The Pak–Postnikov and Naruse skew hook length formulas: a new proof

Nazar Korniichuk (NSL no. 145, Kyiv) Kostiantyn Molokanov (NSL no. 145, Kyiv) Severyn Khomych (Brucknergymnasium, Wels) mentor: Darij Grinberg (Drexel University)

14 June 2023, MIT

slides: http: //www.cip.ifi.lmu.de/~grinberg/algebra/yd2023.pdf

 A partition is a weakly decreasing sequence
 λ = (λ₁ ≥ λ₂ ≥ λ₃ ≥ ...) of nonnegative integers with only
 finitely many positive entries.

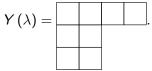
- A partition is a weakly decreasing sequence
 λ = (λ₁ ≥ λ₂ ≥ λ₃ ≥ ...) of nonnegative integers with only
 finitely many positive entries.
- The Young diagram of this partition λ is a left-aligned table with λ_i cells in row i (indexed from the top). We call it Y (λ). Formally:

$$Y\left(\lambda
ight) = \left\{\left(i,j
ight) \mid i > 0 ext{ and } 0 < j \leq \lambda_i
ight\}.$$

- A partition is a weakly decreasing sequence
 λ = (λ₁ ≥ λ₂ ≥ λ₃ ≥ ...) of nonnegative integers with only
 finitely many positive entries.
- The Young diagram of this partition λ is a left-aligned table with λ_i cells in row i (indexed from the top). We call it Y (λ). Formally:

$$Y(\lambda) = \{(i,j) \mid i > 0 \text{ and } 0 < j \le \lambda_i\}.$$

• **Example:** If $\lambda = (4, 2, 2, 0, 0, 0, ...) = (4, 2, 2)$ (we omit zeroes), then



- A partition is a weakly decreasing sequence
 λ = (λ₁ ≥ λ₂ ≥ λ₃ ≥ ...) of nonnegative integers with only
 finitely many positive entries.
- The Young diagram of this partition λ is a left-aligned table with λ_i cells in row i (indexed from the top). We call it Y (λ). Formally:

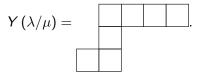
 $Y(\lambda) = \{(i,j) \mid i > 0 \text{ and } 0 < j \le \lambda_i\}.$

Two partitions μ and λ satisfy μ ⊆ λ if Y (μ) ⊆ Y (λ). In this case, the skew diagram Y (λ/μ) is defined to be Y (λ) \ Y (μ).

- A partition is a weakly decreasing sequence
 λ = (λ₁ ≥ λ₂ ≥ λ₃ ≥ ...) of nonnegative integers with only
 finitely many positive entries.
- The Young diagram of this partition λ is a left-aligned table with λ_i cells in row i (indexed from the top). We call it Y (λ). Formally:

$$Y(\lambda) = \{(i,j) \mid i > 0 \text{ and } 0 < j \le \lambda_i\}.$$

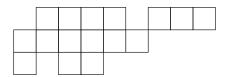
- Two partitions μ and λ satisfy μ ⊆ λ if Y (μ) ⊆ Y (λ). In this case, the skew diagram Y (λ/μ) is defined to be Y (λ) \ Y (μ).
- Example: If $\lambda = (5,2,2)$ and $\mu = (1,1)$, then



- A partition is a weakly decreasing sequence
 λ = (λ₁ ≥ λ₂ ≥ λ₃ ≥ ...) of nonnegative integers with only
 finitely many positive entries.
- The Young diagram of this partition λ is a left-aligned table with λ_i cells in row i (indexed from the top). We call it Y (λ). Formally:

 $Y(\lambda) = \{(i,j) \mid i > 0 \text{ and } 0 < j \le \lambda_i\}.$

- Two partitions μ and λ satisfy μ ⊆ λ if Y (μ) ⊆ Y (λ). In this case, the skew diagram Y (λ/μ) is defined to be Y (λ) \ Y (μ).
- More generally, any set of (square) cells is called a *diagram*.
- Example:



- Given a diagram *D*, we can fill it with the numbers 1, 2, ..., *n*. Such a filling is called a *standard tableau* (of shape *D*) if
 - each of the numbers 1, 2, ..., *n* appears exactly once;
 - the numbers increase along each row;
 - the numbers increase down each column.

- Given a diagram *D*, we can fill it with the numbers 1, 2, ..., *n*. Such a filling is called a *standard tableau* (of shape *D*) if
 - each of the numbers 1, 2, ..., *n* appears exactly once;
 - the numbers increase along each row;
 - the numbers increase down each column.
- If $D = Y(\lambda)$, we let SYT (λ) be the set of all standard tableaux of shape $Y(\lambda)$.

