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Abstract

In this paper, we begin by explaining some basic knot theory termi-
nology by walking through a few problems. We then discuss the appli-
cations of knot theory to biology, specifically in examining and modeling
the effects of enzymes on cyclic DNA. We also introduce new terminol-
ogy, writhe, to model this type of cyclic DNA. Next, we explore the use
of Ising models to represent interactions between particles in statistical
mechanics, an important field of physics. Specifically, we examine the
Yang-Baxter equation, also known as the star-triangle relation.

1 Introduction

As a heavily theoretical subject, the more concrete implications of knot theory
may escape those who do not study the field. However, knot theory was in fact
first created and used by chemists and physicists like William Thomson, 1st
Baron Kelvin, who (incorrectly) hypothesized that atoms of different elements
were defined by different knots within each [3]. Though Thomson’s theory
was later proved incorrect, his work inspired Peter Tait, who developed many
concepts that are used today in applications of knot theory to biology, chemistry,
and physics [3]. Due to these origins in science, it is unsurprising that knot
theory has many wide uses in different branches thereof.

Specifically, because of its theoretical nature, knot theory is often used to
create mathematical models of more tangible concepts in these branches. For
instance, knot theory is used when modeling DNA and the effects of enzymes
on it, as well as in statistical mechanics, when examining the interactions be-
tween particles in a system. By using more theoretical models, scientists and
mathematicians can make these concrete concepts more abstract and therefore
easier to manipulate and work with.

In this paper, we will explore these two specific examples of models using
knot theory. Before we delve into the applications of knots to these branches of
science, however, we must first define a few key ideas used today in knot theory.
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1.1 Knot Theory Concepts to Know

One concept vital to understanding knot theory is the definition of a knot.

Definition 1.1. Knot: A knot is a closed loop of “string,” where the string has
no thickness at all. It must not intersect itself, since that would cause branches
in the “string,” but may cross over itself.

Figure 1: Three common knots. From left to right: the unknot (trivial knot),
the trefoil knot, and the figure-eight knot.

Links, too, form a large part of the foundation of knot theory.

Definition 1.2. Link: A link is a group of one or more knots. Those knots
do not necessarily need to be connected to each other as the name suggests.
The only requirement is that the link consist of more than one discrete piece of
string.

Figure 2: Two common links: the unlink (left) and the Borromean rings (right).

Both knots and links share certain features. One of the most obvious of
these features is crossings.

Definition 1.3. Crossing: A crossing is a location on a projection of a knot
where two strands appear to cross. The strand that can be seen completely
in the crossing is called the overstrand and the one that is obscured by the
overstrand is called the understrand.
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Figure 3: A crossing in which the overstrand passes from left to right and the
understrand goes from right to left.

Crossings in links help us define a measure known as the linking number.

Definition 1.4. Linking number: The linking number is a measure of how
intertwined two components of a link are. To calculate it, we first give each
of the two components an orientation - in other words, we pick a direction to
trace along for each component. Then, we assign every crossing either a +1
or a -1, according to the direction of the overstrand and understrand as seen
in Figure 4. Finally, we add all these values and divide by two. The linking
number is constant across all projections.

Figure 4: +1 and -1 crossings used for determining the twist of a ribbon.

The calculation for linking number appears when calculating other values
for knots and links as well, as we will see later.

Nontrivial knots (i.e. not the unknot) must have more than one crossing
in a projection. This makes sense, because a knot with no crossings is simply
a circular loop, the simplest projection of the unknot. But we can also easily
show that knots with exactly one crossing are trivial as well. All one-crossing
knots can be simplified to one of the four shown in Figure 5.
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Figure 5: The four simplest one-crossing knots. [1]

It is clear that for each of these four knots, the single crossing can be un-
twisted to form the zero-crossing image of the unknot seen in Figure 1.

Through this, we see that there are several different ways to draw the same
knot: the unknot can be shown as a circular loop with no crossings, or we can
add a twist and draw it as a knot with only one crossing, and we could surely
add as many more twists as we like to change its appearance even more. Still, its
identity as the unknot remains the same. All of these different ways of drawing
the same knot are called projections of that knot.

