constant rate. This property is
true for any closed embedded curve under CSF and is further discussed in
section 2.1.

Figure 1: A closed curve undergoing CSF, progressing through time from the
top left to the bottom right. Adapted from [4].

This section provides background information on curves and parabolic
partial differential equations (PDEs) necessary for understanding CSF. Section
2 will define CSF and answer questions regarding its existence and uniqueness.
It will also define and explain the Gage-Hamilton, Grayson, and Huisken
Theorems in relation to CSF. Finally, we explore special solutions of CSF,
including the grim reaper, paperclip and spiral curves.
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1.1 Differential Geometry of Curves

We define I ⊆ R as an open interval. We then commence by establishing the
following:

Definition 1.2. A curve is a differentiable function α : I → R2 from I on
R into R2.

Definition 1.3. We define a closed curve as one that has identical endpoints
at which it is smooth.

Definition 1.4. An embedded curve is a curve that does not self-intersect
and is a bijection of an interval I ⊆ R→ R2 onto its image.

From these definitions, any closed embedded curve must split the plane
into exactly two areas.

Definition 1.5. Immersed curves are curves with a non-zero derivative.
Hence, they may admit self-intersections.

If α : I → R2 is a curve with α = (α1, α2), the velocity vector of α at
t ∈ I is the tangent vector

α′(t) =

(
dα1

dt
(t),

dα2

dt
(t)

)
(2)

at the point α(t).
We define a the Frenet-Serret frame field on a curve in two dimensions,

a moving frame dependent upon the direction of movement of the curve at a
given point, comprised of the tangent and normal vectors.

To facilitate this, we will consider reparametrizing the curve to a unit-speed
curve for our initial definition.

Reparametrizing a curve entails altering the mapping of the interval
I of the original curve such that the curve is preserved geometrically, but
changing the speed at which we travel over the curve. This allows us to travel
along curves differently to, as we will do here, enable ease when considering
specific properties of the curve.
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More explicitly, if α : I → R2 is the original parametrization and β :

J → R2 is a re-parametrization, there exists an h : J → I that is a smooth
bijection and β(s) = α(h(s)). Therefore β′(s) = h′(s)α′(h(s)).

A unit-speed curve is a reparametrization of a curve such that its speed
|α′| (the magnitude of the velocity vector α′(t)) is always equivalent to 1.
Any arbitrary curve can be reparametrized to a unit-speed curve. This is also
known as the arclength reparametrization.

We will first define the Frenet-Serret frame for unit speed curves before
generalizing to arbitrary-speed curves.

Definition 1.6. For a unit-speed curve β : I → R2, the Frenet-Serret
frame is comprised of the two orthogonal vector fields: T (the tangent vector)
and N (the normal vector). As we can see depicted in Figure 2 below, the
tangent vector is representative of the derivative of a given point on the curve.
The normal vector is defined as the unique vector orthogonal to tangent vector
at a given point.

Figure 2: Here, the tangent vectors are red and the normal vectors are blue.
Adapted from [1].
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We define k as the curvature of a curve. Then, where T denotes the unit
tangent vector and N denotes the principal normal vector,

N = T ′/k (3)

k can be visualized more intuitively as the measure of the "twisting" of a
curve inwards or outwards at a given point. To see this one can show that the
radius of the largest inner circle that touches the curve at only one point α(t)

is 1/k(t). This means that the larger the curvature the smaller the radius
(because it ‘twists’ more we can only fit smaller circles) and a curvature of
zero implies it is a circle of infinite radius, a.k.a. a straight line.

The following proposition is a useful tool for calculating the tangent and
normal vectors with arbitrary parametrizations.

Proposition 1.2. The Frenet Frame can be found for an arbitrary speed
curve by normalizing each vector field as follows:

T = α′/ ‖α′‖ (4)

k = ‖α′ × α′′‖ / ‖α′‖3 (5)

1.3 Parabolic Theory of PDEs

The parabolic theory of partial differential equations has a wide variety of
applications in physics and engineering. For our purposes, because CSF is
a parabolic equation, the theory from this section can be applied to curve
shortening flow. The most prototypical parabolic PDE is the heat equation or
diffusion equation. It is utilized to describe the conduction of heat in different
situations.

The heat equation in 3-dimensions derives from the following example
from physics [5]. Suppose we had a body V ⊂ R3 with heat H(t) at any given
time t ∈ [0, T ); let u(x, t) represent the amount of ‘heat energy’ at spacial
point x = (x1, x2, x3) ∈ R3 at time t so that

H(t) =

∫
V

u(x, t) dV. (6)
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We can assume that the rate of change of heat of the body V is proportional
to the rate of heat flowing out of the boundary. The heat flow along the
surface is given by ∇u = 〈∂x1u, ∂x2u, ∂x3u〉. Denoting by n the normal vector
to the surface of V (∂V ), the flow out of the boundary is given by the integral
along the surface of V of ∇u · n. This gives us that

d

dt
H(t) =

∫
V

ut(x, t) dV (7)

=

∫
∂V

∇u · n dS (8)

=

∫
V

(∂2
x1

+ ∂2
x2

+ ∂2
x3

)u dV. (9)

In the final step, we make use of the Divergence Theorem. The heat equation
then follows by setting the first integral equal to the third and dropping the
integration symbol since both are being integrated over V . We then obtain
the following definition:

Definition 1.7 (Heat Equation). The n-dimensional heat equation on a set
V ⊂ Rn for time [0, T ) is given by

∂tu−
(
∂2
x1

+ . . .+ ∂2
xn

)
u = 0. (10)

The heat equation, and more general parabolic equations, have properties
that are useful in understanding CSF. These are the strong and weak maximum
and minimum principles and uniqueness, a corollary of which is the strong
separation principle for CSF.

