The Pak-Postnikov and Naruse skew hook length formulas: a new proof

Nazar Korniichuk (NSL no. 145, Kyiv) Kostiantyn Molokanov (NSL no. 145, Kyiv)
Severyn Khomych (Brucknergymnasium, Wels) mentor: Darij Grinberg (Drexel University)

$$
14 \text { June 2023, MIT }
$$

slides: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/yd2023.pdf

Young diagrams

- A partition is a weakly decreasing sequence
$\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots\right)$ of nonnegative integers with only finitely many positive entries.
- A partition is a weakly decreasing sequence
$\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots\right)$ of nonnegative integers with only finitely many positive entries.
- The Young diagram of this partition λ is a left-aligned table with λ_{i} cells in row i (indexed from the top). We call it $Y(\lambda)$. Formally:

$$
Y(\lambda)=\left\{(i, j) \mid i>0 \text { and } 0<j \leq \lambda_{i}\right\}
$$

- A partition is a weakly decreasing sequence
$\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots\right)$ of nonnegative integers with only finitely many positive entries.
- The Young diagram of this partition λ is a left-aligned table with λ_{i} cells in row i (indexed from the top). We call it $Y(\lambda)$. Formally:

$$
Y(\lambda)=\left\{(i, j) \mid i>0 \text { and } 0<j \leq \lambda_{i}\right\}
$$

- Example: If $\lambda=(4,2,2,0,0,0, \ldots)=(4,2,2)$ (we omit zeroes), then

- A partition is a weakly decreasing sequence $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots\right)$ of nonnegative integers with only finitely many positive entries.
- The Young diagram of this partition λ is a left-aligned table with λ_{i} cells in row i (indexed from the top). We call it $Y(\lambda)$. Formally:

$$
Y(\lambda)=\left\{(i, j) \mid i>0 \text { and } 0<j \leq \lambda_{i}\right\}
$$

- Two partitions μ and λ satisfy $\mu \subseteq \lambda$ if $Y(\mu) \subseteq Y(\lambda)$. In this case, the skew diagram $Y(\lambda / \mu)$ is defined to be $Y(\lambda) \backslash Y(\mu)$.
- A partition is a weakly decreasing sequence
$\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots\right)$ of nonnegative integers with only finitely many positive entries.
- The Young diagram of this partition λ is a left-aligned table with λ_{i} cells in row i (indexed from the top). We call it $Y(\lambda)$. Formally:

$$
Y(\lambda)=\left\{(i, j) \mid i>0 \text { and } 0<j \leq \lambda_{i}\right\}
$$

- Two partitions μ and λ satisfy $\mu \subseteq \lambda$ if $Y(\mu) \subseteq Y(\lambda)$. In this case, the skew diagram $Y(\lambda / \mu)$ is defined to be $Y(\lambda) \backslash Y(\mu)$.
- Example: If $\lambda=(5,2,2)$ and $\mu=(1,1)$, then

$$
\begin{array}{r}
Y(\lambda / \mu)=\begin{array}{|l|l|l|}
\hline & & \\
\hline & & \\
\cline { 1 - 2 } & &
\end{array} .
\end{array}
$$

- A partition is a weakly decreasing sequence
$\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots\right)$ of nonnegative integers with only finitely many positive entries.
- The Young diagram of this partition λ is a left-aligned table with λ_{i} cells in row i (indexed from the top). We call it $Y(\lambda)$. Formally:

$$
Y(\lambda)=\left\{(i, j) \mid i>0 \text { and } 0<j \leq \lambda_{i}\right\}
$$

- Two partitions μ and λ satisfy $\mu \subseteq \lambda$ if $Y(\mu) \subseteq Y(\lambda)$. In this case, the skew diagram $Y(\lambda / \mu)$ is defined to be $Y(\lambda) \backslash Y(\mu)$.
- More generally, any set of (square) cells is called a diagram.
- Example:

- Given a diagram D, we can fill it with the numbers $1,2, \ldots, n$. Such a filling is called a standard tableau (of shape D) if
- each of the numbers $1,2, \ldots, n$ appears exactly once;
- the numbers increase along each row;
- the numbers increase down each column.
- Given a diagram D, we can fill it with the numbers $1,2, \ldots, n$. Such a filling is called a standard tableau (of shape D) if
- each of the numbers $1,2, \ldots, n$ appears exactly once;
- the numbers increase along each row;
- the numbers increase down each column.
- If $D=Y(\lambda)$, we let SYT (λ) be the set of all standard tableaux of shape $Y(\lambda)$.
- Given a diagram D, we can fill it with the numbers $1,2, \ldots, n$. Such a filling is called a standard tableau (of shape D) if
- each of the numbers $1,2, \ldots, n$ appears exactly once;
- the numbers increase along each row;
- the numbers increase down each column.
- If $D=Y(\lambda)$, we let SYT (λ) be the set of all standard tableaux of shape $Y(\lambda)$.
- Likewise SYT (λ / μ).
- Given a diagram D, we can fill it with the numbers $1,2, \ldots, n$. Such a filling is called a standard tableau (of shape D) if
- each of the numbers $1,2, \ldots, n$ appears exactly once;
- the numbers increase along each row;
- the numbers increase down each column.
- If $D=Y(\lambda)$, we let SYT (λ) be the set of all standard tableaux of shape $Y(\lambda)$.
- Likewise SYT (λ / μ).
- Example: If $\lambda=(5,4,3,3)$ and $\mu=(2,1,1)$, then