- Given a diagram *D*, we can fill it with the numbers 1, 2, ..., *n*. Such a filling is called a *standard tableau* (of shape *D*) if
 - each of the numbers 1, 2, ..., *n* appears exactly once;
 - the numbers increase along each row;
 - the numbers increase down each column.
- If $D = Y(\lambda)$, we let SYT(λ) be the set of all standard tableaux of shape $Y(\lambda)$.
- Likewise SYT (λ/μ) .

- Given a diagram *D*, we can fill it with the numbers 1, 2, ..., *n*. Such a filling is called a *standard tableau* (of shape *D*) if
 - each of the numbers 1, 2, ..., *n* appears exactly once;
 - the numbers increase along each row;
 - the numbers increase down each column.
- If $D = Y(\lambda)$, we let SYT (λ) be the set of all standard tableaux of shape $Y(\lambda)$.
- Likewise SYT (λ/μ) .
- Example: If $\lambda = (5,4,3,3)$ and $\mu = (2,1,1)$, then

- Given a diagram *D*, we can fill it with the numbers 1, 2, ..., *n*. Such a filling is called a *standard tableau* (of shape *D*) if
 - each of the numbers 1, 2, ..., *n* appears exactly once;
 - the numbers increase along each row;
 - the numbers increase down each column.
- If D = Y (λ), we let SYT (λ) be the set of all standard tableaux of shape Y (λ).
- Likewise SYT (λ/μ) .
- Example: If $\lambda = (5,4,3,3)$ and $\mu = (2,1,1)$, then

• **Question:** Given a diagram *D*, how many standard tableaux of shape *D* exist?

Hooks

 For D = Y (λ), the classical hook length formula of Frame, Robinson and Thrall (1953) gives a beautiful answer in terms of the hooks of λ. If c = (i, j) is a cell of a Young diagram Y (λ), we let the hook H_λ (c) be

 $\{ \text{all cells of } Y(\lambda) \text{ lying due east of } c \}$ $\cup \{ \text{all cells of } Y(\lambda) \text{ lying due south of } c \} \cup \{ c \}$

 $=\left\{\left(i,k\right)\in Y\left(\lambda\right) \ | \ k\geq j\right\}\cup\left\{\left(k,j\right)\in Y\left(\lambda\right) \ | \ k\geq i\right\}.$

If c = (i, j) is a cell of a Young diagram Y (λ), we let the hook H_λ (c) be

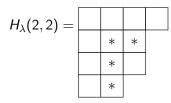
 $\begin{aligned} & \{ \text{all cells of } Y(\lambda) \text{ lying due east of } c \} \\ & \cup \{ \text{all cells of } Y(\lambda) \text{ lying due south of } c \} \cup \{ c \} \\ & = \{ (i,k) \in Y(\lambda) \ | \ k \ge j \} \cup \{ (k,j) \in Y(\lambda) \ | \ k \ge i \} \,. \end{aligned}$

The hook length h_λ(c) is defined to be |H_λ(c)|, that is, the number of all cells in the hook of c.

If c = (i, j) is a cell of a Young diagram Y (λ), we let the hook H_λ (c) be

 $\begin{aligned} & \{ \text{all cells of } Y(\lambda) \text{ lying due east of } c \} \\ & \cup \{ \text{all cells of } Y(\lambda) \text{ lying due south of } c \} \cup \{ c \} \\ & = \{ (i,k) \in Y(\lambda) \mid k \ge j \} \cup \{ (k,j) \in Y(\lambda) \mid k \ge i \} . \end{aligned}$

- The hook length h_λ(c) is defined to be |H_λ(c)|, that is, the number of all cells in the hook of c.
- **Example:** If $\lambda = (4, 3, 3, 2)$, then



and
$$h_{\lambda}(2,2) = 4$$
.

The hook length formula

• The original hook length formula says that

$$|\mathsf{SYT}(\lambda)| = rac{n!}{\prod\limits_{c \in Y(\lambda)} h_{\lambda}(c)},$$

where *n* is the number of cells in $Y(\lambda)$.

The hook length formula

• The original *hook length formula* says that

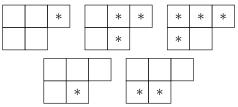
$$|\mathsf{SYT}(\lambda)| = rac{n!}{\prod\limits_{c \in \mathsf{Y}(\lambda)} h_{\lambda}(c)}$$

where *n* is the number of cells in $Y(\lambda)$.

• **Example:** If $\lambda = (3, 2)$, then

$$|\operatorname{SYT}(\lambda)| = \frac{5!}{1 \cdot 3 \cdot 4 \cdot 1 \cdot 2} = 5.$$

Here are the hooks of all five cells:



The hook length formula

• The original *hook length formula* says that

$$|\mathsf{SYT}(\lambda)| = \frac{n!}{\prod\limits_{c \in \mathsf{Y}(\lambda)} h_{\lambda}(c)}$$

where *n* is the number of cells in $Y(\lambda)$.