The following theorems are adapted from [5]. We consider the Heat Equa-
tion problem on the area U ⊂ R2 for a time interval [0, T ]. Now we need the
following series of definitions:

Definition 1.8 (Parabolic Cylinder). We define the domain of u(x, t) as
the parabolic cylinder UT := U × (0, T ]. We denote the boundary of
the spacial domain ∂U . Closely related is the closed parabolic cylinder
ŪT = U × [0, T ] ∪ ∂U × [0, T ].
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Definition 1.9 (Parabolic Boundary). The parabolic boundary is given
by ∂UT := U × {t = 0} ∪ ∂U × (0, T ).

Finally, denote by C2
1 (U) the set of functions defined on U ⊂ R2 that are

twice-differentiable in space and once-differentiable in time. This means that
∂2
x1
u, ∂2

x2
u, ∂x1∂x2u and ∂tu are all continuous functions.

Theorem 1.4 (Weak/Strong maximum principle). Suppose u ∈ C2
1(UT ) ∩

C(ŪT ) satisfies the heat equation within U .

1. Then,
max
ŪT

u = max
∂UT

u (11)

2. Additionally, if U is connected and there exists a point (x0, t0) ∈ UT
such that u(x0, t0) = max

ŪT

u then

u is constant within Ūt0 (12)

Theorem 1.5 (Uniqueness). Let g ∈ C(∂U), f ∈ C(U). Then there exists at
most one solution u ∈ C2(U) ∩ C(Ū) of the boundary value problemut −∆u = f in U

u = g on ∂U
(13)

Proof. If u and ũ both satisfy equation 13, apply Theorem 1.4 to the function
w := ±(u− ũ)

Intuitively, the term kN on the right hand side of the CSF equation can
be rewritten in terms of arclength derivatives as

kN = ∂2
sγ (14)

so that the CSF equation can be rewritten as

∂tγ − ∂2
sγ = 0 (15)
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which looks strikingly similar to equation 10. However CSF does not preserve
arclength (as will be seen in section 2), so equation 15 conceals nonlinearities
that provide the interesting geometric behaviour.

Now we require a general definition of parabolicity for a geometric flow:

∂tγ = F (γ, θ, k)n, (p, t) ∈ I × (0, T ), T > 0 (16)

Here, F = F (x, y, θ, q) is a function given in R2×R×R. We can say that F is

parabolic in a set E if
∂F

∂q
(x, y, θ, q) > 0 for all (x, y, θ, q) in E. Furthermore,

we may say that F is uniformly parabolic if there exist two positive numbers
such that

λ ≤ ∂F

∂q
≤ Λ. (17)

In the case of CSF, we have that F (γ, θ, k) = k e.g. F (x, y, θ, q) = q. So, CSF
satisfies the condition for uniform parabolicity.

The properties of the heat equation generalize to solutions of general
parabolic PDE. Demonstrating this is rather extensive and is explained
in detail in [5]. In particular, Theorem 1.5 shows that, given an arbitrary
embedded curve, we can construct a unique CSF with it as an initial curve.

Theorem 1.4 implies something much more interesting. Suppose γ0 and
ρ0 are embedded curves that do not intersect. Using Theorem 1.5, we can
construct two unique curve shortening flows, γ and ρ, on [0, T )× [0, 2π) with
γ(0, x) = γ0 and ρ(0, x) = ρ0. Now the question is, is there a time t0 > 0 such
that γ(t0, ·) intersects ρ(t0, ·)?

The answer, surprisingly, is always no. The reason for this is that it would
violate the strong maximum principle. The distance between both curves can
be shown to satisfy a parabolic PDE because of CSF, so if there was a point
x0 where the distance was 0 at a time t0 > 0, we get from Theorem 1.4 that
the distance would be 0 from the beginning. Therefore two curves undergoing
CSF can only intersect each other if they did so at the beginning of the flow.
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2 Curve Shortening Flow

In this section we discuss how solutions to the CSF problem (especially closed
curves and self-similar solutions) behave over time under curve-shortening flow.
We also explore how the Grayson, Gage-Hamilton, and Huisken Theorems
pertain to this.

2.1 Evolution of Geometric Characteristics

Curves that undergo curve-shortening flow have a variety of interesting
geometric behaviors over time. Notable among them are the Grayson’s and
the Gage-Hamilton Theorems, which will be discussed in more detail in the
following subsection (2.2).