- Given a diagram D, we can fill it with the numbers $1,2, \ldots, n$. Such a filling is called a standard tableau (of shape D) if
- each of the numbers $1,2, \ldots, n$ appears exactly once;
- the numbers increase along each row;
- the numbers increase down each column.
- If $D=Y(\lambda)$, we let SYT (λ) be the set of all standard tableaux of shape $Y(\lambda)$.
- Likewise SYT (λ / μ).
- Example: If $\lambda=(5,4,3,3)$ and $\mu=(2,1,1)$, then

- Question: Given a diagram D, how many standard tableaux of shape D exist?
- For $D=Y(\lambda)$, the classical hook length formula of Frame, Robinson and Thrall (1953) gives a beautiful answer in terms of the hooks of λ.
- If $c=(i, j)$ is a cell of a Young diagram $Y(\lambda)$, we let the hook $H_{\lambda}(c)$ be
\{all cells of $Y(\lambda)$ lying due east of c \}
$\cup\{$ all cells of $Y(\lambda)$ lying due south of $c\} \cup\{c\}$
$=\{(i, k) \in Y(\lambda) \mid k \geq j\} \cup\{(k, j) \in Y(\lambda) \mid k \geq i\}$.
- If $c=(i, j)$ is a cell of a Young diagram $Y(\lambda)$, we let the hook $H_{\lambda}(c)$ be
\{all cells of $Y(\lambda)$ lying due east of c \}
$\cup\{$ all cells of $Y(\lambda)$ lying due south of $c\} \cup\{c\}$

$$
=\{(i, k) \in Y(\lambda) \mid k \geq j\} \cup\{(k, j) \in Y(\lambda) \mid k \geq i\}
$$

- The hook length $h_{\lambda}(c)$ is defined to be $\left|H_{\lambda}(c)\right|$, that is, the number of all cells in the hook of c.
- If $c=(i, j)$ is a cell of a Young diagram $Y(\lambda)$, we let the hook $H_{\lambda}(c)$ be
\{all cells of $Y(\lambda)$ lying due east of c \}
$\cup\{$ all cells of $Y(\lambda)$ lying due south of $c\} \cup\{c\}$

$$
=\{(i, k) \in Y(\lambda) \mid k \geq j\} \cup\{(k, j) \in Y(\lambda) \mid k \geq i\} .
$$

- The hook length $h_{\lambda}(c)$ is defined to be $\left|H_{\lambda}(c)\right|$, that is, the number of all cells in the hook of c.
- Example: If $\lambda=(4,3,3,2)$, then

- The original hook length formula says that

$$
|\operatorname{SYT}(\lambda)|=\frac{n!}{\prod_{c \in Y(\lambda)} h_{\lambda}(c)},
$$

where n is the number of cells in $Y(\lambda)$.

- The original hook length formula says that

$$
|\operatorname{SYT}(\lambda)|=\frac{n!}{\prod_{c \in Y(\lambda)} h_{\lambda}(c)}
$$

where n is the number of cells in $Y(\lambda)$.

- Example: If $\lambda=(3,2)$, then

$$
|\operatorname{SYT}(\lambda)|=\frac{5!}{1 \cdot 3 \cdot 4 \cdot 1 \cdot 2}=5
$$

Here are the hooks of all five cells:

$*$	$*$	$*$
$*$		

- The original hook length formula says that

$$
|\operatorname{SYT}(\lambda)|=\frac{n!}{\prod_{c \in Y(\lambda)} h_{\lambda}(c)}
$$

where n is the number of cells in $Y(\lambda)$.

- Example: If $\lambda=(3,2)$, then

$$
|\operatorname{SYT}(\lambda)|=\frac{5!}{1 \cdot 3 \cdot 4 \cdot 1 \cdot 2}=5
$$

Here is $\operatorname{SYT}(\lambda)$:

1	2	5
3	4	
1	3	5
2	4	

- Example: The number of Dyck paths from $(0,0)$ to $(2 n, 0)$ is the n-th Catalan number $C_{n}=\frac{(2 n)!}{n!(n+1)!}$.
This follows from the hook length formula, applied to $\lambda=(n, n)$, and a simple bijection $\{$ Dyck paths $\} \rightarrow$ SYT $(\lambda):$

1	2	4
3	5	6

- Naruse's skew hook length formula (Naruse, 2014) expresses $|\operatorname{SYT}(\lambda / \mu)|$ in terms of excitations.
- An excited move for a cell $c=(i, j) \in D$ means moving this cell from (i, j) to $(i+1, j+1)$.
This is allowed only if the three cells marked \times (that is, $(i+1, j),(i, j+1),(i+1, j+1))$ are not in D.

$$
\begin{array}{|c|c}
\hline c & \times \\
\times & \times
\end{array} \rightarrow \begin{array}{cc}
\times & \times \\
\times & c \\
\hline
\end{array}
$$