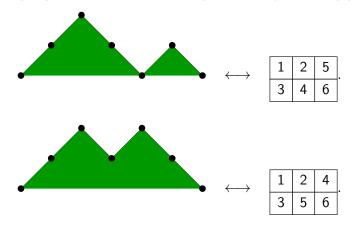
• **Example:** If $\lambda = (3, 2)$, then

SYT
$$(\lambda) | = \frac{5!}{1 \cdot 3 \cdot 4 \cdot 1 \cdot 2} = 5.$$

Here is $SYT(\lambda)$:

The hook length formula: example

Example: The number of Dyck paths from (0,0) to (2n,0) is the *n*-th Catalan number C_n = (2n)!/(n!(n+1)!). This follows from the hook length formula, applied to λ = (n, n), and a simple bijection {Dyck paths} → SYT (λ):



• Naruse's skew hook length formula (Naruse, 2014) expresses $|SYT(\lambda/\mu)|$ in terms of excitations.

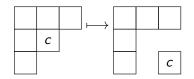
An excited move for a cell c = (i, j) ∈ D means moving this cell from (i, j) to (i + 1, j + 1). This is allowed only if the three cells marked × (that is, (i + 1, j), (i, j + 1), (i + 1, j + 1)) are not in D.

$$\begin{array}{c} c \\ \times \\ \times \\ \end{array} \times \begin{array}{c} \times \\ \end{array} \times \begin{array}{c} \times \\ \end{array} \times \begin{array}{c} \times \\ \times \\ \end{array} \times \begin{array}{c} \end{array} \times \begin{array}{c} \times \\ \end{array} \times \begin{array}{c} \times \\ \end{array} \times \begin{array}{c} \end{array}$$

An excited move for a cell c = (i, j) ∈ D means moving this cell from (i, j) to (i + 1, j + 1). This is allowed only if the three cells marked × (that is, (i + 1, j), (i, j + 1), (i + 1, j + 1)) are not in D.

$$\begin{array}{c} c \\ \times \\ \times \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \\ \times \\ \end{array} \xrightarrow{} \\ \times \\ \begin{array}{c} c \\ \end{array} \xrightarrow{} \\ c \\ \end{array}$$

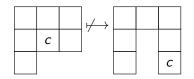
• Example:



An excited move for a cell c = (i, j) ∈ D means moving this cell from (i, j) to (i + 1, j + 1). This is allowed only if the three cells marked × (that is, (i + 1, j), (i, j + 1), (i + 1, j + 1)) are not in D.

$$\begin{array}{c} c \\ \times \\ \times \\ \end{array} \times \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \times \\ \times \\ \end{array} \xrightarrow{} \\ c \\ \end{array}$$

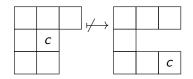
However,



An excited move for a cell c = (i, j) ∈ D means moving this cell from (i, j) to (i + 1, j + 1). This is allowed only if the three cells marked × (that is, (i + 1, j), (i, j + 1), (i + 1, j + 1)) are not in D.

$$\begin{array}{c} c \\ \times \\ \times \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \\ \times \\ \end{array} \xrightarrow{} \\ \times \\ \begin{array}{c} c \\ \end{array} \xrightarrow{} \\ c \\ \end{array}$$

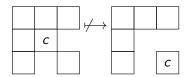
However,



An excited move for a cell c = (i, j) ∈ D means moving this cell from (i, j) to (i + 1, j + 1). This is allowed only if the three cells marked × (that is, (i + 1, j), (i, j + 1), (i + 1, j + 1)) are not in D.

$$\begin{array}{c} c \\ \times \\ \times \end{array} \times \begin{array}{c} \times \\ \times \end{array} \to \begin{array}{c} \times \\ \times \\ \end{array} \times \begin{array}{c} \end{array} \times \begin{array}{c} \end{array} \\ c \end{array}$$

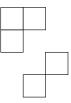
However,



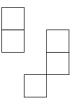
- An *excitation* of a diagram *D* is a diagram obtained from *D* by a sequence of excited moves.
- Example: Original diagram D:

Example: After a single excited move:

Example: After two excited moves:



Example: After three excited moves:



Example: After four excited moves:

Now, for two partitions λ and μ, we define E (λ/μ) to be the set of all excitations E of Y (μ) that satisfy E ⊆ Y (λ).

Naruse's skew hook length formula

• Naruse's skew hook length formula says that

$$|\mathsf{SYT}(\lambda/\mu)| = n! \sum_{E \in \mathcal{E}(\lambda/\mu)} \prod_{c \in Y(\lambda) \setminus E} \frac{1}{h_{\lambda}(c)}$$

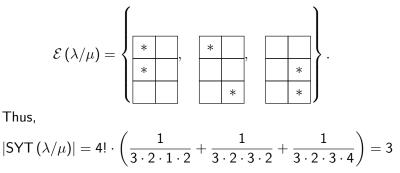
if λ and μ are two partitions with $\mu \subseteq \lambda$ with $|Y(\lambda/\mu)| = n$.

