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1 Introduction

Combinatorics is the mathematical study concerned with counting. Combina-
torics uses concepts of induction, functions, and counting to solve problems
in a simple, easy way. Combinatorics is extremely important in Mathematics
because it allow for solutions to problems that can not be solved, or are very
difficult to be solved any other way. One particular part of Combinatorics is a
topic called Generating Functions. Generating functions are important because
they give closed forms for recursions, which both saves time and provides useful
information about the problem at hand. We will first discuss the principles of
induction and proofs to set the foundation for Generating Functions. After, we
will explore Generating Functions: how they work, what they do, how to solve
problems, and their true significance. With these two idea, we will then discuss
Induction and Generating Functions as a whole, connecting the two topics and
understanding Combinatorics as one important branch of Mathematics.

All of the following examples and exercises are taken from the book by Miklos
Bona, [1].

2 Induction

2.1 Principal of Induction

The Principle of Induction is pretty simple: we Want to show a property p holds
for all natural numbers n (i.e. p(n) holds for all n). Induction is used to prove
an explicit formula holds true for a general sequence.

Definition 2.1. Induction is a mathematical proof and technique to prove a
certain explicit formula holds true for a recurrence.

In the following theorem, we state mathematically the principal of induction
that will be applied in the problems that follow this section.

Theorem 1. Given a recurrence or explicit formula, we have to go through the
following steps which is the Principle of Induction.

• Establish base case: show that p(0) holds true.
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• Inductive Hypothesis: assume that p(k) holds true for an arbitrary k value.

• Inductive Step: Given inductive hypothesis, show p(k + 1) holds (i.e. p(k)
is true ⇒ p(k + 1) is true).

2.2 Simple Examples

We begin with a series of simple problems that show some easy examples of
how to apply induction. For example, if a closed form of sequence is provided,
induction is very simple:

Example 2.1. Let a0 = 1, and let an+1 = 3an +2, for all non-negative integers
n. Prove that an = 2 · 3n − 1.

Solution. Given: an+1 = 3an + 2, a0 = 1, Prove: an = 2 · 3n − 1
Base Case: n = 0: a0 = 2 · 30 − 1 = 2 · 1− 1 = 1
As shown above, the base case holds true for the smallest value of n because

if n = 0, then an = 1 which is equivalent to what we were given that a0 = 1
Assume True For n = k: ak = 2 · 3k − 1
Prove True For n = k + 1: ak+1 = 2 · 3k+1 − 1
3an + 2 = 2 · 3k+1 − 1
3(2 · 3k+1 − 1) + 2 = 2 · 3k+1 − 1
2 · 3k+1 − 3 + 2 = 2 · 3k+1 − 1
Therefore, the statement holds for all positive integers n.

From this example, we see that when we know the formula for the solution,
induction can easily blah blah blah... In the next example of applying induction,
we are going to example a very different type of problem. In this problem, blah
blah blah...

Example 2.2. For every natural number n, the integer a(n) = n3 + 11n is
divisible by 6.

Solution. Prove: (a(n) = n3 + 11n)/6=integer
Base Case: n = 0:(a(0) = 03 + 11 · 0)/6 = 0
As shown above, the base case holds true for the smallest value of n because

if n = 0, then a(0) = 0 and 0 is divisible by 6.
Assume True For n = k: (a(k) = k3 + 11k)/6 = integer

Prove True For n = k + 1: ak+1 = (k+1)3+11(k+1)
6 =integer

ak+1 = (k2 + 2k + 1)(k + 1) + 11(k + 1)

ak+1 = k3 + 2k2 + k + k2 + 2k + 1 + 11k + 11

ak+1 = k3 + 11k + 3k2 + 3k + 12

Here, k3 +11k+3k2 +3k+12 can be simplified to just 3k2 +3k+12 because
as proven above,k3 + 11k is divisible by 6 and by adding a number divisible by
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6 to any number, that number’s divisibility will not change. 3k2 + 3k + 12 can
also be simplified to just 3k2 + 3k for the same reason just stated.

Additionally, k2 +k is always an even number because if k is an odd integer,
then it would be odd2 + odd = odd + odd = even. Similarly if k is an even
integer, then it would be even2 + even = even + even = even.

