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Young diagrams

A partition is a weakly decreasing sequence
λ = (λ1 ≥ λ2 ≥ λ3 ≥ . . .) of nonnegative integers with only
finitely many positive entries.
The Young diagram of this partition λ is a left-aligned table
with λi cells in row i (indexed from the top). We call it
Y (λ). Formally:

Y (λ) = {(i , j) | i > 0 and 0 < j ≤ λi} .

Two partitions µ and λ satisfy µ ⊆ λ if Y (µ) ⊆ Y (λ). In this
case, the skew diagram Y (λ/µ) is defined to be Y (λ)\Y (µ).
More generally, any set of (square) cells is called a diagram.
Example:
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Standard tableaux

Given a diagram D, we can fill it with the numbers 1, 2, . . . , n.
Such a filling is called a standard tableau (of shape D) if

each of the numbers 1, 2, . . . , n appears exactly once;
the numbers increase along each row;
the numbers increase down each column.

If D = Y (λ), we let SYT (λ) be the set of all standard
tableaux of shape Y (λ).

Likewise SYT (λ/µ).

Example: If λ = (5, 4, 3, 3) and µ = (2, 1, 1), then

1 3 9

2 4 10

5 6

7 8 11

∈ SYT (λ/µ) .

Question: Given a diagram D, how many standard tableaux
of shape D exist?
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Hooks

For D = Y (λ), the classical hook length formula of Frame,
Robinson and Thrall (1953) gives a beautiful answer in terms
of the hooks of λ.
If c = (i , j) is a cell of a Young diagram Y (λ), we let the
hook Hλ (c) be

{all cells of Y (λ) lying due east of c}
∪ {all cells of Y (λ) lying due south of c} ∪ {c}

= {(i , k) ∈ Y (λ) | k ≥ j} ∪ {(k , j) ∈ Y (λ) | k ≥ i} .

The hook length hλ(c) is defined to be |Hλ (c)|, that is, the
number of all cells in the hook of c .
Example: If λ = (4, 3, 3, 2), then

Hλ(2, 2) =
∗ ∗
∗
∗

and hλ(2, 2) = 4.
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The hook length formula

The original hook length formula says that

|SYT (λ)| = n!∏
c∈Y (λ)

hλ (c)
,

where n is the number of cells in Y (λ).
Example: If λ = (3, 2), then

|SYT (λ) | = 5!

1 · 3 · 4 · 1 · 2
= 5.
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hλ (c)
,

where n is the number of cells in Y (λ).
Example: If λ = (3, 2), then

|SYT (λ) | = 5!

1 · 3 · 4 · 1 · 2
= 5.

Here are the hooks of all five cells:

∗ ∗ ∗
∗

∗ ∗ ∗
∗

∗ ∗ ∗
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The hook length formula

The original hook length formula says that

|SYT (λ)| = n!∏
c∈Y (λ)

hλ (c)
,

where n is the number of cells in Y (λ).
Example: If λ = (3, 2), then

|SYT (λ) | = 5!

1 · 3 · 4 · 1 · 2
= 5.

Here is SYT(λ):

1 2 3

4 5
,

1 2 4

3 5
,

1 2 5

3 4
,

1 3 4

2 5
,

1 3 5

2 4
.
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The hook length formula: example

Example: The number of Dyck paths from (0, 0) to (2n, 0) is

the n-th Catalan number Cn =
(2n)!

n! (n + 1)!
.

This follows from the hook length formula, applied to
λ = (n, n), and a simple bijection {Dyck paths} → SYT (λ):

←→ 1 2 5

3 4 6
.

←→ 1 2 4

3 5 6
.
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Excited moves

Naruse’s skew hook length formula (Naruse, 2014) expresses
|SYT (λ/µ)| in terms of excitations.
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Excited moves

An excited move for a cell c = (i , j) ∈ D means moving this
cell from (i , j) to (i + 1, j + 1).
This is allowed only if the three cells marked × (that is,
(i + 1, j) , (i , j + 1) , (i + 1, j + 1)) are not in D.

c ×
× × → × ×

× c

8 / 23



Excited moves

An excited move for a cell c = (i , j) ∈ D means moving this
cell from (i , j) to (i + 1, j + 1).
This is allowed only if the three cells marked × (that is,
(i + 1, j) , (i , j + 1) , (i + 1, j + 1)) are not in D.

c ×
× × → × ×

× c

Example:

c
7−→

c

8 / 23



Excited moves

An excited move for a cell c = (i , j) ∈ D means moving this
cell from (i , j) to (i + 1, j + 1).
This is allowed only if the three cells marked × (that is,
(i + 1, j) , (i , j + 1) , (i + 1, j + 1)) are not in D.