Naruse's skew hook length formula

Naruse's skew hook length formula says that

$$|\mathsf{SYT}(\lambda/\mu)| = n! \sum_{E \in \mathcal{E}(\lambda/\mu)} \prod_{c \in Y(\lambda) \setminus E} \frac{1}{h_{\lambda}(c)}$$

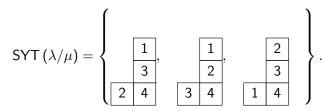
if λ and μ are two partitions with $\mu \subseteq \lambda$ with $|Y(\lambda/\mu)| = n$. • **Example:** If $\lambda = (2, 2, 2)$ and $\mu = (1, 1)$, then



Naruse's skew hook length formula says that

$$|\mathsf{SYT}(\lambda/\mu)| = n! \sum_{E \in \mathcal{E}(\lambda/\mu)} \prod_{c \in Y(\lambda) \setminus E} \frac{1}{h_{\lambda}(c)}$$

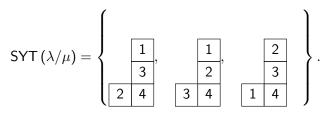
if λ and μ are two partitions with $\mu \subseteq \lambda$ with $|Y(\lambda/\mu)| = n$. • Example: If $\lambda = (2, 2, 2)$ and $\mu = (1, 1)$, then



• Naruse's skew hook length formula says that

$$|\mathsf{SYT}(\lambda/\mu)| = n! \sum_{E \in \mathcal{E}(\lambda/\mu)} \prod_{c \in Y(\lambda) \setminus E} \frac{1}{h_{\lambda}(c)}$$

if λ and μ are two partitions with $\mu \subseteq \lambda$ with $|Y(\lambda/\mu)| = n$. • Example: If $\lambda = (2, 2, 2)$ and $\mu = (1, 1)$, then



 Known proofs use algebraic geometry (Naruse) or complicated combinatorics (Morales/Pak/Panova and Konvalinka).

• In 2001, Pak and Postnikov generalized the classical hook length formula in a different direction.

• Example: If
$$T = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 5 \end{bmatrix}$$
, then
 $c_T(1) = 1 - 1 = 0,$
 $c_T(2) = 1 - 2 = -1,$
 $c_T(3) = 2 - 1 = 1,$
 $c_T(4) = 3 - 1 = 2,$
 $c_T(5) = 2 - 2 = 0.$

• Example: If
$$T = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 5 \end{bmatrix}$$
, then
 $c_T(1) = 1 - 1 = 0,$
 $c_T(2) = 1 - 2 = -1,$
 $c_T(3) = 2 - 1 = 1,$
 $c_T(4) = 3 - 1 = 2,$
 $c_T(5) = 2 - 2 = 0.$

• Example: If
$$T = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 5 \end{bmatrix}$$
, then

$$c_{T}(1) = 1 - 1 = 0,$$

$$c_{T}(2) = 1 - 2 = -1,$$

$$c_{T}(3) = 2 - 1 = 1,$$

$$c_{T}(4) = 3 - 1 = 2,$$

$$c_{T}(5) = 2 - 2 = 0.$$

• Example: If
$$T = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 5 \end{bmatrix}$$
, then
 $c_T(1) = 1 - 1 = 0,$
 $c_T(2) = 1 - 2 = -1,$
 $c_T(3) = 2 - 1 = 1,$
 $c_T(4) = 3 - 1 = 2,$
 $c_T(5) = 2 - 2 = 0.$

• Example: If
$$T = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 5 \end{bmatrix}$$
, then
 $c_T(1) = 1 - 1 = 0,$
 $c_T(2) = 1 - 2 = -1,$
 $c_T(3) = 2 - 1 = 1,$
 $c_T(4) = 3 - 1 = 2,$
 $c_T(5) = 2 - 2 = 0.$

- If T is a standard tableau (of any shape), and if k is a positive integer, then $c_T(k)$ shall denote the difference j i, where (i, j) is the cell of T that contains the entry k.
- Let $\ldots, z_{-2}, z_{-1}, z_0, z_1, z_2, \ldots$ be commuting indeterminates.