Definition 1.5. Projection: A knot has different projections, which are differ-
ent expressions of the same knot. They appear different but can actually be
twisted and pulled to become the same knot.

Figure 6: Three projections of the unknot.

Twisting and pulling is a very vague term, however. There are a few specific
actions we can take on one projection of a knot to transform it into another
called Reidemeister moves.

Definition 1.6. Reidemeister moves: These moves preserve the identity of a
knot, and all projections of a single knot can be made into each other using
some sequence of these three moves. In Figure 7, the three Reidemeister moves
are shown.
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Figure 7: The Reidemeister moves in their various forms. The reverse of the
moves also preserves the identity of the knot.

When moving between different projections of the unknot as shown in Fig-
ure 5 and Figure 6, we used only Type I Reidemeister moves by adding and
removing twists. More complex knot projections, however, will require more
complex series of Reidemeister moves to be transformed.

Figure 8: A more complicated series of Reidemeister moves to simplify a pro-
jection of the trefoil knot.

Because these concepts are so fundamental in knot theory, they appear fre-
quently in knot theory’s applications to other areas of science. Now that we
have a solid foundation, we can move on to examine how these ideas are used
to model DNA in biology and particle interactions in statistical mechanics.
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2 Applications in Biology

One of the most significant applications of knot theory to biology is as it pertains
to DNA, the molecule that contains the genetic code for all living organisms.

2.1 A Background of DNA

DNA has a very particular structure illustrated in Figure 9: a DNA molecule
is composed of two molecular strands twisted together in a double helix held
together by pairs of nitrogenous bases bonded together in between them. There
are four possible bases: adenine (A), thymine (T), guanine (G), or cytosine
(C). However, there are only four specific pairings - AT, TA, CG, and GC - as
adenine only bonds with thymine and guanine only with cytosine.

Figure 9: The structure of DNA. [2]

Because of the small number of possible pairings, each DNA molecule must
contain millions of pairs to hold all the genetic information necessary for life. To
make matters worse, this genetic material is usually very tangled, which makes
it very difficult to replicate, copy, or modify the DNA when the cell’s biological
mechanisms require it.
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2.2 Topoisomerases and DNA Manipulation

In order to make these disorganized tangles of DNA easier to work with, cells use
enzymes called topoisomerases to manipulate the DNA topologically. Specific
enzymes can perform very sophisticated manipulations on DNA, but topoiso-
merases can also perform several more general actions, as pictured in Figure 10.

Figure 10: Three actions that topoisomerases can perform on DNA.

Scientists use circular (cyclic) DNA, or DNA molecules whose ends are
joined, to examine the effects of these enzymes. On linear DNA, any knots
caused by the enzyme would slip off the end, while they would be captured in
a circular molecule. Both single-stranded and duplex (double-stranded) forms
of cyclic DNA are common not only in bacteria and viruses but also in human
mitochondria. However, although they appear naturally, scientists often apply
enzymes to artificially created, synthetic cyclic DNA to determine their effects.

To create this cyclic DNA, scientists attach the tail ends of a strand of linear
duplex DNA to the head ends. However, a wrinkle appears when we consider
that DNA has a set orientation. Each strand contains sugar molecules, and
depending on the orientation of the sugar molecules at either end, one end is
defined as 3’ and the other as 5’. Further, the structure of linear duplex DNA
is antiparallel, so one strand’s 3’ end will correspond to the other’s 5’ end, and
vice versa (Figure 11).
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Figure 11: Linear duplex DNA is antiparallel.

When attaching the heads to the tails, we must attach a 3’ end to a 5’ end,
as illustrated in Figure 12. Therefore, each strand’s head gets attached to its
own tail, and the strands form a link rather than a knot.

Figure 12: Because the 3’ end of DNA must be attached to a 5’ end, each
strand’s head gets attached to its own tail.

We keep the fundamental structure of cyclic DNA in mind when we examine
the effects of enzymes on these molecules. One particular action an enzyme may
take is site-specific recombination, where the enzyme attaches to two specific
sites on two strands of DNA (recombination sites), cuts the strands connecting
these sites, and reconnects the ends in a new order. One possible example of a
site-specific recombination is shown in Figure 13.
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Figure 13: An example of a site-specific recombination. Here, the enzymes
recombine the two strands such that they form a new crossing.