c ×
× × → × ×

× c

However,

c
̸7−→

c

8 / 23



Excited moves

An excited move for a cell c = (i , j) ∈ D means moving this
cell from (i , j) to (i + 1, j + 1).
This is allowed only if the three cells marked × (that is,
(i + 1, j) , (i , j + 1) , (i + 1, j + 1)) are not in D.

c ×
× × → × ×

× c

However,

c
̸7−→

c

8 / 23



Excited moves

An excited move for a cell c = (i , j) ∈ D means moving this
cell from (i , j) to (i + 1, j + 1).
This is allowed only if the three cells marked × (that is,
(i + 1, j) , (i , j + 1) , (i + 1, j + 1)) are not in D.

c ×
× × → × ×

× c

However,

c
̸7−→

c

8 / 23



Excitations

An excitation of a diagram D is a diagram obtained from D
by a sequence of excited moves.

Now, for two partitions λ and µ, we define E (λ/µ) to be the
set of all excitations E of Y (µ) that satisfy E ⊆ Y (λ).
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Excitations

An excitation of a diagram D is a diagram obtained from D
by a sequence of excited moves.

Example: Original diagram D:

Now, for two partitions λ and µ, we define E (λ/µ) to be the
set of all excitations E of Y (µ) that satisfy E ⊆ Y (λ).
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Excitations

An excitation of a diagram D is a diagram obtained from D
by a sequence of excited moves.

Example: After a single excited move:

Now, for two partitions λ and µ, we define E (λ/µ) to be the
set of all excitations E of Y (µ) that satisfy E ⊆ Y (λ).
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Excitations

An excitation of a diagram D is a diagram obtained from D
by a sequence of excited moves.

Example: After two excited moves:

Now, for two partitions λ and µ, we define E (λ/µ) to be the
set of all excitations E of Y (µ) that satisfy E ⊆ Y (λ).
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Excitations

An excitation of a diagram D is a diagram obtained from D
by a sequence of excited moves.

Example: After three excited moves:

Now, for two partitions λ and µ, we define E (λ/µ) to be the
set of all excitations E of Y (µ) that satisfy E ⊆ Y (λ).
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Excitations

An excitation of a diagram D is a diagram obtained from D
by a sequence of excited moves.

Example: After four excited moves:

Now, for two partitions λ and µ, we define E (λ/µ) to be the
set of all excitations E of Y (µ) that satisfy E ⊆ Y (λ).
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Naruse’s skew hook length formula

Naruse’s skew hook length formula says that

|SYT (λ/µ)| = n!
∑

E∈E(λ/µ)

∏
c∈Y (λ)\E

1

hλ (c)

if λ and µ are two partitions with µ ⊆ λ with |Y (λ/µ)| = n.

Example: If λ = (2, 2, 2) and µ = (1, 1), then

SYT (λ/µ) =


1

3

2 4

, 1

2

3 4

, 2

3

1 4


.

Known proofs use algebraic geometry (Naruse) or complicated
combinatorics (Morales/Pak/Panova and Konvalinka).
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E (λ/µ) =


∗
∗

,
∗

∗

,
∗
∗


.

Thus,

|SYT (λ/µ)| = 4! ·
(

1

3 · 2 · 1 · 2
+

1

3 · 2 · 3 · 2
+

1

3 · 2 · 3 · 4

)
= 3

SYT (λ/µ) =


1

3

2 4

, 1

2

3 4

, 2

3

1 4


.
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The Pak–Postnikov generalization

In 2001, Pak and Postnikov generalized the classical hook
length formula in a different direction.
If T is a standard tableau (of any shape), and if k is a
positive integer, then cT (k) shall denote the difference j − i ,
where (i , j) is the cell of T that contains the entry k .

Let . . . , z−2, z−1, z0, z1, z2, . . . be commuting indeterminates.
For any cell c = (i , j) of Y (λ), we define the algebraic hook
length hλ (c ; z) by

hλ (c ; z) :=
∑

(i ,j)∈Hλ(c)

zj−i .

For any standard tableau T with n cells, we define the fraction

zT :=
1

n∏
k=1

(
zcT (k) + zcT (k+1) + · · ·+ zcT (n)

)
The Pak-Postnikov generalization of the hook length formula
states that ∑

T∈SYT(λ)

zT =
∏

c∈Y (λ)

1

hλ (c ; z)
.
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The Pak–Postnikov generalization: example

Example: For λ = (2, 1), we have

SYT (λ) =

 1 2

3
,

1 3

2

, so the formula becomes

1

z−1 (z−1 + z1) (z−1 + z1 + z0)
+

1

z1 (z1 + z−1) (z1 + z−1 + z0)

=
1

(z1 + z−1 + z0) z1z−1
.