- If T is a standard tableau (of any shape), and if k is a positive integer, then $c_T(k)$ shall denote the difference j i, where (i, j) is the cell of T that contains the entry k.
- Let \ldots , z_{-2} , z_{-1} , z_0 , z_1 , z_2 , \ldots be commuting indeterminates.
- For any cell c = (i, j) of $Y(\lambda)$, we define the *algebraic hook length* $h_{\lambda}(c; z)$ by

$$h_{\lambda}(c;z) := \sum_{(i,j)\in H_{\lambda}(c)} z_{j-i}.$$

- If T is a standard tableau (of any shape), and if k is a positive integer, then $c_T(k)$ shall denote the difference j i, where (i, j) is the cell of T that contains the entry k.
- Let \ldots , z_{-2} , z_{-1} , z_0 , z_1 , z_2 , \ldots be commuting indeterminates.
- For any cell c = (i, j) of Y (λ), we define the algebraic hook length h_λ (c; z) by

$$h_{\lambda}(c;z) := \sum_{(i,j)\in H_{\lambda}(c)} z_{j-i}.$$

• For any standard tableau T with n cells, we define the fraction

$$z_{\mathcal{T}} := \frac{1}{\prod_{k=1}^{n} \left(z_{c_{\mathcal{T}}(k)} + z_{c_{\mathcal{T}}(k+1)} + \dots + z_{c_{\mathcal{T}}(n)} \right)}$$

- If T is a standard tableau (of any shape), and if k is a positive integer, then $c_T(k)$ shall denote the difference j i, where (i, j) is the cell of T that contains the entry k.
- Let \ldots , z_{-2} , z_{-1} , z_0 , z_1 , z_2 , \ldots be commuting indeterminates.
- For any cell c = (i, j) of Y (λ), we define the algebraic hook length h_λ (c; z) by

$$h_{\lambda}(c;z) := \sum_{(i,j)\in H_{\lambda}(c)} z_{j-i}.$$

• For any standard tableau T with n cells, we define the fraction

$$z_{T} := \frac{1}{\prod_{k=1}^{n} \left(z_{c_{T}(k)} + z_{c_{T}(k+1)} + \dots + z_{c_{T}(n)} \right)}$$

• The *Pak-Postnikov generalization of the hook length formula* states that

$$\sum_{T \in \mathsf{SYT}(\lambda)} z_T = \prod_{c \in Y(\lambda)} \frac{1}{h_{\lambda}(c; z)}.$$

The Pak–Postnikov generalization: example

• Example: For $\lambda = (2, 1)$, we have SYT $(\lambda) = \left\{ \begin{array}{c|c} 1 & 2 \\ \hline 3 & 2 \end{array} \right\}$, so the formula becomes $\frac{1}{z_{-1}(z_{-1} + z_1)(z_{-1} + z_1 + z_0)} + \frac{1}{z_1(z_1 + z_{-1})(z_1 + z_{-1} + z_0)}$ $= \frac{1}{(z_1 + z_{-1} + z_0)z_1z_{-1}}$.

The Pak–Postnikov generalization: example

• Example: For
$$\lambda = (2, 1)$$
, we have

$$SYT(\lambda) = \left\{ \begin{array}{c|c} 1 & 2 \\ \hline 3 & 2 \end{array} \right\}, \text{ so the formula becomes} \\
\frac{1}{z_{-1}(z_{-1} + z_{1})(z_{-1} + z_{1} + z_{0})} + \frac{1}{z_{1}(z_{1} + z_{-1})(z_{1} + z_{-1} + z_{0})} \\
= \frac{1}{(z_{1} + z_{-1} + z_{0})z_{1}z_{-1}}.$$

 Known proofs involve polytopes (Pak/Postnikov) or P-partitions and tropical RSK (Hopkins).

• We propose a generalization of the Pak–Postnikov formula to skew diagrams, thus extending Naruse's hook length formula as well.

Main theorem. Let λ and μ be two partitions with μ ⊆ λ such that the skew diagram Y (λ/μ) has n cells. Define z_T for T ∈ SYT (λ/μ) as before. Define h_λ (c; z) for c ∈ Y (λ) as before (this does not depend on μ!).

Main theorem. Let λ and μ be two partitions with μ ⊆ λ such that the skew diagram Y (λ/μ) has n cells. Then,

$$\sum_{T \in \mathsf{SYT}(\lambda/\mu)} z_T = \sum_{E \in \mathcal{E}(\lambda/\mu)} \prod_{c \in Y(\lambda) \setminus E} \frac{1}{h_\lambda(c;z)}.$$

Main theorem. Let λ and μ be two partitions with μ ⊆ λ such that the skew diagram Y (λ/μ) has n cells. Then,

$$\sum_{T\in \mathsf{SYT}(\lambda/\mu)} z_T = \sum_{E\in \mathcal{E}(\lambda/\mu)} \quad \prod_{c\in Y(\lambda)\setminus E} rac{1}{h_\lambda\left(c;z
ight)}.$$

• Example: For $\lambda = (2,2)$ and $\mu = (1)$, we have

$$\operatorname{SYT}(\lambda/\mu) = \left\{ \begin{array}{c|c} 1\\ \hline 2 & 3 \end{array}, \begin{array}{c} 2\\ \hline 1 & 3 \end{array} \right\} \quad \text{and} \quad \mathcal{E}(\lambda/\mu) = \left\{ \begin{array}{c|c} *\\ \hline \end{array}, \begin{array}{c} \\ \hline \end{array} \right\},$$

so the formula becomes

$$\frac{1}{z_0 \cdot (z_0 + z_{-1}) \cdot (z_0 + z_{-1} + z_1)} + \frac{1}{z_0 \cdot (z_0 + z_1) \cdot (z_0 + z_1 + z_{-1})} = \frac{1}{(z_1 + z_0) \cdot z_0 \cdot (z_{-1} + z_0)} + \frac{1}{(z_1 + z_0) \cdot (z_0 + z_{-1} + z_1) \cdot (z_{-1} + z_0)}.$$