- An excited move for a cell $c=(i, j) \in D$ means moving this cell from (i, j) to $(i+1, j+1)$.
This is allowed only if the three cells marked \times (that is, $(i+1, j),(i, j+1),(i+1, j+1))$ are not in D.

$$
\begin{array}{|c|c}
\hline c & \times \\
\times & \times
\end{array} \rightarrow \begin{array}{cc}
\times & \times \\
\times & c \\
\hline
\end{array}
$$

- Example:

- An excited move for a cell $c=(i, j) \in D$ means moving this cell from (i, j) to $(i+1, j+1)$.
This is allowed only if the three cells marked \times (that is, $(i+1, j),(i, j+1),(i+1, j+1))$ are not in D.

$$
\begin{array}{cccc}
\hline c & \times \\
\times & \times
\end{array} \quad \begin{aligned}
& \times \\
& \times \\
& \hline
\end{aligned}
$$

However,

- An excited move for a cell $c=(i, j) \in D$ means moving this cell from (i, j) to $(i+1, j+1)$.
This is allowed only if the three cells marked \times (that is, $(i+1, j),(i, j+1),(i+1, j+1))$ are not in D.

$$
\begin{array}{|c|c}
\hline c & \times \\
\times & \times
\end{array} \rightarrow \begin{array}{cc}
\times & \times \\
\times & c \\
\hline
\end{array}
$$

However,

- An excited move for a cell $c=(i, j) \in D$ means moving this cell from (i, j) to $(i+1, j+1)$.
This is allowed only if the three cells marked \times (that is, $(i+1, j),(i, j+1),(i+1, j+1))$ are not in D.

$$
\begin{array}{cccc}
\hline c & \times \\
\times & \times
\end{array} \quad \begin{aligned}
& \times \\
& \times \\
& \hline
\end{aligned}
$$

However,

- An excitation of a diagram D is a diagram obtained from D by a sequence of excited moves.
- An excitation of a diagram D is a diagram obtained from D by a sequence of excited moves.
- Example: Original diagram D :

- An excitation of a diagram D is a diagram obtained from D by a sequence of excited moves.

Example: After a single excited move:

- An excitation of a diagram D is a diagram obtained from D by a sequence of excited moves.

Example: After two excited moves:

- An excitation of a diagram D is a diagram obtained from D by a sequence of excited moves.

Example: After three excited moves:

- An excitation of a diagram D is a diagram obtained from D by a sequence of excited moves.

Example: After four excited moves:

- An excitation of a diagram D is a diagram obtained from D by a sequence of excited moves.
- Now, for two partitions λ and μ, we define $\mathcal{E}(\lambda / \mu)$ to be the set of all excitations E of $Y(\mu)$ that satisfy $E \subseteq Y(\lambda)$.
- Naruse's skew hook length formula says that

$$
|\operatorname{SYT}(\lambda / \mu)|=n!\sum_{E \in \mathcal{E}(\lambda / \mu)} \prod_{c \in Y(\lambda) \backslash E} \frac{1}{h_{\lambda}(c)}
$$

if λ and μ are two partitions with $\mu \subseteq \lambda$ with $|Y(\lambda / \mu)|=n$.

- Naruse's skew hook length formula says that

$$
|\operatorname{SYT}(\lambda / \mu)|=n!\sum_{E \in \mathcal{E}(\lambda / \mu)} \prod_{c \in Y(\lambda) \backslash E} \frac{1}{h_{\lambda}(c)}
$$

if λ and μ are two partitions with $\mu \subseteq \lambda$ with $|Y(\lambda / \mu)|=n$.

- Example: If $\lambda=(2,2,2)$ and $\mu=(1,1)$, then

$$
\mathcal{E}(\lambda / \mu)=\left\{\right.
$$

Thus,
$|\operatorname{SYT}(\lambda / \mu)|=4!\cdot\left(\frac{1}{3 \cdot 2 \cdot 1 \cdot 2}+\frac{1}{3 \cdot 2 \cdot 3 \cdot 2}+\frac{1}{3 \cdot 2 \cdot 3 \cdot 4}\right)=3$

- Naruse's skew hook length formula says that

$$
|\operatorname{SYT}(\lambda / \mu)|=n!\sum_{E \in \mathcal{E}(\lambda / \mu)} \prod_{c \in Y(\lambda) \backslash E} \frac{1}{h_{\lambda}(c)}
$$

if λ and μ are two partitions with $\mu \subseteq \lambda$ with $|Y(\lambda / \mu)|=n$.

- Example: If $\lambda=(2,2,2)$ and $\mu=(1,1)$, then

- Naruse's skew hook length formula says that

$$
|\operatorname{SYT}(\lambda / \mu)|=n!\sum_{E \in \mathcal{E}(\lambda / \mu)} \prod_{c \in Y(\lambda) \backslash E} \frac{1}{h_{\lambda}(c)}
$$

if λ and μ are two partitions with $\mu \subseteq \lambda$ with $|Y(\lambda / \mu)|=n$.