Thus, given 3(k2+k) the statement holds true for all positive integers because
k2+k always equals an even number as shown above and any even number times
3 is divisible by 6.

2.3 More Complex Examples

In the examples above, the applications of induction were very straight forward
with closed forms provided. However, what if these closed forms weren’t given,
and the problem were more intuitive. We begin win an example that shows how
application of induction is more ”hidden.”

Example 2.3. At a tennis tournament, every two players played against each
other exactly one time. After all games were over, each player listed the names
of those he defeated, and the names of those defeated by someone he defeated.
Prove that at least one player listed the names of everybody else.

solution. Let n denote the number of players
We will first go through the inductive process.
base case: n=2 It works!
hypothesis: Assume when there is n players, there is someone who lists

everyone and random person i.
step: If person ”i” beats person n + 1 when person i is still the person to

list all payers. If n + 1 beats i, then i is on the list of n + 1.
There are 2 conditions for which person i doesn’t list person 1:

1. If I defeats i

2. If I defeats all players that i defeated.

However, statement 2 is contradictory because according to the inductive
hypothesis, player 1 is supposed to have the least number of wins; thus, person
i must have listed player 1.

If we do this kind of intuitive thinking for rest of players, the problem is
solved. Person i, some random person, will have the listed the names of every-
body else, so at least one person must have listed all the other players.

We see in the example of above that we didn’t need to manipulate any
numbers; we were simply thinking through the problem using induction. The
next example explores a more difficult example with manipulating equations.

Example 2.4. Let a0 = 1, and let an+1 = 10an − 1.Prove that for all n ≥ 1,

an = 8(10)n+1
9
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Solution. base case: let n=0, a0 = 8∗(10)0+1
9 = 1 The base case works.

Inductive hypothesis: ak+1 = 10ak − 1 and ak = 8(10)k+1
9

Inductive Step:

ak+1 = 8(10)k+1+1
9 = 10∗8∗10k+1

9 = 10( 8∗10k
9 )

ak − 1
9 = 8∗10k

9

Then, 10( 8∗10k
9 ) = 10(ak − 1

9 ) + 1
9

Simplifying this further, we get that the expression equals 10ak − 1 which is
exactly what ak+1 equals to. Thus, this problem has been proved by induction.

We can also apply induction to examples that require both intuitive thinking
and mathematical manipulation.

Example 2.5 (Exercise 2.4 from [1]). Prove that a positive integer is divisible
by 3 if and only if the sum of its digits is divisible by 3.

Solution. To actually solve this, we will use an interesting approach. This ap-
proach is modules. Mods are extremely helpful with divisibility, which is perfect
for the problem at hand. We will have to think about divisibility intuitively and
solve with mods.

base case: let n = 3, then 3/3 = 1, whole number. So this works!
let k = a0 + a1 + ·+ ak.
If a number,n is divisible by 3, it means that its 0mod(3). mod(3) means

that n and the sum of the digits of n will be equivalent to the same number,
mod(3). If a number has 0mod(3), it is divisible by 3. If it has 1mod(3) or
2mod(3), then the number is not divisible by 3. There are two states that come
from this:

1. If the mod(3) for n is 0, then n and the sum of its digits will be divisible
by 3.

2. If the mod(3) doesn’t equal 0, then neither n nor the sum of its digits will
be divisible by 3.

Induction allows us to walk through elementary principles and prove them
as shown here.

3 Generating Functions

Induction is a powerful way to prove an explicit formula given such formula
or deriving such formula. However, if this formula isn’t given or is hard to
determine, we need to use generating functions.
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3.1 What is a Generating Function

As shown above, induction is a classical way to solve recurrences that would be
very hard without a the closed form. Generating functions allows the derivation
of a closed form by using the elements of a sequence as the coefficients of a
power series. However, in order to do so we must neglect convergence and allow
the series to diverge. First, we start by introducing the necessary background
knowledge for generating functions.

3.2 Background

Since generating functions derives a closed form by using elements of a sequences
as coefficients of a power series, we must introduce the definition and application
of a power series.

A power series is an infinite sequence of a certain form - a summation of
polynomial x. Because generating functions deal with formal power series, we
can ignore convergence because generating functions solves for coefficients and
not specific values of x. Because of this, we can state the following theorem.