Main theorem. Let λ and μ be two partitions with μ ⊆ λ such that the skew diagram Y (λ/μ) has n cells. Then,

$$\sum_{T\in \mathsf{SYT}(\lambda/\mu)} z_T = \sum_{E\in \mathcal{E}(\lambda/\mu)} \quad \prod_{c\in Y(\lambda)\setminus E} rac{1}{h_\lambda\left(c;z
ight)}.$$

• Example: For $\lambda = (2,2)$ and $\mu = (1)$, we have

$$\operatorname{SYT}(\lambda/\mu) = \left\{ \begin{array}{c|c} 1\\ \hline 2 & 3 \end{array}, \begin{array}{c} 2\\ \hline 1 & 3 \end{array} \right\} \quad \text{and} \quad \mathcal{E}(\lambda/\mu) = \left\{ \begin{array}{c|c} *\\ \hline \end{array}, \begin{array}{c} \\ \hline \end{array} \right\},$$

so the formula becomes

$$rac{1}{z_0 \cdot (z_0+z_{-1}) \cdot (z_0+z_{-1}+z_1)} + rac{1}{z_0 \cdot (z_0+z_1) \cdot (z_0+z_1+z_{-1})} = \ rac{1}{(z_1+z_0) \cdot z_0 \cdot (z_{-1}+z_0)} + rac{1}{(z_1+z_0) \cdot (z_0+z_{-1}+z_1) \cdot (z_{-1}+z_0)}.$$

 This was first observed by Grinberg. An intricate combinatorial proof was sketched by Konvalinka in 2019.

• We propose a new, elementary proof of this generalized formula.

- We propose a new, elementary proof of this generalized formula.
- Induct on $|Y(\lambda/\mu)|$, increasing μ by one cell in the induction step.

• Let
$$f(\lambda/\mu) = \sum_{T \in SYT(\lambda)} z_T$$
.

• Let
$$f(\lambda/\mu) = \sum_{T \in SYT(\lambda)} z_T$$
.

• We easily obtain the recurrence

$$z_T = rac{1}{\sum\limits_{(i,j)\in \mathbf{Y}(\lambda/\mu)} z_{j-i}} \cdot z_{T'},$$

where T' is the same tableau as T, with the entry 1 removed and all other entries decreased by 1.

• Let
$$f(\lambda/\mu) = \sum_{T \in SYT(\lambda)} z_T$$
.

• We easily obtain the recurrence

$$z_{\mathcal{T}} = rac{1}{\sum\limits_{(i,j)\in \mathbf{Y}(\lambda/\mu)} z_{j-i}} \cdot z_{\mathcal{T}'},$$

where T' is the same tableau as T, with the entry 1 removed and all other entries decreased by 1.

• **Example:** Let $\lambda = (3, 3, 2)$ and $\mu = (2, 1)$.

If T is ...then T' is ...
$$2$$
 1 3 4 5 3 4 3

for $\nu = (2, 2)$. Thus, $z_T = \frac{1}{z_{-1}+z_{-2}+z_1+z_2+z_0} \cdot z_{T'}$.

• Thus we get a recurrence for $f(\lambda/\mu)$:

$$f(\lambda/\mu) = \frac{1}{\sum\limits_{(i,j)\in \mathsf{Y}(\lambda/\mu)} z_{j-i}} \cdot \sum_{\mu < \nu \subseteq \lambda} f(\lambda/\nu).$$

 Here, μ ≤ ν means that the partition ν is obtained by adding 1 to some entry of μ.

• Thus we get a recurrence for $f(\lambda/\mu)$:

$$f(\lambda/\mu) = \frac{1}{\sum\limits_{(i,j)\in \mathsf{Y}(\lambda/\mu)} z_{j-i}} \cdot \sum_{\mu < \nu \subseteq \lambda} f(\lambda/\nu).$$

- Here, μ ≤ ν means that the partition ν is obtained by adding 1 to some entry of μ.
- The induction step thus reduces to the following claim:
- Konvalinka recursion. Let λ/μ be any skew partition, and let x₁, x₂, x₃,... and y₁, y₂, y₃,... be two infinite families of commuting indeterminates. Then,

$$\begin{pmatrix} \sum_{\frac{3}{2}i: \lambda_k - k = \mu_i - i} x_k + \sum_{\frac{3}{2}j: \lambda_p^t - \rho = \mu_j^t - j} y_\rho \end{pmatrix} \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in D} (x_i + y_j) \\ = \sum_{\mu < \nu \subseteq \lambda} \sum_{D \in \mathcal{E}(\lambda/\nu)} \prod_{(i,j) \in D} (x_i + y_j).$$

- Let *D* be a diagram. A *semistandard tableau* (of shape *D*) means a filling of the cells of *D* with positive integers such that
 - the numbers weakly increase along each row,
 - the numbers strictly increase down each column.