To study these site-specific recombinations more closely, scientists create
single-stranded circular DNA molecules that contain copies of the recombination
sites. They can then examine the DNA after introducing the enzyme to see how
the molecule’s structure has changed.

When creating these circular molecules, scientists also choose an orientation
for each recombination site. This is possible because each recombination site is
defined as a nonpalindromic sequence of base pairs that can be read differently
either forwards or backwards. There are two possibilities for this circular DNA:
either we have direct repeats, where both recombination sites face the same
direction, or inverted repeats, where they face opposite directions (Figure 14.

Figure 14: Direct repeats (left) and inverted repeats (right) on a piece of cyclic
DNA.

The goal is to choose orientations that will match when the enzyme pulls
the sites together. When the sites are pulled together, the resulting molecule,
called a product, can take on several forms, as shown in Figure 15.
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Figure 15: Direct repeats (top) produce a two-component link, while inverted
repeats (bottom) produce a projection of the unknot.

In this setting, we can examine the effects of enzymes by using tangles. The
substrate molecule (the molecule before the enzyme acts): the site tangle T ,
where the enzyme acts, and the substrate tangle S, the rest of the molecule
that the enzyme does not affect. After the enzyme acts, the site tangle is
replaced by the recombination tangle, denoted by R (Figure 16), in the product
molecule.

Figure 16: The enzyme replaces the site tangle T with the recombination tangle
R while leaving the substrate tangle S the same.

To represent the molecules formed by these tangles, we use the notation
N(Q), which denotes the knot or link formed when we connect the top two and
bottom two strands of a knot Q to each other. We also let Q + V denote the
tangle we get when we add the tangles Q and V . Therefore, we can write the
substrate molecule as N(S + T ) and the product molecule as N(S + R).

Studies of this type have been done on many enzymes, including Tn3 re-
solvase, which acts on cyclic DNA with direct repeats. Usually, this enzyme
acts in the same way that we describe above - by replacing the T tangle with an
R tangle - but occasionally, it will add in extra R tangles. Adding these extra
tangles produces more complicated product molecules: adding two R tangles
instead of one produces the figure-eight knot, while adding three produces the

10



Whitehead link (Figure 17).

Figure 17: The Whitehead link. For an image of the figure-eight knot, see
Figure 1

Using this information on the behavior of Tn3 resolvase, De Witt Sumners
and Claus Ernst, from Florida State University and Western Kentucky Univer-
sity respectively, were able to prove that for this particular enzyme, S = (-3, 0)
and R = (1).

2.3 Writhe and Supercoiling

As we have seen, enzymes usually act on DNA molecules by adding and sub-
tracting tangles at the recombination sites. However, the term ”site” is a little
misleading - in fact, though the enzyme attaches to a particular location on the
DNA, its actions affect the shape of the entire molecule. In order to describe
these broader-reaching effects, we must define some new terminology relating to
cyclic duplex DNA.

Because duplex DNA is made of two antiparallel strands (Figure 11), we can
model it as a flat ribbon, with the strands on each edge of the flat side, as seen
in Figure 18. Because it is cyclic, we can make this ribbon a continuous loop.

Figure 18: A ribbon modeling cyclic duplex DNA. [1]

We now define several characteristics of this ribbon that will allow us to
examine it in greater detail:
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Definition 2.1. Twist: The twist of a ribbon R is given as Tw(R). It is, as
the name suggests, a measured of how twisted around its own axis a ribbon is.
We calculate twist by taking half of the sum of the +1s and -1s occurring at
crossings of the ribbon’s axis and one of its two edges. The +1s and -1s are
determined in the same manner as linking number (see Figure 4).

Definition 2.2. Writhe: The writhe of a ribbon R is given as Wr(R). It
measures how contorted the axis of the ribbon is. The writhe of a ribbon is the
average signed crossover number over all possible projections of the ribbon in
space.

Definition 2.3. Signed crossover number: The signed crossover number is the
sum of +1s and -1s occurring at crossings of the axis with itself. The signs
of these crossings are determined in the same manner as linking number (see
Figure 4).