Theorem 2. For all values of x,

f(x) = 1 + x + x2 + x3 + ... =
1

1− x

Proof. First, we define the function S to be f(x).

S = 1 + x + x2 + x3 + · · ·

Then, we multiple both sides by x.

Sx = x + x2 + x3 + x4 · · ·

Then we subtract the two equations and factor out S on the left.

(1− x) = 1

Lastly, we solve for S

S =
1

1− x

Definition 3.1. Let f(x) = 1
a2−2ab+b2 , where a and b are the roots of the

quadratic, then the partial fractions for this function are f(s) = A
a−b + B

a−b ,
where A and B are coefficients.

Example 3.1.
1

2x2 + 3x + 1
=

A

2x + 1
+

B

x + 1
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Solution. To solve this problem, we will use simple testing values to solve for A
and B. Let x=0 and x=1. This will yield:

1 = A + B

1

6
=

A

3
+

B

2

Now, we have a system of equations with 2 unknowns and 2 equations. This
can now be easily solved. The solution is that A=2 and B=-1.

Thus,
1

2x2 + 3x + 1
=

2

2x + 1
− 1

x + 1

3.3 Simple Examples

Example 3.2. Let an+2 = 3an+1− 2an if n ≥ 0, and let a0 = 0 and let a1 = 1.
Find an explicit formula for an.

Solution. recursive formula: an+2 = 3an+1 − 2an, n ≥ 0

Let G(x) =
∞∑

n=0
anx

n.

Then, multiply both sides of the recurrence relation by xn+2 and take the
sum across all natural numbers n:

∞∑
n=0

an+2x
n+2 = 3

∞∑
n=0

an+1x
n+2 − 2

∞∑
n=0

anx
n+2

Substitute in G(x):

G(x)− ao − a1x = 3xG(x)− 2x2G(x)

G(x)− 3xG(x) + 2x2G(x) = a0 + a1x

G(x)(1− 3x + 2x2) = x

G(x) =
x

2x2 − 3x + 1

Using partial fraction decomposition we then find that

x

2x2 − 3x + 1
=

A

2x− 1
+

B

x− 1

.
We now have to use simple testing values to solve for A and B. If x=2 and

x=3, then...
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2 = A + 3B

3 = 2A + 5B

We now have a system of equations that can be solved to find the two
unknowns, A and B. By solving the system we find that A = −1 and B = 1.

Thus,

G(x) =
−1

2x− 1
+

1

x− 1

And if we multiply this by negative one we find that

G(x) =
1

1− 2x
− 1

1− x

... and can use the series expansion that we previously learned to continue
solving.

G(x) =

∞∑
n=0

(2x)n −
∞∑

n=0

xn

G(x) =

∞∑
n=0

(2n − 1)xn

Based on how we defined G(x) at the beginning, we can then substitute and
further simplify

∞∑
n=0

anx
n =

∞∑
n=0

(2n − 1)xn

Therefore,
an = 2n − 1

In the previous example we were fortunate enough to have been given the
recursive formula in the problem. However, sometimes we have to derive the
formula ourselves based on the information given like in the following example.

Example 3.3. We have invested 1000 dollars into a savings account that pays
five percent interest at the end of each year. At the beginning of each year, we
deposit another 500 dollars into this account. How much money will be in this
account after n years?

Solution. First, we have to find a recurrence relation based on the information
given to us in the problem.

If an = the amount of money in the account after n years, then a0 = 1000
and thus,

an+1 = 1.05 · an + 500

.
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Let G(x) =
∞∑

n=0
anx

n.