• **Example:** Here is a semistandard tableau for $\mu = (4, 3, 1)$:

1	1	1	2
2	3	3	
4			

- Let *D* be a diagram. A *semistandard tableau* (of shape *D*) means a filling of the cells of *D* with positive integers such that
 - the numbers weakly increase along each row,
 - the numbers strictly increase down each column.
- A *flagging* means a sequence **b** := ($b_1, b_2, b_3, ...$) of positive integers.

- Let *D* be a diagram. A *semistandard tableau* (of shape *D*) means a filling of the cells of *D* with positive integers such that
 - the numbers weakly increase along each row,
 - the numbers strictly increase down each column.
- A *flagging* means a sequence **b** := ($b_1, b_2, b_3, ...$) of positive integers.
- A flagged semistandard tableau of shape (μ, b) is a semistandard tableau of shape Y (μ) in which all entries in row i are ≤ b_i.

- Let *D* be a diagram. A *semistandard tableau* (of shape *D*) means a filling of the cells of *D* with positive integers such that
 - the numbers weakly increase along each row,
 - the numbers strictly increase down each column.
- A *flagging* means a sequence **b** := ($b_1, b_2, b_3, ...$) of positive integers.
- A *flagged semistandard tableau* of shape (µ, b) is a semistandard tableau of shape Y (µ) in which all entries in row i are ≤ b_i.

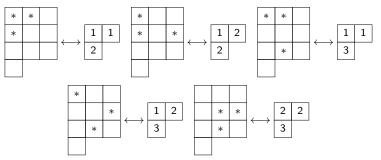
For two partitions λ and μ, we define F(λ/μ) to be the set of flagged semistandard tableaux of shape (μ, b), where b := (b₁, b₂, b₃, ...) with
b_i := max {k ≥ i | λ_k − k ≥ μ_i − i} for all i ≥ 1.

Now, there is a bijection from *E*(λ/μ) to *F*(λ/μ), defined as follows: Each excitation *D* ∈ *E*(λ/μ) is sent to the flagged semistandard tableau *T* of shape (μ, b), where

T(i,j) = i + (# of excited moves that cell (i,j) makes in D).

Here T(i,j) means the entry of T in cell (i,j).

• **Example:** For $\lambda = (3, 3, 3, 1)$ and $\mu = (2, 1)$:

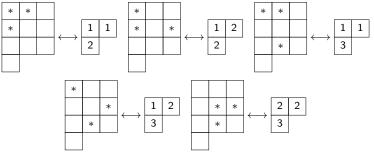


Now, there is a bijection from *E*(λ/μ) to *F*(λ/μ), defined as follows: Each excitation *D* ∈ *E*(λ/μ) is sent to the flagged semistandard tableau *T* of shape (μ, b), where

T(i,j) = i + (# of excited moves that cell (i,j) makes in D).

Here T(i,j) means the entry of T in cell (i,j).

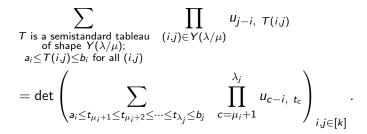
• **Example:** For $\lambda = (3, 3, 3, 1)$ and $\mu = (2, 1)$:



• Thus, we can work with flagged SSYTs instead of excited diagrams.

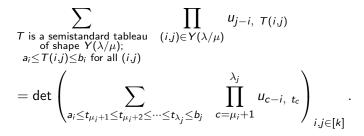
Proof ingredient 2: a general Jacobi–Trudi formula, 1

Theorem (generalized Jacobi–Trudi formula). Let
 λ = (λ₁ ≥ λ₂ ≥ ··· ≥ λ_k) and μ = (μ₁ ≥ μ₂ ≥ ··· ≥ μ_k) be
 two partitions. Let a₁ ≤ a₂ ≤ ··· ≤ a_k and
 b₁ ≤ b₂ ≤ ··· ≤ b_k be positive integers. Let u_{i,j} be a variable
 for each pair (i, j) ∈ Z².
 Then,



Proof ingredient 2: a general Jacobi–Trudi formula, 1

Theorem (generalized Jacobi-Trudi formula). Let
 λ = (λ₁ ≥ λ₂ ≥ ··· ≥ λ_k) and μ = (μ₁ ≥ μ₂ ≥ ··· ≥ μ_k) be
 two partitions. Let a₁ ≤ a₂ ≤ ··· ≤ a_k and
 b₁ ≤ b₂ ≤ ··· ≤ b_k be positive integers. Let u_{i,j} be a variable
 for each pair (i, j) ∈ Z².
 Then,



• This is implicit in a preprint of Gessel and Viennot 1989.