- Example: If $\lambda=(2,2,2)$ and $\mu=(1,1)$, then

- Known proofs use algebraic geometry (Naruse) or complicated combinatorics (Morales/Pak/Panova and Konvalinka).
- In 2001, Pak and Postnikov generalized the classical hook length formula in a different direction.
- If T is a standard tableau (of any shape), and if k is a positive integer, then $c_{T}(k)$ shall denote the difference $j-i$, where (i, j) is the cell of T that contains the entry k.
- Example: If $T=$| 1 | 3 | 4 |
| :--- | :--- | :--- |
| 2 | 5 | | , then

$$
\begin{aligned}
& c_{T}(1)=1-1=0, \\
& c_{T}(2)=1-2=-1, \\
& c_{T}(3)=2-1=1, \\
& c_{T}(4)=3-1=2, \\
& c_{T}(5)=2-2=0 .
\end{aligned}
$$

- If T is a standard tableau (of any shape), and if k is a positive integer, then $c_{T}(k)$ shall denote the difference $j-i$, where (i, j) is the cell of T that contains the entry k.
- Example: If $T=$| 1 | 3 | 4 |
| :--- | :--- | :--- |
| 2 | 5 | |

$$
\begin{gathered}
c_{T}(1)=1-1=0 \\
c_{T}(2)=1-2=-1 \\
c_{T}(3)=2-1=1 \\
c_{T}(4)=3-1=2 \\
c_{T}(5)=2-2=0
\end{gathered}
$$

- If T is a standard tableau (of any shape), and if k is a positive integer, then $c_{T}(k)$ shall denote the difference $j-i$, where (i, j) is the cell of T that contains the entry k.
- Example: If $T=$| 1 | 3 | 4 |
| :--- | :--- | :--- |
| 2 | 5 | | , then

$$
\begin{aligned}
& c_{T}(1)=1-1=0, \\
& c_{T}(2)=1-2=-1, \\
& c_{T}(3)=2-1=1, \\
& c_{T}(4)=3-1=2, \\
& c_{T}(5)=2-2=0 .
\end{aligned}
$$

- If T is a standard tableau (of any shape), and if k is a positive integer, then $c_{T}(k)$ shall denote the difference $j-i$, where (i, j) is the cell of T that contains the entry k.
- Example: If $T=$| 1 | 3 | 4 |
| :--- | :--- | :--- |
| 2 | 5 | | , then

$$
\begin{aligned}
& c_{T}(1)=1-1=0 \\
& c_{T}(2)=1-2=-1 \\
& c_{T}(3)=2-1=1 \\
& c_{T}(4)=3-1=2 \\
& c_{T}(5)=2-2=0
\end{aligned}
$$

- If T is a standard tableau (of any shape), and if k is a positive integer, then $c_{T}(k)$ shall denote the difference $j-i$, where (i, j) is the cell of T that contains the entry k.
- Example: If $T=$| 1 | 3 | 4 |
| :--- | :--- | :--- |
| 2 | 5 | | , then

$$
\begin{aligned}
& c_{T}(1)=1-1=0 \\
& c_{T}(2)=1-2=-1 \\
& c_{T}(3)=2-1=1 \\
& c_{T}(4)=3-1=2 \\
& c_{T}(5)=2-2=0
\end{aligned}
$$

- If T is a standard tableau (of any shape), and if k is a positive integer, then $c_{T}(k)$ shall denote the difference $j-i$, where (i, j) is the cell of T that contains the entry k.
- Let $\ldots, z_{-2}, z_{-1}, z_{0}, z_{1}, z_{2}, \ldots$ be commuting indeterminates.
- If T is a standard tableau (of any shape), and if k is a positive integer, then $c_{T}(k)$ shall denote the difference $j-i$, where (i, j) is the cell of T that contains the entry k.
- Let $\ldots, z_{-2}, z_{-1}, z_{0}, z_{1}, z_{2}, \ldots$ be commuting indeterminates.
- For any cell $c=(i, j)$ of $Y(\lambda)$, we define the algebraic hook length $h_{\lambda}(c ; z)$ by

$$
h_{\lambda}(c ; z):=\sum_{(i, j) \in H_{\lambda}(c)} z_{j-i} .
$$

- If T is a standard tableau (of any shape), and if k is a positive integer, then $c_{T}(k)$ shall denote the difference $j-i$, where (i, j) is the cell of T that contains the entry k.
- Let $\ldots, z_{-2}, z_{-1}, z_{0}, z_{1}, z_{2}, \ldots$ be commuting indeterminates.
- For any cell $c=(i, j)$ of $Y(\lambda)$, we define the algebraic hook length $h_{\lambda}(c ; z)$ by

$$
h_{\lambda}(c ; z):=\sum_{(i, j) \in H_{\lambda}(c)} z_{j-i} .
$$

- For any standard tableau T with n cells, we define the fraction

$$
z_{T}:=\frac{1}{\prod_{k=1}^{n}\left(z_{c_{T}(k)}+z_{c_{T}(k+1)}+\cdots+z_{c_{T}(n)}\right)}
$$