Known proofs involve polytopes (Pak/Postnikov) or
P-partitions and tropical RSK (Hopkins).
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Merging the streams: skew Pak–Postnikov

We propose a generalization of the Pak–Postnikov formula to
skew diagrams, thus extending Naruse’s hook length formula
as well.
Main theorem. Let λ and µ be two partitions with µ ⊆ λ
such that the skew diagram Y (λ/µ) has n cells.

Then,∑
T∈SYT(λ/µ)

zT =
∑

E∈E(λ/µ)

∏
c∈Y (λ)\E

1

hλ (c ; z)
.

Example: For λ = (2, 2) and µ = (1), we have

SYT (λ/µ) =

 1

2 3
,

2

1 3

 and E (λ/µ) =

 ∗
,

∗

 ,

so the formula becomes

1

z0 · (z0 + z−1) · (z0 + z−1 + z1)
+

1

z0 · (z0 + z1) · (z0 + z1 + z−1)
=

1

(z1 + z0) · z0 · (z−1 + z0)
+

1

(z1 + z0) · (z0 + z−1 + z1) · (z−1 + z0)
.

This was first observed by Grinberg. An intricate
combinatorial proof was sketched by Konvalinka in 2019.
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Proof idea: the Konvalinka recursion, 1

We propose a new, elementary proof of this generalized
formula.

Let f (λ/µ) =
∑

T∈SYT(λ)
zT .

We easily obtain the recurrence

zT =
1∑

(i ,j)∈Y (λ/µ)

zj−i
· zT ′ ,

where T ′ is the same tableau as T , with the entry 1 removed
and all other entries decreased by 1.
Example: Let λ = (3, 3, 2) and µ = (2, 1).

If T is ... then T ′ is ...

2

1 3

4 5

∈ SYT (λ/µ)

1

2

3 4

∈ SYT (λ/ν)

for ν = (2, 2). Thus, zT = 1
z−1+z−2+z1+z2+z0

· zT ′ .
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Proof idea: the Konvalinka recursion, 2

Thus we get a recurrence for f (λ/µ):

f (λ/µ) =
1∑

(i ,j)∈Y (λ/µ)

zj−i
·

∑
µ⋖ν⊆λ

f (λ/ν) .

Here, µ⋖ ν means that the partition ν is obtained by adding
1 to some entry of µ.

The induction step thus reduces to the following claim:

Konvalinka recursion. Let λ/µ be any skew partition, and
let x1, x2, x3, . . . and y1, y2, y3, . . . be two infinite families of
commuting indeterminates. Then, ∑

∄i : λk−k=µi−i
xk +

∑
∄j : λt

p−p=µt
j−j

yp

 ∑
D∈E(λ/µ)

∏
(i ,j)∈D

(xi + yj)

=
∑

µ⋖ν⊆λ

∑
D∈E(λ/ν)

∏
(i ,j)∈D

(xi + yj).
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Proof ingredient 1: Flagged SSYTs, 1

Let D be a diagram. A semistandard tableau (of shape D)
means a filling of the cells of D with positive integers such
that

the numbers weakly increase along each row,
the numbers strictly increase down each column.

Example: Here is a semistandard tableau for µ = (4, 3, 1):

1 1 1 2

2 3 3

4

A flagging means a sequence b := (b1, b2, b3, . . .) of positive
integers.

A flagged semistandard tableau of shape (µ,b) is a
semistandard tableau of shape Y (µ) in which all entries in
row i are ≤ bi . ≤ b1

≤ b2
≤ b3

For two partitions λ and µ, we define F(λ/µ) to be the set of
flagged semistandard tableaux of shape (µ,b), where
b := (b1, b2, b3, . . .) with

bi := max {k ≥ i | λk − k ≥ µi − i} for all i ≥ 1.
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Proof ingredient 1: Flagged SSYTs, 2

Now, there is a bijection from E(λ/µ) to F(λ/µ), defined as
follows: Each excitation D ∈ E(λ/µ) is sent to the flagged
semistandard tableau T of shape (µ,b), where

T (i , j) = i + (# of excited moves that cell (i , j) makes in D) .

Here T (i , j) means the entry of T in cell (i , j).