• If $\mu = (0, 0, ..., 0)$ and all a_i are 0 as well, and if $u_{i,j} = x_j + y_{i+j}$, and if we rename λ as μ , then the left hand side here becomes

$$\sum_{T \in \mathsf{FSSYT}(\mu, \mathbf{b})} \prod_{(i,j) \in \mathbf{Y}(\mu)} (x_{\mathcal{T}(i,j)} + y_{\mathcal{T}(i,j)+j-i}),$$

 If μ = (0,0,...,0) and all a_i are 0 as well, and if u_{i,j} = x_j + y_{i+j}, and if we rename λ as μ, then the left hand side here becomes

$$\sum_{T \in \mathsf{FSSYT}(\mu, \mathbf{b})} \prod_{(i,j) \in \mathbf{Y}(\mu)} (x_{\mathcal{T}(i,j)} + y_{\mathcal{T}(i,j)+j-i}),$$

which equals the

$$\sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in D} (x_i + y_j)$$

in the Konvalinka recursion.

Proof ingredient 3: a determinantal identity

- Jacobi-Trudi transforms both sides of the Konvalinka recursion into sums of determinants.
- After some nontrivial work, it becomes an easy determinantal identity:

Proof ingredient 3: a determinantal identity

- **Theorem.** Let M and N be two $n \times n$ -matrices. Then, $\sum_{k=1}^{n} \det(M \text{ with its } k\text{-th row replaced}$ by the k-th row of N) $= \sum_{k=1}^{n} \det(M \text{ with its } k\text{-th column replaced}$ by the k-th column of N).
- Example:

$$\det \begin{pmatrix} A & B & C \\ a' & b' & c' \\ a'' & b'' & c'' \end{pmatrix} + \det \begin{pmatrix} a & b & c \\ A' & B' & C' \\ a'' & b'' & c'' \end{pmatrix} + \det \begin{pmatrix} a & b & c \\ a' & b' & c' \\ A'' & B'' & C'' \end{pmatrix}$$

$$= \det \begin{pmatrix} A & b & c \\ A' & b' & c' \\ A'' & b'' & c'' \end{pmatrix} + \det \begin{pmatrix} a & B & c \\ a' & B' & c' \\ a'' & B'' & c'' \end{pmatrix} + \det \begin{pmatrix} a & b & C \\ a' & b' & C' \\ a'' & b'' & C'' \end{pmatrix}$$

Proof ingredient 4: Combinatorial lemmas

- Two of the lemmas used along the way:
- Lemma 1. Let λ be a partition. Let λ^t be its conjugate (i.e., Young diagram flipped across the main diagonal). Then, the sets

$$\{\lambda_i - i \mid i \in \mathbb{N}\}$$
 and $\{j - \lambda_j^t - 1 \mid j \in \mathbb{N}\}$

are disjoint and their union is \mathbb{Z} .

Lemma 2. Let b = (b₁, b₂, b₃,...) be the flagging of λ/μ. Let μ⁺ⁱ be the partition obtained from μ by increasing the *i*-th entry by 1. Let b^{*i} = (b₁^{*i}, b₂^{*i}, b₃^{*i},...) be the flagging induced by λ/μ⁺ⁱ. Then:

$$-1 \leq b_i^{*i} - b_i \leq 0,$$
 and $b_k^{*i} = b_k$ for all $k \neq i.$

- Sam Hopkins, *RSK via local transformations*. http://www.samuelfhopkins.com/docs/rsk.pdf
- Matjaž Konvalinka, A bijective proof of the hook length formula for skew shapes, 2020. Preprint: https://www.fmf.uni-lj.si/~konvalinka/excited.pdf
- Matjaž Konvalinka, Hook, line and sinker: a bijective proof of the skew shifted hook-length formula, 2019. Preprint: https://www.fmf.uni-lj.si/~konvalinka/excited_ shifted.pdf
- Alejandro H. Morales, Igor Pak, Greta Panova, Hook formulas for skew shapes I. q-analogues and bijections, 2018. Preprint: https://arxiv.org/abs/1512.08348v5.
- Bruce E. Sagan, Combinatorics: The Art of Counting, AMS 2020. https://users.math.msu.edu/users/bsagan/ Books/Aoc/final.pdf
- Richard P. Stanley, *Enumerative Combinatorics, volume 2*, 2001. See http://math.mit.edu/~rstan/ec/ for errata.

- the Yulia's Dream program and Pavel Etingof, Slava Gerovich, Vasily Dolgushev, Dmytro Matvieievskyi in particular.
- **Darij Grinberg** for mentoring this project, and **Andrei Ionov** for mentorship during summer.
- Alexander Postnikov, Matjaž Konvalinka for discussions on hook-length formulas.
- our families for their support.