- If T is a standard tableau (of any shape), and if k is a positive integer, then $c_{T}(k)$ shall denote the difference $j-i$, where (i, j) is the cell of T that contains the entry k.
- Let $\ldots, z_{-2}, z_{-1}, z_{0}, z_{1}, z_{2}, \ldots$ be commuting indeterminates.
- For any cell $c=(i, j)$ of $Y(\lambda)$, we define the algebraic hook length $h_{\lambda}(c ; z)$ by

$$
h_{\lambda}(c ; z):=\sum_{(i, j) \in H_{\lambda}(c)} z_{j-i} .
$$

- For any standard tableau T with n cells, we define the fraction

$$
z_{T}:=\frac{1}{\prod_{k=1}^{n}\left(z_{c_{T}(k)}+z_{c_{T}(k+1)}+\cdots+z_{c_{T}(n)}\right)}
$$

- The Pak-Postnikov generalization of the hook length formula states that

$$
\sum_{T \in \operatorname{SYT}(\lambda)} z_{T}=\prod_{c \in Y(\lambda)} \frac{1}{h_{\lambda}(c ; z)}
$$

- Example: For $\lambda=(2,1)$, we have

$$
\begin{aligned}
& \operatorname{SYT}(\lambda)=\left\{\begin{array}{ll}
\left.\begin{array}{ll}
1 & 2 \\
\hline 3 &
\end{array}, \begin{array}{|ll|}
\hline & 3 \\
\hline 2 &
\end{array}\right\}, \text { so the formula becomes } \\
\frac{1}{z_{-1}\left(z_{-1}+z_{1}\right)\left(z_{-1}+z_{1}+z_{0}\right)}+\frac{1}{z_{1}\left(z_{1}+z_{-1}\right)\left(z_{1}+z_{-1}+z_{0}\right)} \\
=\frac{1}{\left(z_{1}+z_{-1}+z_{0}\right) z_{1} z_{-1}}
\end{array} .\right.
\end{aligned}
$$

- Example: For $\lambda=(2,1)$, we have

$$
\begin{aligned}
& \operatorname{SYT}(\lambda)=\left\{\begin{array}{|l|l|l}
\hline 1 & 2 \\
\hline 3 & & \left.\begin{array}{ll}
1 & 3 \\
2 &
\end{array}\right\}, \text { so the formula becomes } \\
& \frac{1}{z_{-1}\left(z_{-1}+z_{1}\right)\left(z_{-1}+z_{1}+z_{0}\right)}+\frac{1}{z_{1}\left(z_{1}+z_{-1}\right)\left(z_{1}+z_{-1}+z_{0}\right)} \\
=\frac{1}{\left(z_{1}+z_{-1}+z_{0}\right) z_{1} z_{-1}}
\end{array}\right.
\end{aligned}
$$

- Known proofs involve polytopes (Pak/Postnikov) or P-partitions and tropical RSK (Hopkins).
- We propose a generalization of the Pak-Postnikov formula to skew diagrams, thus extending Naruse's hook length formula as well.
- Main theorem. Let λ and μ be two partitions with $\mu \subseteq \lambda$ such that the skew diagram $Y(\lambda / \mu)$ has n cells.
Define z_{T} for $T \in \operatorname{SYT}(\lambda / \mu)$ as before.
Define $h_{\lambda}(c ; z)$ for $c \in Y(\lambda)$ as before (this does not depend on $\mu!$).
- Main theorem. Let λ and μ be two partitions with $\mu \subseteq \lambda$ such that the skew diagram $Y(\lambda / \mu)$ has n cells. Then,

$$
\sum_{T \in \operatorname{SYT}(\lambda / \mu)} z_{T}=\sum_{E \in \mathcal{E}(\lambda / \mu)} \prod_{c \in Y(\lambda) \backslash E} \frac{1}{h_{\lambda}(c ; z)} .
$$

- Main theorem. Let λ and μ be two partitions with $\mu \subseteq \lambda$ such that the skew diagram $Y(\lambda / \mu)$ has n cells. Then,

$$
\sum_{T \in \operatorname{SYT}(\lambda / \mu)} z_{T}=\sum_{E \in \mathcal{E}(\lambda / \mu)} \prod_{c \in Y(\lambda) \backslash E} \frac{1}{h_{\lambda}(c ; z)} .
$$

- Example: For $\lambda=(2,2)$ and $\mu=(1)$, we have
$\operatorname{SYT}(\lambda / \mu)=\left\{\begin{array}{l|l|}\hline & 1 \\ \hline 2 & 3 \\ \hline\end{array}\right.$,

so the formula becomes

$$
\begin{aligned}
& \frac{1}{z_{0} \cdot\left(z_{0}+z_{-1}\right) \cdot\left(z_{0}+z_{-1}+z_{1}\right)}+\frac{1}{z_{0} \cdot\left(z_{0}+z_{1}\right) \cdot\left(z_{0}+z_{1}+z_{-1}\right)}= \\
& \frac{1}{\left(z_{1}+z_{0}\right) \cdot z_{0} \cdot\left(z_{-1}+z_{0}\right)}+\frac{1}{\left(z_{1}+z_{0}\right) \cdot\left(z_{0}+z_{-1}+z_{1}\right) \cdot\left(z_{-1}+z_{0}\right)} .
\end{aligned}
$$

- Main theorem. Let λ and μ be two partitions with $\mu \subseteq \lambda$ such that the skew diagram $Y(\lambda / \mu)$ has n cells. Then,

$$
\sum_{T \in \operatorname{SYT}(\lambda / \mu)} z_{T}=\sum_{E \in \mathcal{E}(\lambda / \mu)} \prod_{c \in Y(\lambda) \backslash E} \frac{1}{h_{\lambda}(c ; z)} .
$$