Arclength has an interesting evolution over time. Denoting L(t) as the
arclength of a curve as a function of time, we deduce the relationship as
follows:

We know L(t) satisfies
∂L

∂t
=

∫
I

∂s

∂t
dp (18)

From here, ∫
I

∂s

∂t
dp = −

∫
(k2) ds (19)

= −
∫

(k2) ds (20)

We see from this that the arclength of a curve is strictly decreasing over
time, hence the name curve-shortening flow.

Another rather intriguing geometric property of the evolution for a closed
embedded curve undergoing CSF is the behavior of the encapsulated area
over time. We derive this evolution as such:

We restate the definition of γ as the CSF-produced family of curves as
delineated in Definition 1.1. Denoting s as the arclength parametrization, we
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define the area of an embedded closed curve as

A = −1

2

∫
γ

〈γ,N〉 ds (21)

From here, we have

dA

dt
= −1

2

∫
k ds+

1

2

∫
(ks)〈γ,N〉 ds+

1

2

∫
(k2)〈γ,N〉 ds (22)

= −
∫
γ

k ds (23)

= −2π (24)

Hence, we see that the area of a closed embedded curve decreases at a
rate of 2π for every unit of time that the curve is under CSF. This leads to an
interesting conclusion. Defining A(t) as the enclosed area of a closed curve as
a function of time t, we can conclude that a closed embedded curve becomes

extinct at time
A(0)

2π
.

2.2 Grayson’s and Huisken’s Theorems

We now explore the Gage-Hamilton and Grayson’s Theorems in the context of
CSF, which define the behavior of all closed and embedded curves undergoing
CSF.

Theorem 2.3 (Gage-Hamilton Theorem). Consider the Initial Value Problem
for the curve shortening flow, where γ0 is a convex, embedded closed curve.
A0 is the area enclosed by γ0 and ω = A0/2π. The curve γ0 has a unique
solution γ(·, t), which is uniformly convex for each t in (0, ω) As t ↑ ω, γ(·, t)
shrinks to a point [3].

Theorem 2.4 (Grayson’s Theorem). Convergence to a round point is given
by the existence of a unique point x0 ∈ R2 such that the rescaled flows

γλt := λ · (γT+λ−2t − x0) (25)
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converge for λ→∞ to the round shrinking circle {∂B√−2t}t∈(−∞,0)

If γ : I → R2 is a closed embedded curve, then the curve shortening flow
γtt∈[0,T ) with γ0 = γ exists until t = ω. As t → ω, it converges to a round
point.

Gage-Hamilton’s Theorem and Grayson’s Theorem combine to prove that
any closed embedded curve shrinks to a single round point under curve
shortening flow. Gage-Hamilton proved convergence to a point for convex and
embedded curves. Grayson generalized this by proving that non-convex closed
embedded curves eventually become convex, allowing the Gage-Hamilton
theorem to then be applied.

2.5 Special Solutions

There are several "special" solutions to curve-shortening flow that can be
explored. We see that these are self-similar and oftentimes preserve several
geometric properties when undergoing CSF.

We shall commence by discussing travelling curves. These are solutions
of CSF which take the following form:

v(x, t) = v(x) + ct (26)

The curve is translated upwards with time under curve-shortening flow. During
this transformation, its shape remains constant. Interestingly, there is only
one travelling curve, which is known as the "grim reaper." Its equation is
given by

y = − log cos(x), x ∈ (−π/2, π/2) (27)

Figure 2.5 below depicts the curve and its transformation upwards with time.

Two other special solutions of CSF are derived from a combination of
upwards and downwards translating grip reapers. First, the paperclip is
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Figure 3: Grim Reaper
Adapted from [9]

defined as

cosh(y(t)) = e−t cos(x(t)) (28)

when restricted to ‖x‖ < π/2 This describes a shape that converges to a
single point as t→ 0. As t→ −∞, the curve becomes an oval consisting of
two "grim reaper" curves joined at the ends. Figure 3 shows the paperclip
curve from t→ −∞ to t→ 0

The hairclip solution is defined as

sinh(y(t)) = e−t cosx(t) (29)

As t → −∞ the curve appears to be grim reapers alternating between
translating up and translating down connected in a row. As t→ 0, the curve
becomes a horizontal line.

Finally, we introduce spirals. These are translating waves that rotate
around the origin about the polar angle α. They can be expressed by the
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Figure 4: Paper Clip
Adapted from [2]

equation:

r cos(α(r) + ct), r sin(α(r) + ct) (30)

They rotate with the constant speed ‖c‖.
Spirals can either simply rotate, rotate while shrinking, or rotate while

expanding. In order to remain self-similar under CSF, they must extend
infinitely.

The yin-yang curve is a famous solution to CSF. It is a symmetric spiral
which has an inflection point that remains at the origin as it is transformed.

Figure 5: Yin Yang
Adapted from [6]
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Figure 6: Rotating Spiral
Adapted from [6]
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