Then, multiply both sides of the recurrence relation by xn+1 and take the
sum across all natural numbers n:

∞∑
n=0

an+1x
n+1 =

∞∑
n=0

1.05anx
n+1 +

∞∑
n=0

500xn+1

Substitute in G(x):

G(x)− ao = 1.05xG(x) +
500x

1− x

G(x)− 1.05xG(x) = ao +
500x

1− x

G(x)(1− 1.05x) = 1000 +
500x

1− x

G(x) =
1000

1− 1.05x
+

500x

(1− x) · (1− 1.05x)

Given that...
1000

1− 1.05x
= 1000 ·

∞∑
n=0

1.05nxn

500x

(1− x)(1− 1, 05x)
= 500x · (

∞∑
n=0

xn)(

∞∑
n=0

1.052xn)

We can substitute and further simplify this expression:

∞∑
n=0

anx
n = 1000 ·

∞∑
n=0

(1.05)nxn + 500x · (
∞∑

n=0

xn)(

∞∑
n=0

1.052xn)

Therefore,

an = 1000 · 1.05n + 10000 · (1.05n − 1) = 1.05n · 11000− 10000

3.4 A More Complex Example

Now that we have walked through a couple of simple, basic, and classic gen-
erating function problems, what happens when the approach is not as straight
forward. An intuitive problem can also be solved with generating functions, but
like complex induction problems, we have to create and set up the problem so
that generating functions works.
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Example 3.4. A child wants to walk up a stairway. At each step, she moves
up either one or two stairs. Let f(n) be the number of ways she can reach the
n-th stair. Find a closed explicit formula for f(n).

Solution. We are given that f(0) = 1 (1 way to take zero steps) and f(1) = 1 (1
way to take 1 step. To start this problem, we will first find a recursive formula:

f(n) = f(n− 1) + f(n− 2) (1)

f(n + 2) = f(n + 1) + f(n) (2)

First we will multiple Equation 2 by

xn+2

and take the sum of all terms from n = 0 to n=∞.Thiswillyieldthefollowingequation :

∞∑
n=0

f(n + 2)xn+2 =

∞∑
n=0

f(n + 1)xn+2 +

∞∑
n=0

f(n)xn+2 (3)

We will then simplify 3 to become:

∞∑
n=0

f(n + 2)xnx2 =

∞∑
n=0

f(n + 1)xnx2 +

∞∑
n=0

f(n)xnx2 (4)

At this point, it is necessary for us to define what our generating function
will be:

G(x) =

∞∑
n=0

f(n)xn (5)

We will now substitute G(x) into our derived equation:

G(x)− f(0)− f(1)x = x(G(x)− f(0)) + G(x)x2 (6)

Simplifying this equation, substituting f(0) and f(1), and solving for G(x):

G(x) =
1

1− x− x2
(7)

Now we can use partial fractions as shown in 3.1,we can decompose this
fraction.

G(x) =
1

1− x− x2
=

A

x + 1−
√
5

2

+
B

x− 1+
√
5

2

(8)

Solving for A and B using partial fractions, A = 1−
√
5

3 and B = 1−
√
5

6
So the final equation is:

G(x) =
1−
√
5

5

x + 1−
√
5

2

+
1−
√
5

6

x− 1+
√
5

2

(9)
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This equation looks very ugly but with some rearranging, this equation be-
comes:

G(x) =
2− 2

√
5

6x + 3− 3
√

5
+

2− 2
√

5

12x− 6− 6
√

5
(10)

Still looks ugly, but there seems to be a common factor of

1−
√

5

in the fractions. Let us set

c = 1−
√

5andd = 1 +
√

5

. Then the equation is:

G(x) =
2c

6x + 3c
+

2c

12x− 6d
(11)

With this equation we can do some manipulating so that we can use 2. Let’s
divide the first term by 6x and the second term by 12x and 2:

G(x) =
2

3

1

1− −2c
+

c

3d

1
−2x
d + 1

(12)

Now we can see that 2 can be used to an extent. With more algebra and
re-arranging, we finally get the following explicit formula:

2(1 +
√

5)
n

+ cn
√
5−3
2

3 ∗ 2n
(13)

Although not a very nice explicit formula, it is still an explicit formula to
describes the original explicit formula. In fact, if you had seen this problem
before, the answer and process is the Fibonacci sequence, which is pretty much
what we received.

4 Conclusion

As shown, Generating Functions and Induction are incredibly powerful mathe-
matical tools. They can be used to solve similar types of problems: recurrences.
When given an explicit formula, induction is a simple approach to prove this
formula for all natural numbers. However, when a formula is not given or is
not clear, generating functions would be the better approach because it creates
a closed form for a more general situation. Given this, Generating Functions
and Induction are extremely useful tools in the field of mathematics and make
problems much similar than they may seem.
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