- Example: For $\lambda=(2,2)$ and $\mu=(1)$, we have
$\operatorname{SYT}(\lambda / \mu)=\left\{\begin{array}{l|l|}\hline & 1 \\ \hline 2 & 3 \\ \hline\end{array}\right.$,

so the formula becomes

$$
\begin{aligned}
& \frac{1}{z_{0} \cdot\left(z_{0}+z_{-1}\right) \cdot\left(z_{0}+z_{-1}+z_{1}\right)}+\frac{1}{z_{0} \cdot\left(z_{0}+z_{1}\right) \cdot\left(z_{0}+z_{1}+z_{-1}\right)}= \\
& \frac{1}{\left(z_{1}+z_{0}\right) \cdot z_{0} \cdot\left(z_{-1}+z_{0}\right)}+\frac{1}{\left(z_{1}+z_{0}\right) \cdot\left(z_{0}+z_{-1}+z_{1}\right) \cdot\left(z_{-1}+z_{0}\right)} .
\end{aligned}
$$

- This was first observed by Grinberg. An intricate combinatorial proof was sketched by Konvalinka in 2019.
- We propose a new, elementary proof of this generalized formula.
- We propose a new, elementary proof of this generalized formula.
- Induct on $|Y(\lambda / \mu)|$, increasing μ by one cell in the induction step.

Proof idea: the Konvalinka recursion, 1

$$
\text { - Let } f(\lambda / \mu)=\sum_{T \in \operatorname{SYT}(\lambda)} z_{T} \text {. }
$$

- Let $f(\lambda / \mu)=\sum_{T \in \operatorname{SYT}(\lambda)} z_{T}$.
- We easily obtain the recurrence

$$
z_{T}=\frac{1}{\sum_{(i, j) \in Y(\lambda / \mu)} z_{j-i}} \cdot z_{T^{\prime}}
$$

where T^{\prime} is the same tableau as T, with the entry 1 removed and all other entries decreased by 1 .

- Let $f(\lambda / \mu)=\sum_{T \in \operatorname{SYT}(\lambda)} z_{T}$.
- We easily obtain the recurrence

$$
z_{T}=\frac{1}{\sum_{(i, j) \in Y(\lambda / \mu)} z_{j-i}} \cdot z_{T^{\prime}}
$$

where T^{\prime} is the same tableau as T, with the entry 1 removed and all other entries decreased by 1 .

- Example: Let $\lambda=(3,3,2)$ and $\mu=(2,1)$.

for $\nu=(2,2)$. Thus, $z_{T}=\frac{1}{z_{-1}+z_{-2}+z_{1}+z_{2}+z_{0}} \cdot z_{T^{\prime}}$.
- Thus we get a recurrence for $f(\lambda / \mu)$:

$$
f(\lambda / \mu)=\frac{1}{\sum_{(i, j) \in Y(\lambda / \mu)} z_{j-i}} \cdot \sum_{\mu \lessdot \nu \subseteq \lambda} f(\lambda / \nu) .
$$

- Here, $\mu \lessdot \nu$ means that the partition ν is obtained by adding 1 to some entry of μ.
- Thus we get a recurrence for $f(\lambda / \mu)$:

$$
f(\lambda / \mu)=\frac{1}{\sum_{(i, j) \in Y(\lambda / \mu)} z_{j-i}} \cdot \sum_{\mu \lessdot \nu \subseteq \lambda} f(\lambda / \nu) .
$$

- Here, $\mu \lessdot \nu$ means that the partition ν is obtained by adding 1 to some entry of μ.
- The induction step thus reduces to the following claim:
- Konvalinka recursion. Let λ / μ be any skew partition, and let $x_{1}, x_{2}, x_{3}, \ldots$ and $y_{1}, y_{2}, y_{3}, \ldots$ be two infinite families of commuting indeterminates. Then,

$$
\begin{aligned}
& \left(\sum_{\nexists i: \lambda_{k}-k=\mu_{i}-i} x_{k}+\sum_{\nexists j: \lambda_{p}^{t}-p=\mu_{j}^{t}-j} y_{p}\right) \sum_{D \in \mathcal{E}(\lambda / \mu)} \prod_{(i, j) \in D}\left(x_{i}+y_{j}\right) \\
& =\sum_{\mu<\nu \subseteq \lambda} \sum_{D \in \mathcal{E}(\lambda / \nu)} \prod_{(i, j) \in D}\left(x_{i}+y_{j}\right) .
\end{aligned}
$$

- Let D be a diagram. A semistandard tableau (of shape D) means a filling of the cells of D with positive integers such that
- the numbers weakly increase along each row,
- the numbers strictly increase down each column.
- Example: Here is a semistandard tableau for $\mu=(4,3,1)$:

1	1	1	2
2	3	3	
4			

- Let D be a diagram. A semistandard tableau (of shape D) means a filling of the cells of D with positive integers such that
- the numbers weakly increase along each row,
- the numbers strictly increase down each column.
- A flagging means a sequence $\mathbf{b}:=\left(b_{1}, b_{2}, b_{3}, \ldots\right)$ of positive integers.
- Let D be a diagram. A semistandard tableau (of shape D) means a filling of the cells of D with positive integers such that
- the numbers weakly increase along each row,
- the numbers strictly increase down each column.
- A flagging means a sequence $\mathbf{b}:=\left(b_{1}, b_{2}, b_{3}, \ldots\right)$ of positive integers.
- A flagged semistandard tableau of shape (μ, \mathbf{b}) is a semistandard tableau of shape $Y(\mu)$ in which all entries in row i are $\leq b_{i}$.

$$
\begin{aligned}
& \leq b_{1} \\
& \leq b_{2} \\
& \leq b_{3}
\end{aligned}
$$

- Let D be a diagram. A semistandard tableau (of shape D) means a filling of the cells of D with positive integers such that
- the numbers weakly increase along each row,
- the numbers strictly increase down each column.
- A flagging means a sequence $\mathbf{b}:=\left(b_{1}, b_{2}, b_{3}, \ldots\right)$ of positive integers.
- A flagged semistandard tableau of shape (μ, \mathbf{b}) is a semistandard tableau of shape $Y(\mu)$ in which all entries in row i are $\leq b_{i}$.

- For two partitions λ and μ, we define $\mathcal{F}(\lambda / \mu)$ to be the set of flagged semistandard tableaux of shape (μ, \mathbf{b}), where $\mathbf{b}:=\left(b_{1}, b_{2}, b_{3}, \ldots\right)$ with

$$
b_{i}:=\max \left\{k \geq i \mid \lambda_{k}-k \geq \mu_{i}-i\right\} \quad \text { for all } i \geq 1 .
$$

- Now, there is a bijection from $\mathcal{E}(\lambda / \mu)$ to $\mathcal{F}(\lambda / \mu)$, defined as follows: Each excitation $D \in \mathcal{E}(\lambda / \mu)$ is sent to the flagged semistandard tableau T of shape (μ, \mathbf{b}), where
$T(i, j)=i+(\#$ of excited moves that cell (i, j) makes in $D)$. Here $T(i, j)$ means the entry of T in cell (i, j).
- Example: For $\lambda=(3,3,3,1)$ and $\mu=(2,1)$:

- Now, there is a bijection from $\mathcal{E}(\lambda / \mu)$ to $\mathcal{F}(\lambda / \mu)$, defined as follows: Each excitation $D \in \mathcal{E}(\lambda / \mu)$ is sent to the flagged semistandard tableau T of shape (μ, \mathbf{b}), where $T(i, j)=i+(\#$ of excited moves that cell (i, j) makes in $D)$. Here $T(i, j)$ means the entry of T in cell (i, j).
- Example: For $\lambda=(3,3,3,1)$ and $\mu=(2,1)$:

- Thus, we can work with flagged SSYTs instead of excited diagrams.
- Theorem (generalized Jacobi-Trudi formula). Let
$\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}\right)$ and $\mu=\left(\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{k}\right)$ be two partitions. Let $a_{1} \leq a_{2} \leq \cdots \leq a_{k}$ and $b_{1} \leq b_{2} \leq \cdots \leq b_{k}$ be positive integers. Let $u_{i, j}$ be a variable for each pair $(i, j) \in \mathbb{Z}^{2}$.
Then,

$$
\sum
$$

T is a semistandard tableau $\quad(i, j) \in Y(\lambda / \mu)$ of shape $Y(\lambda / \mu)$;
$a_{i} \leq T(i, j) \leq b_{i}$ for all (i, j)
$=\operatorname{det}\left(\sum_{a_{i} \leq t_{\mu_{i}+1} \leq t_{\mu_{i}+2} \leq \cdots \leq t_{\lambda_{j}} \leq b_{j}} \prod_{c=\mu_{i}+1}^{\lambda_{j}} u_{c-i, t_{c}}\right)_{i, j \in[k]}$.

- Theorem (generalized Jacobi-Trudi formula). Let
$\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}\right)$ and $\mu=\left(\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{k}\right)$ be two partitions. Let $a_{1} \leq a_{2} \leq \cdots \leq a_{k}$ and
$b_{1} \leq b_{2} \leq \cdots \leq b_{k}$ be positive integers. Let $u_{i, j}$ be a variable for each pair $(i, j) \in \mathbb{Z}^{2}$.
Then,

$$
\begin{aligned}
& \sum \prod u_{j-i, T(i, j)} \\
& T \text { is a semistandard tableau } \quad(i, j) \in Y(\lambda / \mu) \\
& \text { of shape } Y(\lambda / \mu) \text {; } \\
& a_{i} \leq T(i, j) \leq b_{i} \text { for all }(i, j) \\
& =\operatorname{det}\left(\sum_{a_{i} \leq t_{\mu_{i}+1} \leq t_{\mu_{i}+2} \leq \cdots \leq t_{\lambda_{j}} \leq b_{j}} \prod_{c=\mu_{i}+1}^{\lambda_{j}} u_{c-i, t_{c}}\right)_{i, j \in[k]}
\end{aligned}
$$