Example: For λ = (3, 3, 3, 1) and µ = (2, 1):

∗ ∗
∗

←→
1 1

2

∗
∗ ∗

←→
1 2

2

∗ ∗

∗
←→

1 1

3

∗
∗

∗
←→

1 2

3

∗ ∗
∗

←→
2 2

3

Thus, we can work with flagged SSYTs instead of excited
diagrams.
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Proof ingredient 2: a general Jacobi–Trudi formula, 1

Theorem (generalized Jacobi–Trudi formula). Let
λ = (λ1 ≥ λ2 ≥ · · · ≥ λk) and µ = (µ1 ≥ µ2 ≥ · · · ≥ µk) be
two partitions. Let a1 ≤ a2 ≤ · · · ≤ ak and
b1 ≤ b2 ≤ · · · ≤ bk be positive integers. Let ui ,j be a variable
for each pair (i , j) ∈ Z2.
Then, ∑

T is a semistandard tableau
of shape Y (λ/µ);

ai≤T (i ,j)≤bi for all (i ,j)

∏
(i ,j)∈Y (λ/µ)

uj−i , T (i ,j)

= det

 ∑
ai≤tµi+1≤tµi+2≤···≤tλj≤bj

λj∏
c=µi+1

uc−i , tc


i ,j∈[k]

.

This is implicit in a preprint of Gessel and Viennot 1989.
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Proof ingredient 2: a general Jacobi–Trudi formula, 2

If µ = (0, 0, . . . , 0) and all ai are 0 as well, and if
ui ,j = xj + yi+j , and if we rename λ as µ, then the left hand
side here becomes∑

T∈FSSYT(µ,b)

∏
(i ,j)∈Y (µ)

(xT (i ,j) + yT (i ,j)+j−i ),

which equals the ∑
D∈E(λ/µ)

∏
(i ,j)∈D

(xi + yj)

in the Konvalinka recursion.

19 / 23



Proof ingredient 2: a general Jacobi–Trudi formula, 2

If µ = (0, 0, . . . , 0) and all ai are 0 as well, and if
ui ,j = xj + yi+j , and if we rename λ as µ, then the left hand
side here becomes∑

T∈FSSYT(µ,b)

∏
(i ,j)∈Y (µ)

(xT (i ,j) + yT (i ,j)+j−i ),

which equals the ∑
D∈E(λ/µ)

∏
(i ,j)∈D

(xi + yj)

in the Konvalinka recursion.

19 / 23



Proof ingredient 3: a determinantal identity

Jacobi–Trudi transforms both sides of the Konvalinka
recursion into sums of determinants.
After some nontrivial work, it becomes an easy determinantal
identity:
Theorem. Let M and N be two n × n-matrices. Then,

n∑
k=1

det(M with its k-th row replaced

by the k-th row of N)

=
n∑

k=1

det(M with its k-th column replaced

by the k-th column of N).
Example:

det

A B C
a′ b′ c ′

a′′ b′′ c ′′

+ det

 a b c
A′ B ′ C ′

a′′ b′′ c ′′

+ det

 a b c
a′ b′ c ′

A′′ B ′′ C ′′


= det

 A b c
A′ b′ c ′

A′′ b′′ c ′′

+ det

 a B c
a′ B ′ c ′

a′′ B ′′ c ′′

+ det

 a b C
a′ b′ C ′

a′′ b′′ C ′′

 .
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det(M with its k-th column replaced

by the k-th column of N).

Example:

det

A B C
a′ b′ c ′

a′′ b′′ c ′′

+ det

 a b c
A′ B ′ C ′

a′′ b′′ c ′′

+ det

 a b c
a′ b′ c ′

A′′ B ′′ C ′′


= det

 A b c
A′ b′ c ′

A′′ b′′ c ′′

+ det

 a B c
a′ B ′ c ′

a′′ B ′′ c ′′

+ det

 a b C
a′ b′ C ′

a′′ b′′ C ′′

 .
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Proof ingredient 4: Combinatorial lemmas

Two of the lemmas used along the way:

Lemma 1. Let λ be a partition. Let λt be its conjugate (i.e.,
Young diagram flipped across the main diagonal).
Then, the sets

{λi − i | i ∈ N} and
{
j − λt

j − 1 | j ∈ N
}

are disjoint and their union is Z.
Lemma 2. Let b = (b1, b2, b3, . . .) be the flagging of λ/µ.
Let µ+i be the partition obtained from µ by increasing the
i-th entry by 1.
Let b∗i =

(
b∗i1 , b∗i2 , b∗i3 , . . .

)
be the flagging induced by λ/µ+i .

Then:

−1 ≤ b∗ii − bi ≤ 0, and b∗ik = bk for all k ̸= i .
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