Our final term is, in fact, an old term being applied to a new situation:
linking number.

Definition 2.4. Linking number (of a ribbon): To calculate the linking number
of a ribbon R, denoted as Lk(R), we first treat the two edges of the ribbon as
components of a link. The linking number of the ribbon is equal to the linking
number of this link, which is defined in Definition 1.4.

To summarize, we now have three new measures: twist, writhe, and linking
number. Twist measures how twisted an axis and an edge are, writhe measures
how twisted the axis is about itself, and linking number measures how twisted
the two edges are with each other.

Individually, each of these values gives us an interesting piece of information
about a ribbon. Together, however, they have an even more interesting relation
discovered independently by James White of UCLA, Brock Fuller of Caltech,
and Czech mathematician G. Calugareanu:

Lk(R) = Tw(R) + Wr(R). (1)

In words, this equation tells us that changes in twist and changes in writhe
must balance each other exactly regardless of how we change the position of a
ribbon, since the linking number stays constant.

In the context of a physical piece of cyclic duplex DNA, we also take into
account the number of base pairs in the molecule. DNA naturally twists at a
rate of 10.5 base pairs per twist, and twisting any more frequently than this will
overwind the DNA.

Now suppose an enzyme doubles the number of tangles in a cyclic duplex
DNA molecule. This will double the twist, because each edge crosses over the
axis twice as many times, and the linking number, because the edges cross over
each other twice as many times. However, doubling the number of twists means
there are fewer base pairs per twist - half as many, to be exact. To return to its
natural twist rate, the DNA will decrease its twist - but according to Equation
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Equation 1, a decrease in twist means an increase in writhe. As writhe increases,
the axis of the ribbon will become more twisted around itself and will become
contorted in space in an effect known as supercoiling.

Thus when an enzyme adds too many more tangles to a cyclic duplex DNA
molecule, though it performs this action at a specific site, it can change the shape
and position of the entire molecule. Biochemists today use electrophoresis in
gels to detect these changes and further study the effects of enzymes on DNA.

3 Applications in Physics

3.1 Physics Concepts to Know

Statistical mechanics is an topic in physics where the overall state of a system
is studied rather than that of the individual particles. A simple example might
be how temperature describes average kinetic energy of a set of particles, rather
than the kinetic energy of a specific particle. Statistical mechanics is useful
in describing things like phase transition (which does not occur for a single
molecule), or the effects of magnetization on a conductor.

It can be difficult to model a large system. One simple model for that
purpose is the Ising model, which models situations in which only particles that
are near to each other interact. To visually describe an Ising model, we can
use a graph in which the vertices represent particles and the edges represent
interactions. Because metals are often shaped in regular, repeating patterns,
this allows Ising models to be particularly simple when modeling them.

Ising models of 3D states have been very difficult to solve mathematically,
but the study of 2D lattices provides a foundation for later study of them. In
Ising models, vertices receive a positive or negative 1 value. In magnetization,
this value would denote spin.

Each edge of the graph has energy based on the states of the vertices on
either side of the edge. We can say that in general the energy of an edge that
has vertices of the same value is E=, and if the vertices have different values
the energy of the edge between them is E 6=. The energy of the system, E(s), is
then the sum of energies of all the edges. We can define the following:

ω(si, sj) = exp

(
−E(si, sj)

kT

)
. (2)

This allows us to take the partition equation over all the possible states of
the vertices:

P =
∑

S
exp

(
−E(s)

kT

)
=
∑

S

∏
ω(si, sj). (3)

Essentially, what this equation states is that the partition function simply
equals to the product of the ω function for all edges in a state, summed across
all possible states.
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3.2 Knot Theory Applications

The partition function is invariant for a given system. We also want it to remain
invariant under Reidemeister moves so that we can apply ideas of knot theory
to statistical mechanics. We can examine the Reidemeister moves in order to
constrain the values of ω− and ω6=.