- This is implicit in a preprint of Gessel and Viennot 1989.
- If $\mu=(0,0, \ldots, 0)$ and all a_{i} are 0 as well, and if $u_{i, j}=x_{j}+y_{i+j}$, and if we rename λ as μ, then the left hand side here becomes

$$
\sum_{T \in \operatorname{FSSYT}(\mu, \mathbf{b})} \prod_{(i, j) \in Y(\mu)}\left(x_{T(i, j)}+y_{T(i, j)+j-i}\right)
$$

- If $\mu=(0,0, \ldots, 0)$ and all a_{i} are 0 as well, and if $u_{i, j}=x_{j}+y_{i+j}$, and if we rename λ as μ, then the left hand side here becomes

$$
\sum_{T \in \operatorname{FSSYT}(\mu, \mathbf{b})} \prod_{(i, j) \in Y(\mu)}\left(x_{T(i, j)}+y_{T(i, j)+j-i}\right),
$$

which equals the

$$
\sum_{D \in \mathcal{E}(\lambda / \mu)} \prod_{(i, j) \in D}\left(x_{i}+y_{j}\right)
$$

in the Konvalinka recursion.

- Jacobi-Trudi transforms both sides of the Konvalinka recursion into sums of determinants.
- After some nontrivial work, it becomes an easy determinantal identity:
- Theorem. Let M and N be two $n \times n$-matrices. Then,

$$
\begin{aligned}
& \sum_{k=1}^{n} \operatorname{det}(M \text { with its } k \text {-th row replaced } \\
&\text { by the } k \text {-th row of } N) \\
&= \sum_{k=1}^{n} \operatorname{det}(M \text { with its } k \text {-th column replaced } \\
&\text { by the } k \text {-th column of } N) .
\end{aligned}
$$

- Example:

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccc}
A & B & C \\
a^{\prime} & b^{\prime} & c^{\prime} \\
a^{\prime \prime} & b^{\prime \prime} & c^{\prime \prime}
\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}
a & b & c \\
A^{\prime} & B^{\prime} & C^{\prime} \\
a^{\prime \prime} & b^{\prime \prime} & c^{\prime \prime}
\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}
a & b & c \\
a^{\prime} & b^{\prime} & c^{\prime} \\
A^{\prime \prime} & B^{\prime \prime} & C^{\prime \prime}
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
A & b & c \\
A^{\prime} & b^{\prime} & c^{\prime} \\
A^{\prime \prime} & b^{\prime \prime} & c^{\prime \prime}
\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}
a & B & c \\
a^{\prime} & B^{\prime} & c^{\prime} \\
a^{\prime \prime} & B^{\prime \prime} & c^{\prime \prime}
\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}
a & b & C \\
a^{\prime} & b^{\prime} & C^{\prime} \\
a^{\prime \prime} & b^{\prime \prime} & C^{\prime \prime}
\end{array}\right) .
\end{aligned}
$$

- Two of the lemmas used along the way:
- Lemma 1. Let λ be a partition. Let λ^{t} be its conjugate (i.e., Young diagram flipped across the main diagonal). Then, the sets

$$
\left\{\lambda_{i}-i \mid i \in \mathbb{N}\right\} \quad \text { and } \quad\left\{j-\lambda_{j}^{t}-1 \mid j \in \mathbb{N}\right\}
$$

are disjoint and their union is \mathbb{Z}.

- Lemma 2. Let $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}, \ldots\right)$ be the flagging of λ / μ. Let μ^{+i} be the partition obtained from μ by increasing the i-th entry by 1 .
Let $\mathbf{b}^{* i}=\left(b_{1}^{* i}, b_{2}^{* i}, b_{3}^{* i}, \ldots\right)$ be the flagging induced by λ / μ^{+i}. Then:

$$
-1 \leq b_{i}^{* i}-b_{i} \leq 0, \quad \text { and } \quad b_{k}^{* i}=b_{k} \text { for all } k \neq i
$$

- Sam Hopkins, RSK via local transformations. http://www.samuelfhopkins.com/docs/rsk.pdf
- Matjaž Konvalinka, A bijective proof of the hook length formula for skew shapes, 2020. Preprint:
https://www.fmf.uni-lj.si/~konvalinka/excited.pdf
- Matjaž Konvalinka, Hook, line and sinker: a bijective proof of the skew shifted hook-length formula, 2019. Preprint: https://www.fmf.uni-lj.si/~konvalinka/excited_ shifted.pdf
- Alejandro H. Morales, Igor Pak, Greta Panova, Hook formulas for skew shapes I. q-analogues and bijections, 2018. Preprint: https://arxiv.org/abs/1512.08348v5.
- Bruce E. Sagan, Combinatorics: The Art of Counting, AMS 2020. https://users.math.msu.edu/users/bsagan/ Books/Aoc/final.pdf
- Richard P. Stanley, Enumerative Combinatorics, volume 2, 2001. See http://math.mit.edu/~rstan/ec/ for errata.
- the Yulia's Dream program and Pavel Etingof, Slava Gerovich, Vasily Dolgushev, Dmytro Matvieievskyi in particular.
- Darij Grinberg for mentoring this project, and Andrei Ionov for mentorship during summer.
- Alexander Postnikov, Matjaž Konvalinka for discussions on hook-length formulas.
- our families for their support.