Figure 19: A change to a system that should preserve the partition function.
[1]

In Figure 19, we assign two different ω functions, denoted ω+ and ω− in
order to add a little more freedom, and one kind of a type II Reidemeister is
performed. We notice that adding in the two new edges multiplies the partition
function by ω+(a, b)×ω−(a, b). However, since the partition function must stay
constant, we now know that

ω+(a, b) × ω−(a, b) = 1. (4)

Figure 20: A star-triangle simplification. [1]

A common simplification used to reduce number of particles is depicted in
Figure 20 and is called the Yang-Baxter equation. If we call the ω function in the
”star” version ω and that of the ”triangle” version ω′, we can find relationships
between those functions using the idea that the partition function should remain
constant during the simplification.
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To eliminate A, we can find the partition function of the star using A as either
positive or negative 1. That yields ω(1, sB)×ω(1, sC)×ω(1, sD) +ω(−1, sB)×
ω(−1, sC) × ω(−1, sD). The partition function of the triangle is ω′(sB , sC) ×
ω′(sC , sD) × ω′(sD, sB).

Since the partition function before and after the simplification must be equal,
we know that

ω(1, sB)ω(1, sC)ω(1, sD) + ω(−1, sB)ω(−1, sC)ω(−1, sD)

= ω′(sB , sC)ω′(sC , sD)ω′(sD, sB). (5)

Figure 21: Yang-Baxter as a signed planar graph [1]

Now, to apply this concept to signed planar graphs like we did previously, we
can turn the star and triangle into signed planar graphs as shown in Figure 21.
On examination of the figure above, we can see that it can also be used to depict
a type III Reidemeister move. Once again, we attempt to maintain the partition
function under this change.

Instead of using ω and ω′, we can use ω− and ω+ based on the signs of the
edges. We can determine that

ω−(1, sB)ω+(1, sc)ω−(1, sD) + ω−(−1, sB)ω+(−1, sc)ω−(−1, sD)

= ω+(sB , sC)ω+(sC , sD)ω−(sB , sD). (6)

We can then combine Equation 4 and Equation 6.
First, if sB = sC , we can simplify Equation 6 to:

ω−(1, sD) + ω−(−1, sD) = ω+(sB , sC)ω+(sC , sD)ω−(sB , sD). (7)

and from there, since we know sB = sC , the right hand side simplifies to
ω+(sB , sC). That means that

ω−(1, sD) + ω−(−1, sD) = ω+(sB , sC). (8)
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The equation will simplify that way if sB = sC or sC = sD. If we want to
cover all our cases, we also want to examine sB = sD. We know if sB = sC = sD,
we are looking at those first two cases, and it is impossible for all three states
to be different because there are only two possible values for states. Therefore,
sB = sD is the only case left to explain.

Therefore we know that either sB = sD = 1 and sC = −1, or sB = sD = −1
and sC = 1.

Let’s examine the first case:

ω−(1, 1)ω+(1,−1)ω−(1, 1) + ω−(−1, 1)ω+(−1,−1)ω−(−1, 1)

= ω+(1,−1)ω+(−1, 1)ω−(1, 1). (9)

Let’s call ω−= a, ω−6= b, ω+= c, and ω+6= d. We can then change Equation 9
to:

a2d + b2c = ad2. (10)

Let’s check the second case, where sB = sD = −1 and sC = 1:

ω−(1,−1)ω+(1, 1)ω−(1,−1) + ω−(−1,−1)ω+(−1, 1)ω−(−1,−1)

= ω+(−1, 1)ω+(1,−1)ω−(−1,−1). (11)

Using the same substitutions we used in Equation 10, we find that

b2c + a2d = ad2, (12)

which is actually the same as Equation 10.
From Equation 4 we also know that ac = 1 and bd = 1. From Equation 8

we know that a + b = c or a + b = d.

4 Conclusion

Though knot theory is often perceived as a very niche subject, it is in fact often
applied to other fields of science as a means of modeling and understanding key
ideas in each. In biology, we can use knots to examine the ability of topoiso-
merase enzymes to add or remove tangles from DNA; in chemistry, knots allow
us to describe the structure of topological stereoisomers, or molecules with the
same atoms but different configurations; and in physics, we use graphs used in
knot theory to create Ising models for examining the way in which particles
interact. Ultimately, while mathematicians have been integral to developing
knot theory as a theoretical field, scientists, too, have contributed greatly to the
depth of the field and its potential for further practical application.
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